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 Stochastic programming is explicitly built on a tree of 
scenarios where nodes represent opportunities for decisions
 The monolithic problem (extensive form) is typically intractable

 Decomposition and iterative convergence the workhorse of SP

A graphical view of SP decomposition
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 Stochastic programming is explicitly built on a tree of 
scenarios where nodes represent opportunities for decisions
 The monolithic problem (extensive form) is typically intractable

 Decomposition and iterative convergence the workhorse of SP

 For convenience, let us restrict ourselves to 2-stage problems

A graphical view of SP decomposition
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 Benders Decomposition splits the problem “in time” into
 A master problem that (initially) has the 1st-stage variables

 (Plus any discrete variables from the 2nd stage)

 Plus a proxy variable z to capture impact of subproblems

 Independent subproblems, 1 per scenario, for the 2nd-stage variables

 Must be continuous

 Iteratively solve master to obtain upper bound (incumbent)
 Solve subproblems to obtain lower bound + cuts for the master

 Challenges
 Discrete recourse decisions

 Master problem “bloat”

 Multistage problems 

 (bookkeeping)

Benders Decomposition: splitting time
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 Progressive Hedging splits the problem by scenarios
 “No” master problem

 One subproblem per scenario

 Relax nonanticipativity constraints

 Iteratively converge the stage nonanticipativity constraints
 Penalize decision variable value by weight ���

 Penalize deviation from average, �	 � − �̅ �

 Update � using �

Progressive Hedging: splitting anticipativity
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 PH avoids many of the challenges experienced by Benders
 No restriction on stage variable domains (discrete 2nd stage OK)

 “Trivially” extends to multistage problems

 No master problem, no cuts generated: no problem “bloat”

 BUT…
 Not provably convergent for the discrete case

 …although bounds exist on the quality of solution you get

 “Infeasible path” algorithm

 Discrete variable cycling

 Slow convergence due to “holdout” scenarios

 How to choose �???

PH: Benefits and open challenges
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 Can we leverage ideas from each to accelerate the other?
 Related: Cross Decomposition (Lagrangean Decomposition + Benders)

 [Van Roy 1983; Holmberg, 1990; Mitra,et al. 2016]

PH + Benders: orthogonal decompositions
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 Challenges with naïve Cross Decomposition for PH
 No LD Master problem

 Discrete second stage variables

 PH subproblems do not provide proper Lagrangean bounds

 Except at iteration 0

Cross Decomposition for PH?
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Progressive Hedging: the algorithm
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 Consider the Benders “feasibility” cut:
 Given �∗ computed by the RMP, if (dual) subproblem is unbounded, 

add a cut determined by an extreme ray in the dual space to the RMP

 In PH, a similar operation would be fix the values of � in 
subproblem �� to the values computed by subproblem ��:

min
�

��(�
�∗, �)

 If the problem is infeasible, then we can solve a separation problem 
(in the primal space) to determine a valid cut in the 1st-stage variables:

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

 Notes:

 ��� is the continuous relaxation of ��  not guaranteed to generate a cut

 The resulting cut is valid for all scenario subproblems

 ∑����(�
�∗, ��∗) for initial scenario solves (� = 0) gives Lagrangian bound

Improving PH: borrowing from Benders
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For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

PH + feasibility
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 2-stage stochastic network flow from [Watson & Woodruff, 2011]:
 1st stage variables:

 ��	∀		� ∈ ����;		 ��| 	�� ∈ �, 0 ≤ �� ≤ ��
�� 		 Capacity of Arc �

 ��
�	∀		� ∈ ����;			b�

� ∈ {0,1} Arc � is available

 2nd stage variables:

 ��
�	∀		� ∈ ����, � ∈ ���������;		 ��

� 	|	��
� ∈ �, 0 ≤ ��

� ≤ ��
Flow across Arc � in scenario �

 ��
� 	∀		� ∈ ����, � ∈ ���������; 			b�

� ∈ {0, ��
�} Arc � is in use for scenario �

 PH (� = 100, with “Watson-Woodruff” extensions)
 Significant cycling (no convergence after 1000 iterations)

 PH (� = 100, with WW extensions, with feasibility cuts)
 Converges in 42 iterations (objective: 164426, 2726 seconds)

 6 preliminary cut passes: raises Lagrangian LB 135085  148656

Case study: stochastic network flow
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 2-stage unit commitment model for the electric power grid
 24-hour horizon, 1-hour commitment intervals

 Explicitly include N-1 analysis (loss of any 1 generator / non-radial line)

 Each contingency modeled as a no-cost recourse scenario

 Line switching (opening /closing a line) in 1st and 2nd stages

 Case 1:  5 busses, 7 generators (13 scenarios):
 Optimal solution (extensive form): 19.9756

 Default PH (� = 1):

 17 iterations, objective = 22.9997, total time 123 seconds

 PH (� = 1) + Feasibility cuts:

 3 feasibility cut iterations at PH iteration 0

– Improved Lagrangean bound from 19.7 to 19.88

 12 iterations, objective = 20.11, total time 568 seconds

Case study: UC + N-1 + switching
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 What happens if the subproblem min
�

��(�
�∗, �) is feasible?

 The 1st stage decisions are valid in this scenario

 If ��∗ is valid in ALL scenarios, then ��∗ satisfies nonanticipativity and 
the expectation of the subproblems forms a valid upper bound

� � �∗, � ≤ � � ��∗, �

 If the first stage variables are all discrete

 Repeating this process for all ��∗ and identify additional 
nonanticipative solutions, then the upper bound can be used to 
generate optimality cuts to exclude sub-optimal solutions

 These cuts are also valid on all scenario subproblems

Improving PH: borrowing from Benders
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For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

If ��(�
�∗, �) feasible ∀	� ∈ �:

If ∑����,� < �∗:

�∗ ≔ ∑����,�
��∗ ≔ ��∗

Generate optimality cut

Record � = ��∗ dual values

PH + feasibility + optimality cuts
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 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1):  297 iterations, 21.55 seconds:  objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds:  objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 16



 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1):  297 iterations, 21.55 seconds:  objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds:  objective = -108390

 Very sensitive to the solver!
 Gurobi 6.0.4

 PH (� = 1): 39 iterations, 1.09 seconds:  objective = -108390

 PH + optimality: 154 iterations, 16.4 seconds:  objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 17



 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1):  297 iterations, 21.55 seconds:  objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds:  objective = -108390

 Very sensitive to the strategy!

Case Studies: farmer
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 Unit commitment under demand uncertainty
 24 hour horizon, 1-hour intervals

 Case 1:  5 busses, 7 generators, 3 load scenarios
 Optimal solution (extensive form):  348.98

 Default PH (� = 10):

 Significant cycling (no convergence after 100 iterations)

 PH (� = 10) + Optimality cuts:

 20 iterations, objective = 348.9835

Case study: Stochastic Unit Commitment
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 How do we get “good” values of �?
 Currently:  experimentation

 Challenge: � is problem dependent

 Too low and PH never converges

 Too high and PH rapidly converges to suboptimal solution

 Hint:  scale relative to cost of each variable [Watson & Woodruff, 2011]

�� ∝
��

��
��� − ��

��� + 1

 We can get good cost estimates from the subproblem duals

 When we evaluate ��(�
�∗, �), record the duals for � = ��∗

 Compute average duals weighted relative to scenario probability

Improving PH: setting �
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 3-scenario farmer problem [Birge & Louveaux]
 Continuous acreage allocations

 PH (� = 1):

– 33 iterations, 1.06 seconds:  objective = -108388.7726

 PH + � setter:

– 34 iterations, 1.34 seconds:  objective = -108389.7811

 Discrete acreage allocations

 PH (� = 1):

– 39 iterations, 1.09 seconds:  objective = -108390

 PH + optimality cuts:

– 154 iterations, 16.4 seconds:  objective = -108390

 PH + optimality cuts + � setter:

– 40 iterations, 4.42 seconds:  objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 21



 Recall:
 Optimal solution (extensive form):  19.9756

 Default PH (� = 1):

 17 iterations, objective = 22.9997, total time 123 seconds

 PH (� = 1) + Feasibility cuts:

 3 feasibility cut iterations at PH iteration 0

– Improved Lagrangian bound from 19.7 to 19.88

 12 iterations, objective = 20.11, total time 568 seconds

 Now:
 PH + Feasibility cuts + � setter

 20 iterations, objective = 19.9808, total time 494 seconds

Case studies: UC + N-1 analysis 
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For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

If ��(�
�∗, �) feasible ∀	� ∈ �:

If ∑����,� < �∗:

�∗ ≔ ∑����,�
��∗ ≔ ��∗

Generate optimality cut

Record � = ��∗ dual values
Update �

PH + feasibility + optimality cuts+ �
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 Open-source optimization modeling
environment written in Python

 All experiments performed using 
Pyomo’s PySP PH implementation

 Cuts and � updates implemented 
using PH callbacks

 Project homepage

 http://www.pyomo.org

 Development recently moved to GitHub

 “The Book”
 Second edition going to press in O(weeks)

 Mathematical Programming Computation papers
 Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)

 PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

Our software environment: Pyomo
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 Significant benefits from using “Cross-scenario” information 
 Lagrangian bound improvement

 Cycle breaking

 Convergence acceleration

 Automatic tuning

 “Fewer” problem-specific tuning parameters 

 Open questions
 � � subproblem solves to evaluate solutions is expensive

 Although it is “trivially” parallelizable

 Can we gain most of the benefit using only � � subproblems?

 New (scalar) tuning parameters

 How frequently to evaluate cross-scenario information?

 How aggressively to update �?

 what is the most robust � update formula?

Conclusions and future directions
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