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A graphical view of SP decomposition ) s,

= Stochastic programming is explicitly built on a tree of
scenarios where nodes represent opportunities for decisions
= The monolithic problem (extensive form) is typically intractable
= Decomposition and iterative convergence the workhorse of SP

. >
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A graphical view of SP decomposition ) s,

= Stochastic programming is explicitly built on a tree of
scenarios where nodes represent opportunities for decisions
= The monolithic problem (extensive form) is typically intractable
= Decomposition and iterative convergence the workhorse of SP
= For convenience, let us restrict ourselves to 2-stage problems

. >
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Sandia

Benders Decomposition: splitting time @i

= Benders Decomposition splits the problem “in time” into

= A master problem that (initially) has the 1%t-stage variables
= (Plus any discrete variables from the 2" stage)
= Plus a proxy variable z to capture impact of subproblems

* |ndependent subproblems, 1 per scenario, for the 2"d-stage variables
" Must be continuous
= [teratively solve master to obtain upper bound (incumbent)

= Solve subproblems to obtain lower bound + cuts for the master

= Challenges
= Discrete recourse decisions
= Master problem “bloat”
= Multistage problems

" (bookkeeping)

+.CCR t=0 t=1 t=0 L =1
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Progressive Hedging: splitting anticipativity (1.

= Progressive Hedging splits the problem by scenarios
= “No” master problem
= One subproblem per scenario
= Relax nonanticipativity constraints

= [teratively converge the stage nonanticipativity constraints
= Penalize decision variable value by weight w’ x

= Penalize deviation from average, p ||x — x||?
= Update w using p

O >0 >0

Q >0 >0

o >0 >0

O >0 >0

o >0 >0

é >0 >0

n n
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O >0 >0

O :_C >0

>0 >0
o >
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PH: Benefits and open challenges ) .

= PH avoids many of the challenges experienced by Benders
= No restriction on stage variable domains (discrete 2" stage OK)
= “Trivially” extends to multistage problems
= No master problem, no cuts generated: no problem “bloat”

= BUT..

= Not provably convergent for the discrete case
= ...although bounds exist on the quality of solution you get
\

= “Infeasible path” algorithm

= Discrete variable cycling We will attempt to
> address these

. n “hol o nari
Slow convergence due to “holdout” scenarios challenges

" How to choose p???

o?
o
®5%
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PH + Benders: orthogonal decompositions & &z

o

©+z + ©

o

t=0 ; t

1 > >

= Can we leverage ideas from each to accelerate the other?

= Related: Cross Decomposition (Lagrangean Decomposition + Benders)
= [Van Roy 1983; Holmberg, 1990; Mitra,et al. 2016]

Benders Master problem < LD Master problem -1
7 N I O > A I
Duals, e beo 1y
Cuts : ——_—2 ~~~~~~~~~~~ : x’ y 1
A A B,s ZLD,s  TT===o_ 1 i
1
Benders Subproblems > LD Subproblems <=
#CCR
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Cross Decomposition for PH? )

= Challenges with naive Cross Decomposition for PH
= No LD Master problem
= Discrete second stage variables

= PH subproblems do not provide proper Lagrangean bounds
= Except at iteration O

A
]
J

) l T A

1 I A~ A7

i 1 X,y
cuts 1 ZB,s ZiD,s I

Benders Subproblems > LD Subproblems
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Progressive Hedging: the algorithm

Start

21 R
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Solve individual
scenario subproblems

x™,y* = argmin f;(x, y)
X,y

Initialize w

Siirola, Watson, and Woodruff

Wy = p(x — X)

x converged?

No

Fix x that have converged
lx — x| <e?

v
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Solve individual
weighted scenario subproblems

x¥, y* = argmin f;(x,y) + wTx + g lx — x||?

Xy

|

Update w

w=w+p(x —X)




Improving PH: borrowing from Benders @ E:.

= Consider the Benders “feasibility” cut:

= Given x* computed by the RMP, if (dual) subproblem is unbounded,
add a cut determined by an extreme ray in the dual space to the RMP

= |n PH, a similar operation would be fix the values of x in
subproblem f; to the values computed by subproblem f;:
min f;(x"*, y)
Yy
= |f the problem is infeasible, then we can solve a separation problem

(in the primal space) to determine a valid cut in the 15t-stage variables:
2

min||x — x*

X,y

s.t. fi(x,y)
= Notes:

m f] is the continuous relaxation of f; = not guaranteed to generate a cut
= The resulting cut is valid for all scenario subproblems
"CCR = Yp;fi(x", y**) for initial scenario solves (w = 0) gives Lagrangian bound
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PH + feasibility

Solve individual
Start 5| scenario subproblems

x™,y* = argmin f;(x, y)
X,y

For each x!*:
For each subproblem f;: <

Solve o;; = myinfj(xi*,y)

If not feasible:
Solve separation problem

min||x — x%* 2
x’y

s.t. f] (x,y)
Generate feasibility cut

Initialize w
Wy = p(X — X)

x converged?

Fix x that have converged

lx — x| <€e?

v
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Solve individual
weighted scenario subproblems

x¥, y* = argmin f;(x,y) + wTx +

p
2

lx — %I

Xy

o?
.'i'-
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w=w+p(x —X)

Update w
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Case study: stochastic network flow ) e,

= 2-stage stochastic network flow from [Watson & Woodruff, 2011]:

= 1ststage variables:
“ x,V a € Arcs; {x;| x4€ R,0 <x, <xYB} capacityofArca
= bV a € Arcs; bl € {0,1} Arc a is available
= 2ndstage variables:
= Y5V a € Arcs, s € Scenarios; {y5 |y €R,0<y5 <x,}

Flow across Arc a in scenario s

= b3V a€ Arcs,s € Scenarios; bj € {0,b;} Arcaisin use for scenario s

= PH(p = 100, with “Watson-Woodruff” extensions)

= Significant cycling (no convergence after 1000 iterations)

= PH(p = 100, with WW extensions, with feasibility cuts)
= Converges in 42 iterations (objective: 164426, 2726 seconds)

= 6 preliminary cut passes: raises Lagrangian LB 135085 - 148656
#CCR
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Case study: UC + N-1 + switching ) S

= 2-stage unit commitment model for the electric power grid
= 24-hour horizon, 1-hour commitment intervals

= Explicitly include N-1 analysis (loss of any 1 generator / non-radial line)
= Each contingency modeled as a no-cost recourse scenario
= Line switching (opening /closing a line) in 15t and 2" stages

= Case 1: 5 busses, 7 generators (13 scenarios):

= Optimal solution (extensive form): 19.9756
= Default PH (p = 1):
= 17 iterations, objective = 22.9997, total time 123 seconds
"= PH (p = 1) + Feasibility cuts:
= 3 feasibility cut iterations at PH iteration O
— Improved Lagrangean bound from 19.7 to 19.88

= 12 iterations, objective = 20.11, total time 568 seconds

o?
.'i'-
Center for Computing Research
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Improving PH: borrowing from Benders @ E:.

= What happens if the subproblem min f; (x/*, y) is feasible?
y

= The 15t stage decisions are valid in this scenario

= |f xJ* is valid in ALL scenarios, then x’* satisfies nonanticipativity and
the expectation of the subproblems forms a valid upper bound

E[f (", »] < E[f(x%,y)]

= |f the first stage variables are all discrete

= Repeating this process for all x'* and identify additional
nonanticipative solutions, then the upper bound can be used to
generate optimality cuts to exclude sub-optimal solutions

= These cuts are also valid on all scenario subproblems

o?
.'i'-
Center for Computing Research
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PH + feasibility + optimality cuts

Solve individual
Start 5| scenario subproblems

xi*’yi* = argminfi(x; y)
X,y

Initialize w

v ¢

For each x'*:
For each subproblem f;:

Solve o;; = myin fi(x™, y)

If not feasible:
Solve separation problem

min||x — x%* 2
Xy

s.t. f] (x,y)
Generate feasibility cut

Wy = p(x — X)

x converged?

Fix x that have converged
lx — x| <€e?

v
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If ;(x"*,y) feasible V j € S:
If ijoj,i <o*:
0" = Yp;0;;

%

X = x"

Solve individual
weighted scenario subproblems

x™,y™* = argmin f;(x,y) + wlx + P

X,y 2

lx — %I

Generate optimality cut
Record x = x'* dual values

o,

(]
KXy
L) Y Y ) {
Center for Computing Research

.
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v

Update w

w=w+p(x —X)
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Case Studies: farmer ) e,

= 3-scenario farmer problem [Birge & Louveaux]

= |nteger acreage allocations

= Cplex12.5
= PH(p = 1): 297 iterations, 21.55 seconds: objective =-108390
" PH + optimality: 47 iterations, 8.75 seconds: objective =-108390

o?
o
®5%
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Siirola, Watson, and Woodruff 16




Case Studies: farmer ) e,

= 3-scenario farmer problem [Birge & Louveaux]

= |nteger acreage allocations

= Cplex12.5
= PH(p =1): 297 iterations, 21.55 seconds: objective =-108390
" PH + optimality: 47 iterations, 8.75 seconds: objective =-108390

= Very sensitive to the solver!

= Gurobi 6.0.4
= PH(p = 1): 39 iterations, 1.09 seconds: objective =-108390
" PH + optimality: 154 iterations, 16.4 seconds: objective =-108390

21 R
o ‘ ‘
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Case Studies: farmer

= 3-scenario farmer problem [Birge & Louveaux]
= |nteger acreage allocations

= Cplex12.5
= PH(p = 1): 297 iterations, 21.55 seconds: objective =-108390

" PH + optimality: 47 iterations, 8.75 seconds: objective =-108390

= Very sensitive to the strategy!
35 180

—e—Run time (s) —=—PH Iterations 160
140
120
100
80
60
40
20

Number of PH Iterations

0 2 4 6 8 10 12 14 16 18 20
"“CCR Optimality cut frequency
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Case study: Stochastic Unit Commitment

= Unit commitment under demand uncertainty

= 24 hour horizon, 1-hour intervals

= Case 1: 5 busses, 7 generators, 3 load scenarios

= Optimal solution (extensive form): 348.98

= Default PH (p = 10):
= Significant cycling (no convergence after 100 iterations)

= PH(p = 10) + Optimality cuts:
= 20 iterations, objective = 348.9835

21 R
o ‘ ‘
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Improving PH: setting p ) .

= How do we get “good” values of p?
= Currently: experimentation

= Challenge: p is problem dependent
" Too low and PH never converges
* Too high and PH rapidly converges to suboptimal solution
= Hint: scale relative to cost of each variable [Watson & Woodruff, 2011]
C;

x[M — xM + 1|

pl-OC|

= We can get good cost estimates from the subproblem duals

= When we evaluate fj(xi*,y), record the duals for x = x**

= Compute average duals weighted relative to scenario probability

o?
o
®5%
Center for Computing Research

Siirola, Watson, and Woodruff 20




Case Studies: farmer

= 3-scenario farmer problem [Birge & Louveaux]

= Continuous acreage allocations
= PH(p = 1):
— 33 iterations, 1.06 seconds: objective =-108388.7726

" PH + p setter:
— 34 iterations, 1.34 seconds: objective =-108389.7811

= Discrete acreage allocations
= PH(p = 1):
— 39 iterations, 1.09 seconds: objective =-108390
" PH + optimality cuts:
— 154 iterations, 16.4 seconds: objective =-108390
" PH + optimality cuts + p setter:
— 40 iterations, 4.42 seconds: objective =-108390
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Case studies: UC + N-1 analysis ) .

= Recall:

= Optimal solution (extensive form): 19.9756
= Default PH (p = 1):
= 17 iterations, objective = 22.9997, total time 123 seconds
= PH (p = 1) + Feasibility cuts:
= 3 feasibility cut iterations at PH iteration O
— Improved Lagrangian bound from 19.7 to 19.88

= 12 iterations, objective = 20.11, total time 568 seconds

= Now:

" PH + Feasibility cuts + p setter
= 20 iterations, objective = 19.9808, total time 494 seconds

21 R
o ‘ ‘
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PH + feasibility + optimality cuts+ p

Solve individual
Start 5| scenario subproblems

xi*’yi* = argminfi(x; y)
X,y

v ¢

For each x'*:
For each subproblem f;:

Solve o;; = myin fi(x™, y)

If not feasible:
Solve separation problem

min||x — x%* 2
Xy

s.t. f] (x,y)

Initialize w
Wy = p(x — X)

x converged?

Fix x that have converged

lx — x| <€e?

v
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Generate feasibility cut

If ;(x"*,y) feasible V j € S:
If ijoj,i <o*:
0" = Yp;0;;

%

X = x"

Solve individual
weighted scenario subproblems

x¥, y* = argmin f;(x,y) + wTx +

X,y

p
2

lx — %I

Generate optimality cut
Record x = x'* dual values
Update p

o,

(]
KXy
L) Y Y ) {
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.
.
7

v

w=w+p(x —X)

Update w

Siirola, Watson, and Woodruff
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Our software environment: Pyomo ) .

= QOpen-source optimization modeling
environment written in Python

. . William E. Hart
= All experiments performed using CarlLaird
) . . Jean-Paul Watson
Pyomo’s PySP PH implementation David L. Woodruff

= Cuts and p updates implemented .
using PH callbacks (I;)g':irpn?zation

* Project homepage MOde"ng

= http://www.pyomo.org In Python

= Development recently moved to GitHub

= “The Book”

= Second edition going to press in O(weeks) ) Springer

= Mathematical Programming Computation papers
Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

u
#CCR
o
5
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Conclusions and future directions ) i

= Significant benefits from using “Cross-scenario” information

Lagrangian bound improvement

Cycle breaking

Convergence acceleration

Automatic tuning

“Fewer” problem-specific tuning parameters

= (QOpen questions

|S|? subproblem solves to evaluate solutions is expensive
= Although it is “trivially” parallelizable
= Can we gain most of the benefit using only c¢|S| subproblems?

= New (scalar) tuning parameters

o?
o
®5%
Center for Computing Research
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= How frequently to evaluate cross-scenario information?

" How aggressively to update p?
= what is the most robust p update formula?
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