

Sandia
National
Laboratories

*Exceptional
service
in the
national
interest*

Accelerating and automatic tuning for Progressive Hedging

John D. Siirola¹, Jean-Paul Watson¹, and David L. Woodruff²

¹Discrete Math & Optimization (1464)

Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

²Graduate School of Management

University of California, Davis
Davis, CA USA

International Conference on Stochastic Programming (ICSP)
27 June 2016

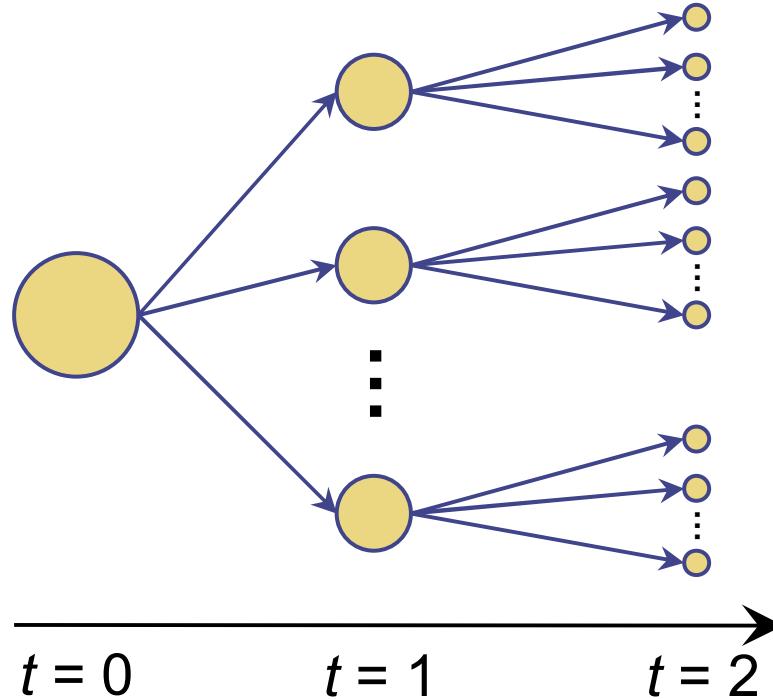
U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

IDAES
Institute for the Design of
Advanced Energy Systems

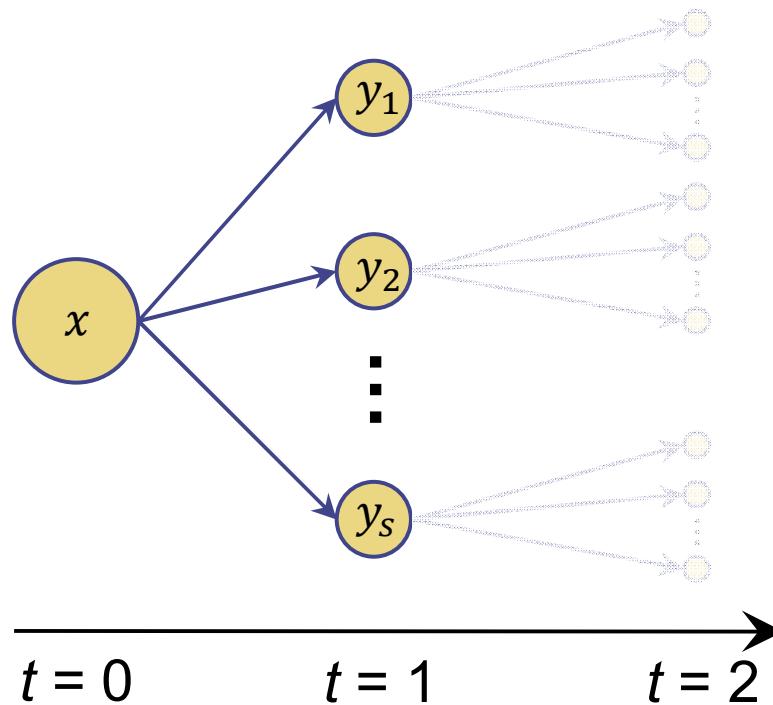
A graphical view of SP decomposition

- Stochastic programming is explicitly built on a tree of scenarios where nodes represent opportunities for decisions
 - The monolithic problem (extensive form) is typically intractable
 - Decomposition and iterative convergence the workhorse of SP



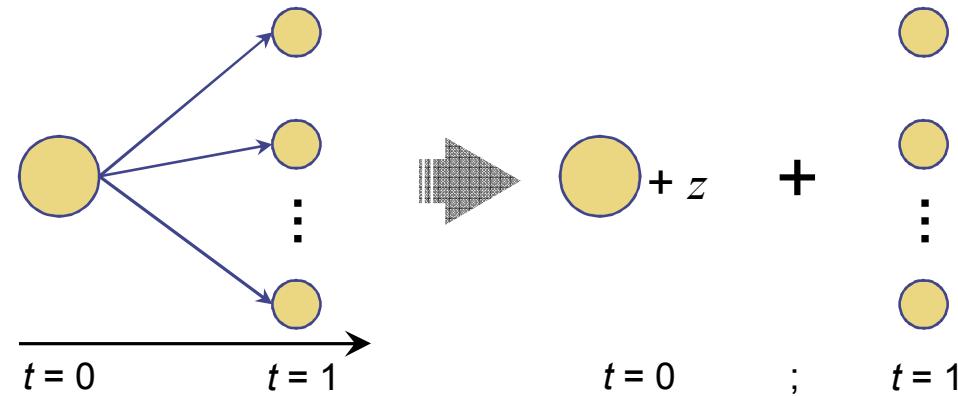
A graphical view of SP decomposition

- Stochastic programming is explicitly built on a tree of scenarios where nodes represent opportunities for decisions
 - The monolithic problem (extensive form) is typically intractable
 - Decomposition and iterative convergence the workhorse of SP
 - For convenience, let us restrict ourselves to 2-stage problems



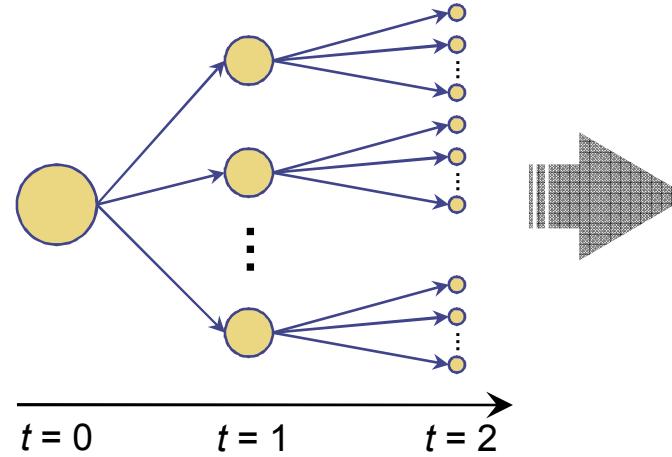
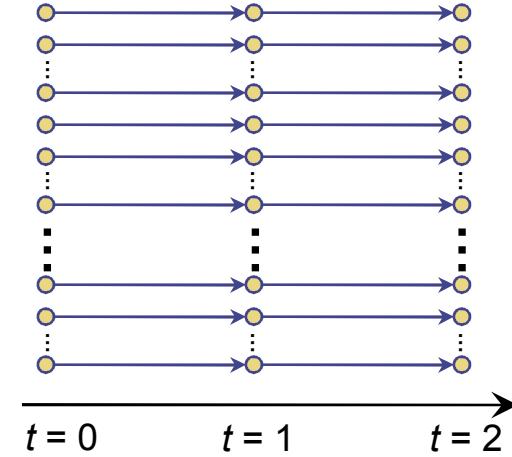
Benders Decomposition: splitting time

- Benders Decomposition splits the problem “in time” into
 - A *master* problem that (initially) has the 1st-stage variables
 - (Plus any discrete variables from the 2nd stage)
 - Plus a proxy variable z to capture impact of subproblems
 - Independent *subproblems*, 1 per scenario, for the 2nd-stage variables
 - Must be continuous
- Iteratively solve master to obtain upper bound (incumbent)
 - Solve subproblems to obtain lower bound + cuts for the master
- Challenges
 - Discrete recourse decisions
 - Master problem “bloat”
 - Multistage problems
 - (bookkeeping)



Progressive Hedging: splitting anticipativity

- Progressive Hedging splits the problem by scenarios
 - “No” master problem
 - One subproblem per scenario
 - Relax nonanticipativity constraints
- Iteratively converge the stage nonanticipativity constraints
 - Penalize decision variable value by weight $w^T x$
 - Penalize deviation from average, $\rho \|x - \bar{x}\|^2$
 - Update w using ρ

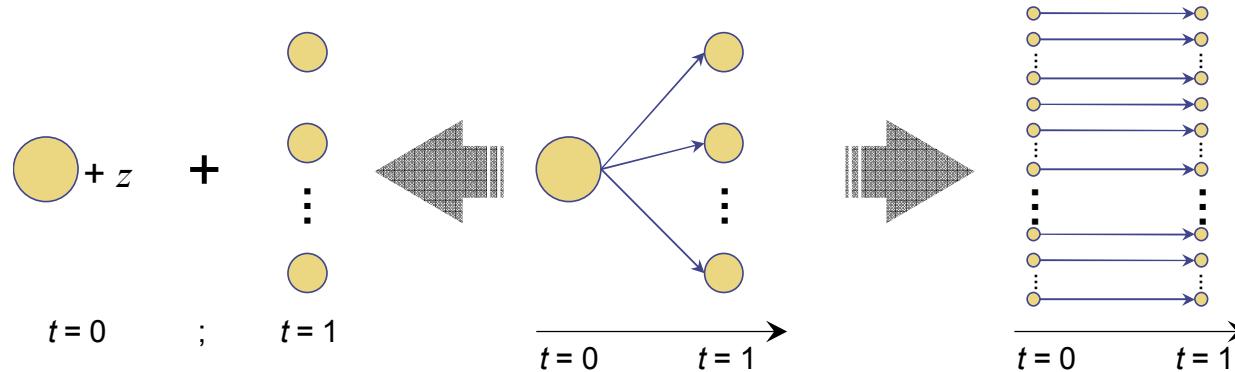


PH: Benefits and open challenges

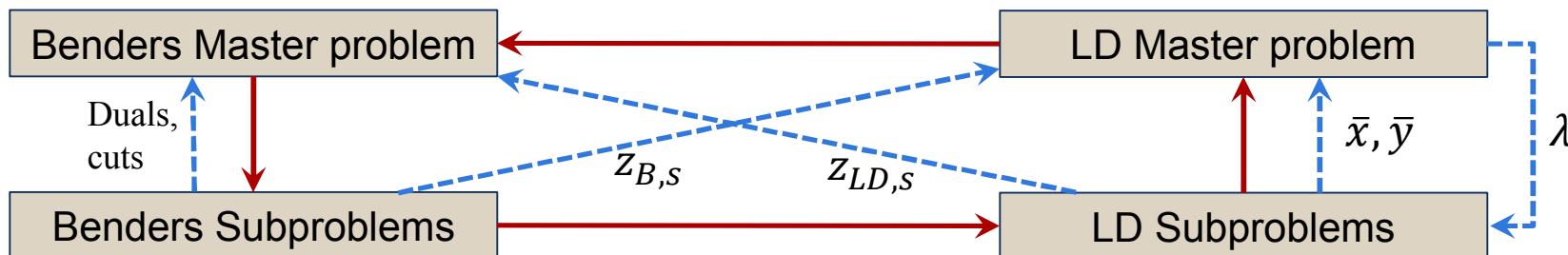
- PH avoids many of the challenges experienced by Benders
 - No restriction on stage variable domains (discrete 2nd stage OK)
 - “Trivially” extends to multistage problems
 - No master problem, no cuts generated: no problem “bloat”
- BUT...
 - Not provably convergent for the discrete case
 - ...although bounds exist on the quality of solution you get
 - “Infeasible path” algorithm
 - Discrete variable cycling
 - Slow convergence due to “holdout” scenarios
 - How to choose ρ ???

We will attempt to address these challenges

PH + Benders: orthogonal decompositions

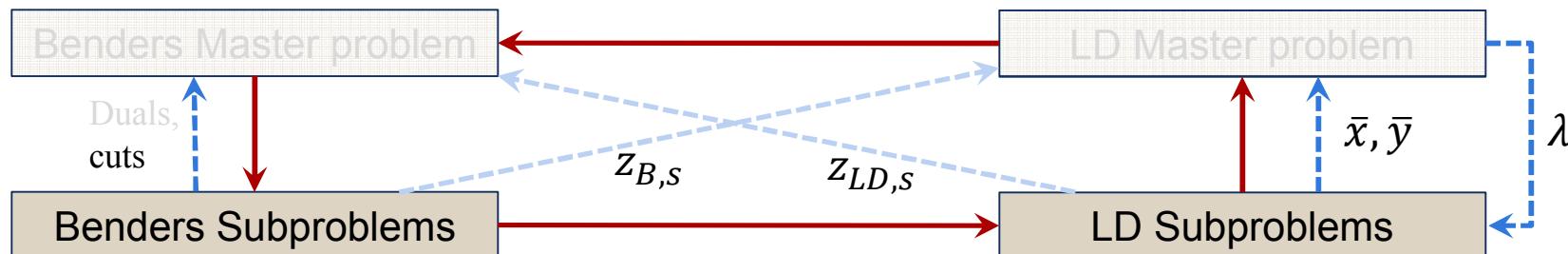


- Can we leverage ideas from each to accelerate the other?
 - Related: Cross Decomposition (Lagrangian Decomposition + Benders)
 - [Van Roy 1983; Holmberg, 1990; Mitra,et al. 2016]

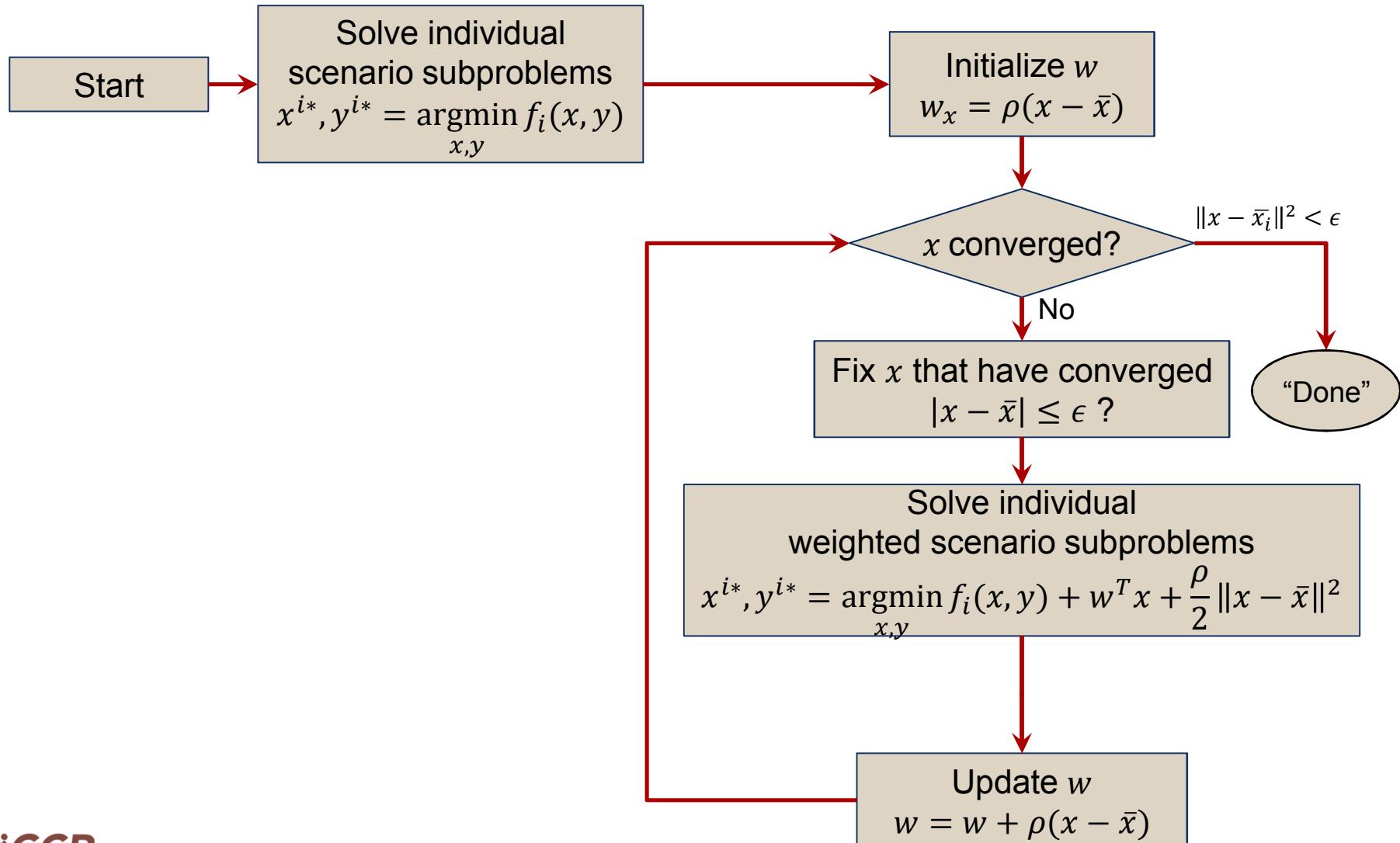


Cross Decomposition for PH?

- Challenges with naïve Cross Decomposition for PH
 - No LD Master problem
 - Discrete second stage variables
 - PH subproblems do not provide proper Lagrangean bounds
 - Except at *iteration 0*



Progressive Hedging: the algorithm



Improving PH: borrowing from Benders

- Consider the Benders “feasibility” cut:
 - Given x^* computed by the RMP, if (dual) subproblem is unbounded, add a cut determined by an extreme ray in the dual space to the RMP
- In PH, a similar operation would be fix the values of x in subproblem f_j to the values computed by subproblem f_i :

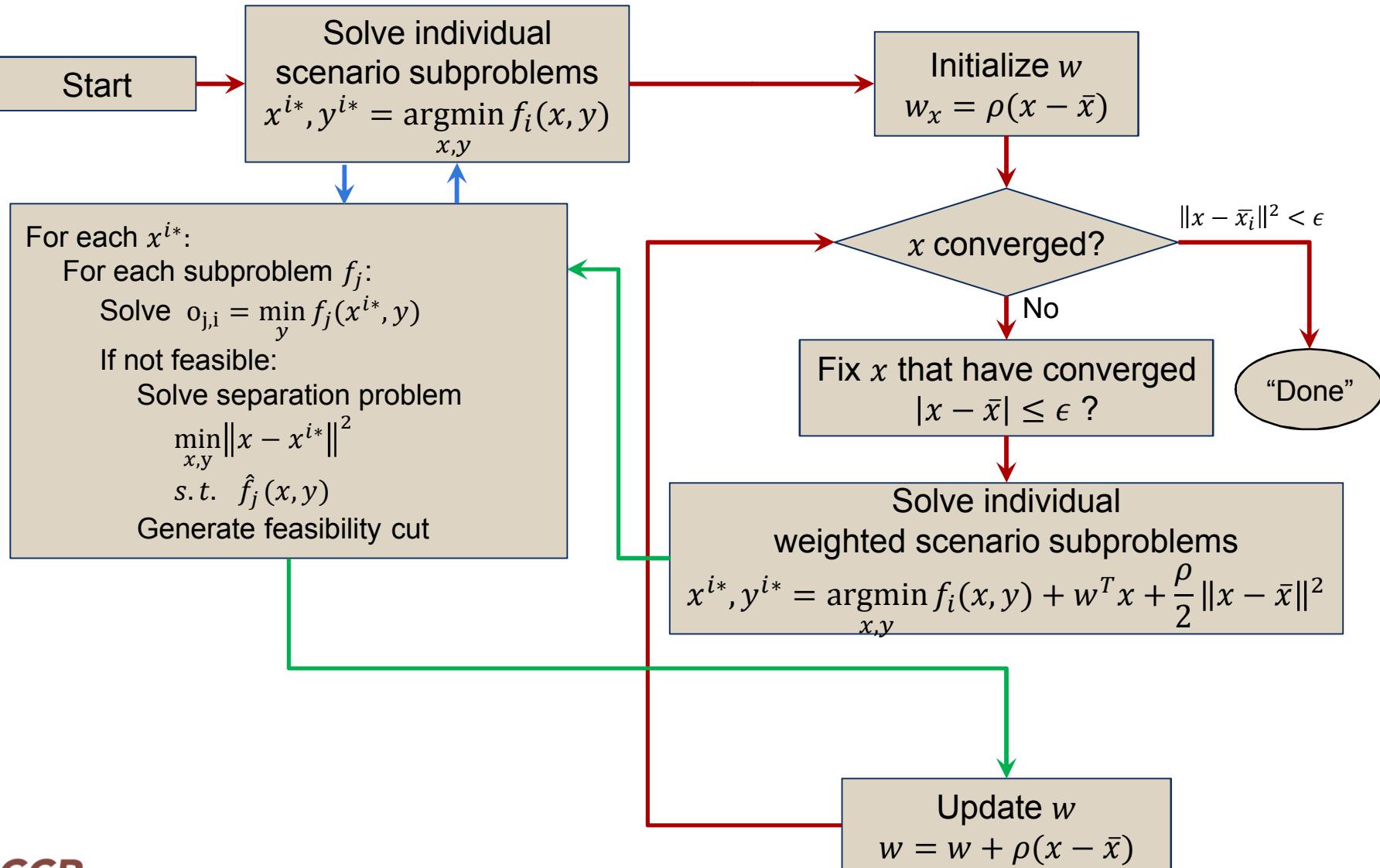
$$\min_y f_j(x^{i*}, y)$$

- If the problem is infeasible, then we can solve a separation problem (in the primal space) to determine a valid cut in the 1st-stage variables:

$$\begin{aligned} & \min_{x,y} \|x - x^{i*}\|^2 \\ & \text{s.t. } \hat{f}_j(x, y) \end{aligned}$$

- Notes:
 - \hat{f}_j is the continuous relaxation of $f_j \rightarrow$ not guaranteed to generate a cut
 - The resulting cut is valid for *all* scenario subproblems
 - $\sum p_i f_i(x^{i*}, y^{i*})$ for initial scenario solves ($w = 0$) gives Lagrangian bound

PH + feasibility



Case study: stochastic network flow

- 2-stage stochastic network flow from [Watson & Woodruff, 2011]:
 - 1st stage variables:
 - $x_a \forall a \in Arcs; \{x_a \mid x_a \in R, 0 \leq x_a \leq x_a^{UB}\}$ Capacity of Arc a
 - $b_a^0 \forall a \in Arcs; b_a^0 \in \{0,1\}$ Arc a is available
 - 2nd stage variables:
 - $y_a^s \forall a \in Arcs, s \in Scenarios; \{y_a^s \mid y_a^s \in R, 0 \leq y_a^s \leq x_a\}$ Flow across Arc a in scenario s
 - $b_a^s \forall a \in Arcs, s \in Scenarios; b_a^s \in \{0, b_a^0\}$ Arc a is in use for scenario s
- PH ($\rho = 100$, with “Watson-Woodruff” extensions)
 - Significant cycling (no convergence after 1000 iterations)
- PH ($\rho = 100$, with WW extensions, with feasibility cuts)
 - Converges in 42 iterations (objective: 164426, 2726 seconds)
 - 6 preliminary cut passes: raises Lagrangian LB 135085 → 148656

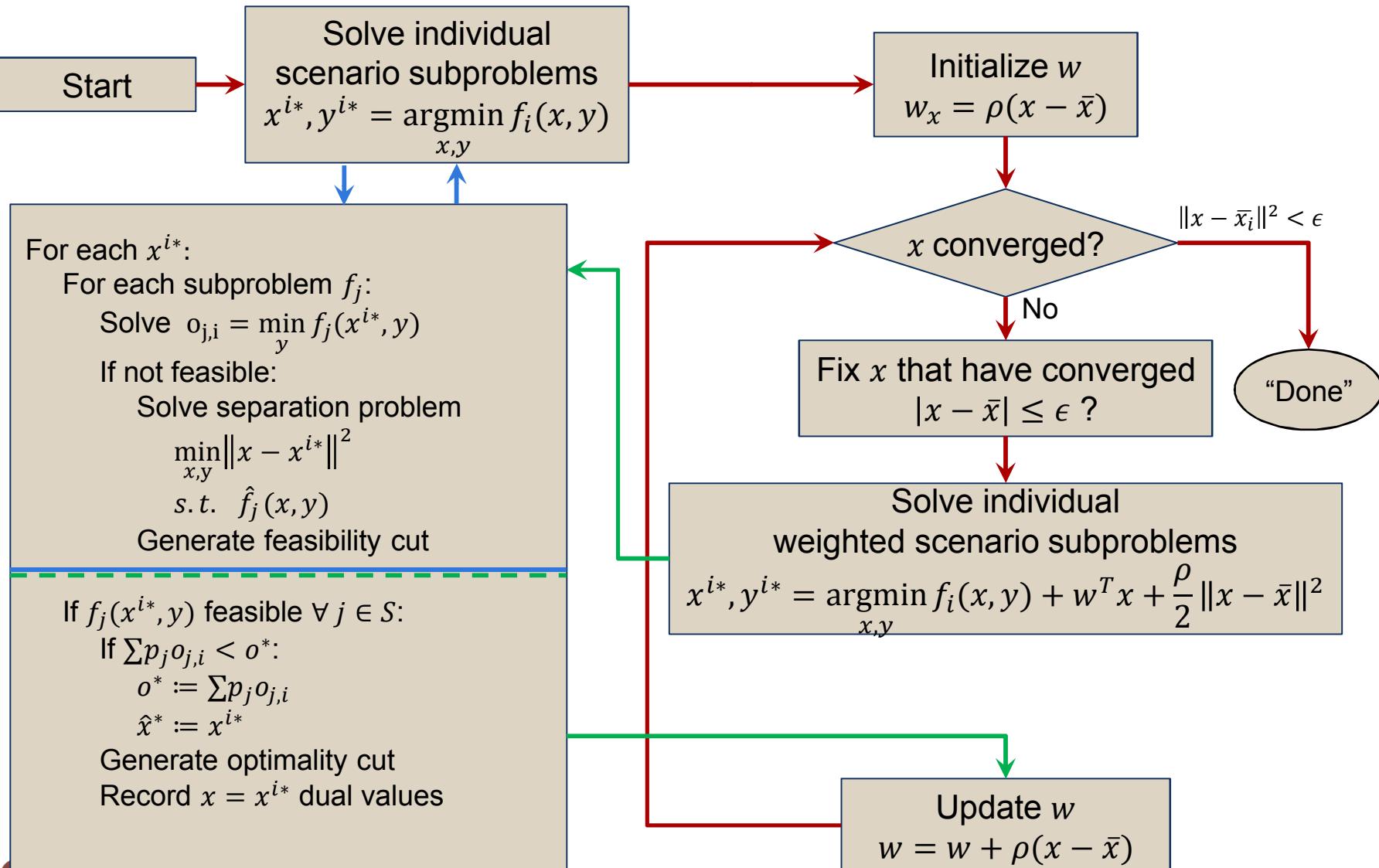
Case study: UC + $N-1$ + switching

- 2-stage unit commitment model for the electric power grid
 - 24-hour horizon, 1-hour commitment intervals
 - Explicitly include $N-1$ analysis (loss of any 1 generator / non-radial line)
 - Each contingency modeled as a no-cost recourse scenario
 - Line switching (opening /closing a line) in 1st and 2nd stages
- Case 1: 5 busses, 7 generators (13 scenarios):
 - Optimal solution (extensive form): 19.9756
 - Default PH ($\rho = 1$):
 - 17 iterations, objective = 22.9997, total time 123 seconds
 - PH ($\rho = 1$) + Feasibility cuts:
 - 3 feasibility cut iterations at PH iteration 0
 - Improved Lagrangean bound from 19.7 to 19.88
 - 12 iterations, objective = 20.11, total time 568 seconds

Improving PH: borrowing from Benders

- What happens if the subproblem $\min_y f_i(x^{j*}, y)$ is feasible?
 - The 1st stage decisions are valid in this scenario
 - If x^{j*} is valid in ALL scenarios, then x^{j*} satisfies nonanticipativity and the expectation of the subproblems forms a valid upper bound
$$E[f(x^*, y)] \leq E[f(x^{j*}, y)]$$
- If the first stage variables are all discrete
 - Repeating this process for all x^{i*} and identify additional nonanticipative solutions, then the upper bound can be used to generate *optimality cuts* to exclude sub-optimal solutions
 - These cuts are also valid on all scenario subproblems

PH + feasibility + optimality cuts



Case Studies: *farmer*

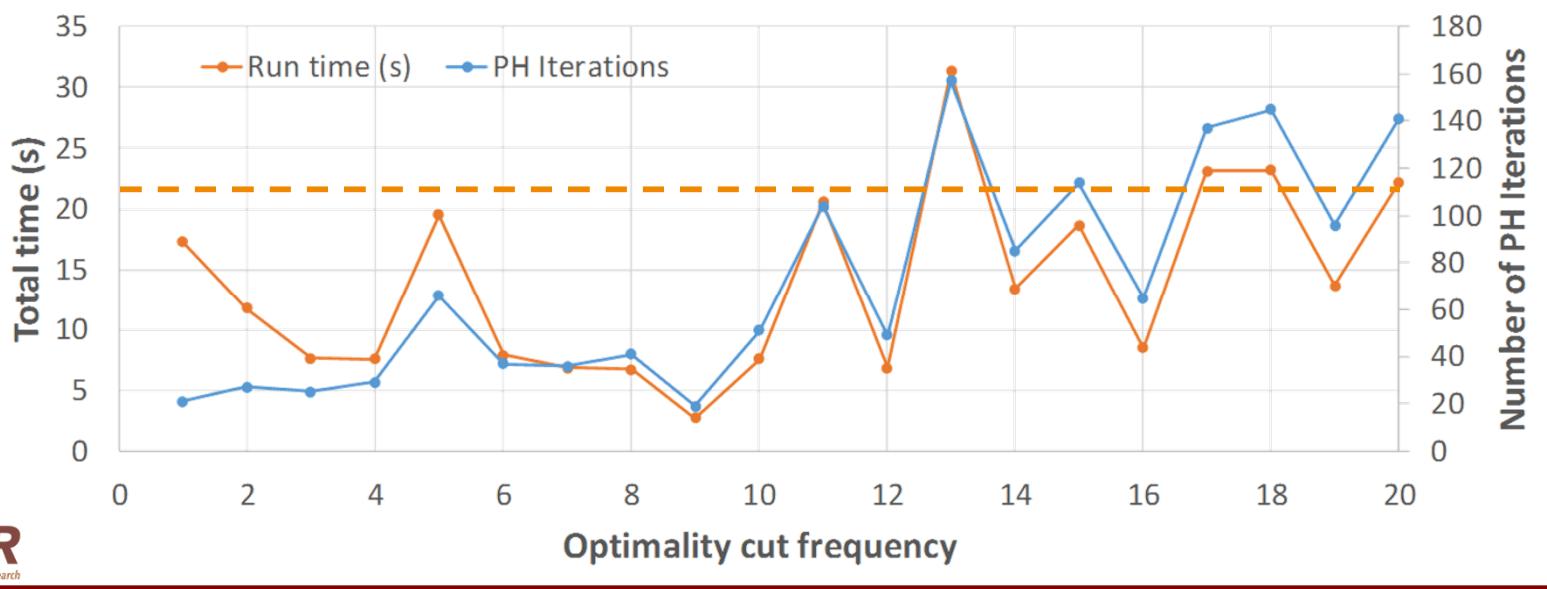
- 3-scenario farmer problem [Birge & Louveaux]
 - Integer acreage allocations
 - Cplex 12.5
 - PH ($\rho = 1$): 297 iterations, 21.55 seconds: objective = -108390
 - PH + optimality: 47 iterations, 8.75 seconds: objective = -108390

Case Studies: *farmer*

- 3-scenario farmer problem [Birge & Louveaux]
 - Integer acreage allocations
 - Cplex 12.5
 - PH ($\rho = 1$): 297 iterations, 21.55 seconds: objective = -108390
 - PH + optimality: 47 iterations, 8.75 seconds: objective = -108390
- Very sensitive to the solver!
 - Gurobi 6.0.4
 - PH ($\rho = 1$): 39 iterations, 1.09 seconds: objective = -108390
 - PH + optimality: 154 iterations, 16.4 seconds: objective = -108390

Case Studies: *farmer*

- 3-scenario farmer problem [Birge & Louveaux]
 - Integer acreage allocations
 - Cplex 12.5
 - PH ($\rho = 1$): 297 iterations, 21.55 seconds: objective = -108390
 - PH + optimality: 47 iterations, 8.75 seconds: objective = -108390
- Very sensitive to the strategy!



Case study: Stochastic Unit Commitment

- Unit commitment under demand uncertainty
 - 24 hour horizon, 1-hour intervals
- Case 1: 5 busses, 7 generators, 3 load scenarios
 - Optimal solution (extensive form): 348.98
 - Default PH ($\rho = 10$):
 - Significant cycling (no convergence after 100 iterations)
 - PH ($\rho = 10$) + Optimality cuts:
 - 20 iterations, objective = 348.9835

Improving PH: setting ρ

- How do we get “good” values of ρ ?
 - Currently: experimentation
 - Challenge: ρ is problem dependent
 - Too low and PH never converges
 - Too high and PH rapidly converges to suboptimal solution
 - Hint: scale relative to cost of each variable [Watson & Woodruff, 2011]

$$\rho_i \propto \frac{c_i}{|x_i^{min} - x_i^{max} + 1|}$$

- We can get good cost estimates from the subproblem duals
 - When we evaluate $f_j(x^{i*}, y)$, record the duals for $x = x^{i*}$
 - Compute average duals weighted relative to scenario probability

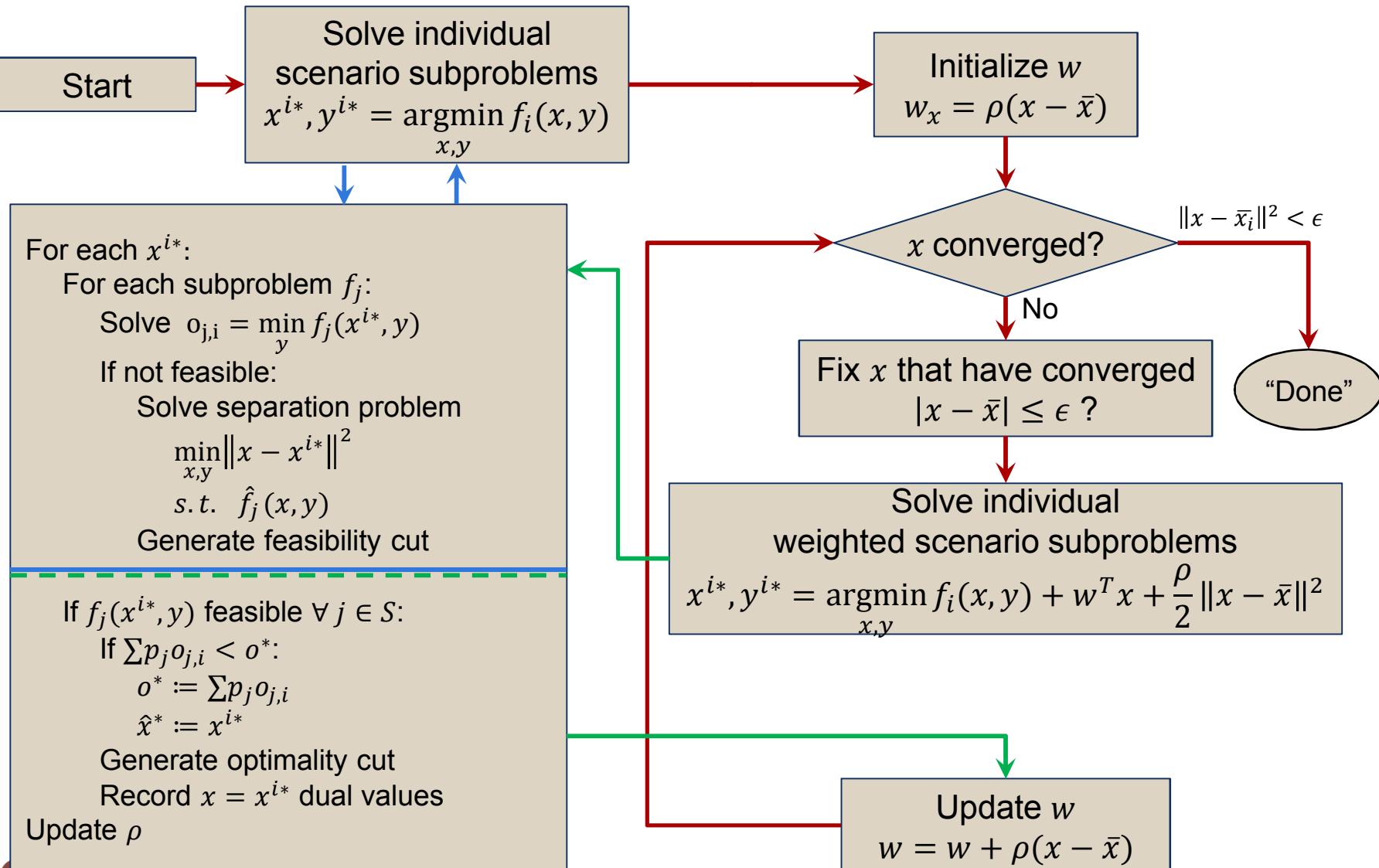
Case Studies: *farmer*

- 3-scenario farmer problem [Birge & Louveaux]
 - Continuous acreage allocations
 - PH ($\rho = 1$):
 - 33 iterations, 1.06 seconds: objective = -108388.7726
 - PH + ρ setter:
 - 34 iterations, 1.34 seconds: objective = -108389.7811
 - Discrete acreage allocations
 - PH ($\rho = 1$):
 - 39 iterations, 1.09 seconds: objective = -108390
 - PH + optimality cuts:
 - 154 iterations, 16.4 seconds: objective = -108390
 - PH + optimality cuts + ρ setter:
 - 40 iterations, 4.42 seconds: objective = -108390

Case studies: UC + N-1 analysis

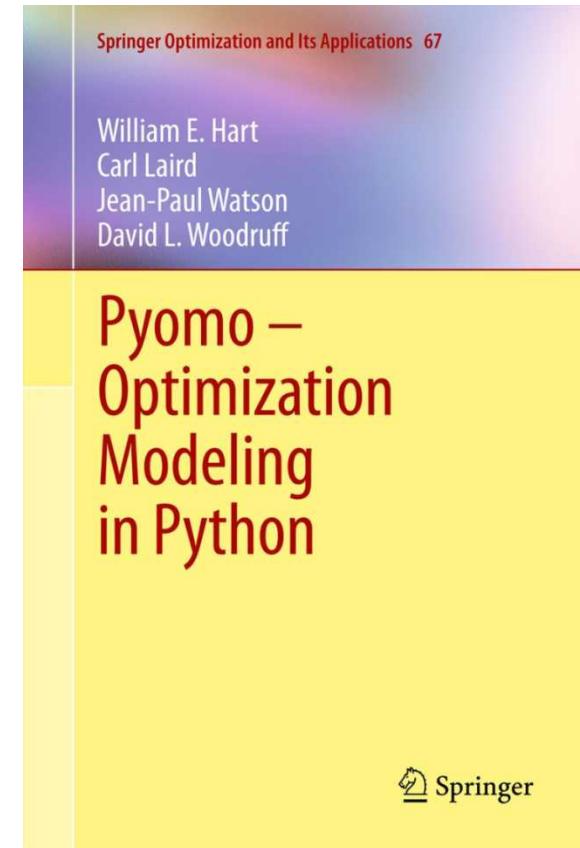
- Recall:
 - Optimal solution (extensive form): 19.9756
 - Default PH ($\rho = 1$):
 - 17 iterations, objective = 22.9997, total time 123 seconds
 - PH ($\rho = 1$) + Feasibility cuts:
 - 3 feasibility cut iterations at PH iteration 0
 - Improved Lagrangian bound from 19.7 to 19.88
 - 12 iterations, objective = 20.11, total time 568 seconds
- Now:
 - PH + Feasibility cuts + ρ setter
 - 20 iterations, objective = 19.9808, total time 494 seconds

PH + feasibility + optimality cuts+ ρ



Our software environment: Pyomo

- Open-source optimization modeling environment written in Python
- All experiments performed using Pyomo's PySP PH implementation
 - Cuts and ρ updates implemented using PH callbacks
- Project homepage
 - <http://www.pyomo.org>
 - Development recently moved to GitHub
- “The Book”
 - Second edition going to press in O(weeks)
- Mathematical Programming Computation papers
 - Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
 - PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)



Conclusions and future directions

- Significant benefits from using “Cross-scenario” information
 - Lagrangian bound improvement
 - Cycle breaking
 - Convergence acceleration
 - Automatic tuning
 - “Fewer” problem-specific tuning parameters
- Open questions
 - $|S|^2$ subproblem solves to evaluate solutions is expensive
 - Although it is “trivially” parallelizable
 - Can we gain most of the benefit using only $c|S|$ subproblems?
 - New (scalar) tuning parameters
 - How frequently to evaluate cross-scenario information?
 - How aggressively to update ρ ?
 - what is the most robust ρ update formula?