
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Accelerating and automatic
tuning for Progressive Hedging
John D. Siirola1, Jean-Paul Watson1, and David L. Woodruff2

1Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

2Graduate School of Management
University of California, Davis
Davis, CA USA

International Conference on Stochastic Programming (ICSP)
27 June 2016

SAND2016-6825C

 Stochastic programming is explicitly built on a tree of
scenarios where nodes represent opportunities for decisions
 The monolithic problem (extensive form) is typically intractable

 Decomposition and iterative convergence the workhorse of SP

A graphical view of SP decomposition

…
…

…

…

t = 0 t = 1 t = 2
Siirola, Watson, and Woodruff 2

 Stochastic programming is explicitly built on a tree of
scenarios where nodes represent opportunities for decisions
 The monolithic problem (extensive form) is typically intractable

 Decomposition and iterative convergence the workhorse of SP

 For convenience, let us restrict ourselves to 2-stage problems

A graphical view of SP decomposition

…
…

…

…

t = 0 t = 1 t = 2
Siirola, Watson, and Woodruff 3

�

��

��

��

 Benders Decomposition splits the problem “in time” into
 A master problem that (initially) has the 1st-stage variables

 (Plus any discrete variables from the 2nd stage)

 Plus a proxy variable z to capture impact of subproblems

 Independent subproblems, 1 per scenario, for the 2nd-stage variables

 Must be continuous

 Iteratively solve master to obtain upper bound (incumbent)
 Solve subproblems to obtain lower bound + cuts for the master

 Challenges
 Discrete recourse decisions

 Master problem “bloat”

 Multistage problems

 (bookkeeping)

Benders Decomposition: splitting time

Siirola, Watson, and Woodruff 4

… …+ z +

t = 0 ; t = 1t = 0 t = 1

 Progressive Hedging splits the problem by scenarios
 “No” master problem

 One subproblem per scenario

 Relax nonanticipativity constraints

 Iteratively converge the stage nonanticipativity constraints
 Penalize decision variable value by weight ���

 Penalize deviation from average, �	 � − �̅ �

 Update � using �

Progressive Hedging: splitting anticipativity

Siirola, Watson, and Woodruff 5

…
…

…

…

t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

… … …

… … …

… … …

… … …

 PH avoids many of the challenges experienced by Benders
 No restriction on stage variable domains (discrete 2nd stage OK)

 “Trivially” extends to multistage problems

 No master problem, no cuts generated: no problem “bloat”

 BUT…
 Not provably convergent for the discrete case

 …although bounds exist on the quality of solution you get

 “Infeasible path” algorithm

 Discrete variable cycling

 Slow convergence due to “holdout” scenarios

 How to choose �???

PH: Benefits and open challenges

Siirola, Watson, and Woodruff 6

We will attempt to
address these
challenges

 Can we leverage ideas from each to accelerate the other?
 Related: Cross Decomposition (Lagrangean Decomposition + Benders)

 [Van Roy 1983; Holmberg, 1990; Mitra,et al. 2016]

PH + Benders: orthogonal decompositions

Siirola, Watson, and Woodruff 7

…

t = 0 t = 1 t = 0 t = 1
… …

… …

… …

… ……+ z +

t = 0 ; t = 1

LD Master problem

LD Subproblems

Benders Master problem

Benders Subproblems

�̅, ��
���,�

�
��,�

Duals,
cuts

 Challenges with naïve Cross Decomposition for PH
 No LD Master problem

 Discrete second stage variables

 PH subproblems do not provide proper Lagrangean bounds

 Except at iteration 0

Cross Decomposition for PH?

Siirola, Watson, and Woodruff 8

LD Master problem

LD Subproblems

Benders Master problem

Benders Subproblems

�̅, ��
���,�

�
��,�

Duals,
cuts

Progressive Hedging: the algorithm

Siirola, Watson, and Woodruff 9

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

 Consider the Benders “feasibility” cut:
 Given �∗ computed by the RMP, if (dual) subproblem is unbounded,

add a cut determined by an extreme ray in the dual space to the RMP

 In PH, a similar operation would be fix the values of � in
subproblem �� to the values computed by subproblem ��:

min
�

��(�
�∗, �)

 If the problem is infeasible, then we can solve a separation problem
(in the primal space) to determine a valid cut in the 1st-stage variables:

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

 Notes:

 ��� is the continuous relaxation of ��  not guaranteed to generate a cut

 The resulting cut is valid for all scenario subproblems

 ∑����(�
�∗, ��∗) for initial scenario solves (� = 0) gives Lagrangian bound

Improving PH: borrowing from Benders

Siirola, Watson, and Woodruff 10

For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

PH + feasibility

Siirola, Watson, and Woodruff 11

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

 2-stage stochastic network flow from [Watson & Woodruff, 2011]:
 1st stage variables:

 ��	∀		� ∈ ����;		 ��| 	�� ∈ �, 0 ≤ �� ≤ ��
�� 		 Capacity of Arc �

 ��
�	∀		� ∈ ����;			b�

� ∈ {0,1} Arc � is available

 2nd stage variables:

 ��
�	∀		� ∈ ����, � ∈ ���������;		 ��

� 	|	��
� ∈ �, 0 ≤ ��

� ≤ ��
Flow across Arc � in scenario �

 ��
� 	∀		� ∈ ����, � ∈ ���������; 			b�

� ∈ {0, ��
�} Arc � is in use for scenario �

 PH (� = 100, with “Watson-Woodruff” extensions)
 Significant cycling (no convergence after 1000 iterations)

 PH (� = 100, with WW extensions, with feasibility cuts)
 Converges in 42 iterations (objective: 164426, 2726 seconds)

 6 preliminary cut passes: raises Lagrangian LB 135085  148656

Case study: stochastic network flow

Siirola, Watson, and Woodruff 12

 2-stage unit commitment model for the electric power grid
 24-hour horizon, 1-hour commitment intervals

 Explicitly include N-1 analysis (loss of any 1 generator / non-radial line)

 Each contingency modeled as a no-cost recourse scenario

 Line switching (opening /closing a line) in 1st and 2nd stages

 Case 1: 5 busses, 7 generators (13 scenarios):
 Optimal solution (extensive form): 19.9756

 Default PH (� = 1):

 17 iterations, objective = 22.9997, total time 123 seconds

 PH (� = 1) + Feasibility cuts:

 3 feasibility cut iterations at PH iteration 0

– Improved Lagrangean bound from 19.7 to 19.88

 12 iterations, objective = 20.11, total time 568 seconds

Case study: UC + N-1 + switching

Siirola, Watson, and Woodruff 13

 What happens if the subproblem min
�

��(�
�∗, �) is feasible?

 The 1st stage decisions are valid in this scenario

 If ��∗ is valid in ALL scenarios, then ��∗ satisfies nonanticipativity and
the expectation of the subproblems forms a valid upper bound

� � �∗, � ≤ � � ��∗, �

 If the first stage variables are all discrete

 Repeating this process for all ��∗ and identify additional
nonanticipative solutions, then the upper bound can be used to
generate optimality cuts to exclude sub-optimal solutions

 These cuts are also valid on all scenario subproblems

Improving PH: borrowing from Benders

Siirola, Watson, and Woodruff 14

For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

If ��(�
�∗, �) feasible ∀	� ∈ �:

If ∑����,� < �∗:

�∗ ≔ ∑����,�
��∗ ≔ ��∗

Generate optimality cut

Record � = ��∗ dual values

PH + feasibility + optimality cuts

Siirola, Watson, and Woodruff 15

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1): 297 iterations, 21.55 seconds: objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds: objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 16

 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1): 297 iterations, 21.55 seconds: objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds: objective = -108390

 Very sensitive to the solver!
 Gurobi 6.0.4

 PH (� = 1): 39 iterations, 1.09 seconds: objective = -108390

 PH + optimality: 154 iterations, 16.4 seconds: objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 17

 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1): 297 iterations, 21.55 seconds: objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds: objective = -108390

 Very sensitive to the strategy!

Case Studies: farmer

Siirola, Watson, and Woodruff 18

 Unit commitment under demand uncertainty
 24 hour horizon, 1-hour intervals

 Case 1: 5 busses, 7 generators, 3 load scenarios
 Optimal solution (extensive form): 348.98

 Default PH (� = 10):

 Significant cycling (no convergence after 100 iterations)

 PH (� = 10) + Optimality cuts:

 20 iterations, objective = 348.9835

Case study: Stochastic Unit Commitment

Siirola, Watson, and Woodruff 19

 How do we get “good” values of �?
 Currently: experimentation

 Challenge: � is problem dependent

 Too low and PH never converges

 Too high and PH rapidly converges to suboptimal solution

 Hint: scale relative to cost of each variable [Watson & Woodruff, 2011]

�� ∝
��

��
��� − ��

��� + 1

 We can get good cost estimates from the subproblem duals

 When we evaluate ��(�
�∗, �), record the duals for � = ��∗

 Compute average duals weighted relative to scenario probability

Improving PH: setting �

Siirola, Watson, and Woodruff 20

 3-scenario farmer problem [Birge & Louveaux]
 Continuous acreage allocations

 PH (� = 1):

– 33 iterations, 1.06 seconds: objective = -108388.7726

 PH + � setter:

– 34 iterations, 1.34 seconds: objective = -108389.7811

 Discrete acreage allocations

 PH (� = 1):

– 39 iterations, 1.09 seconds: objective = -108390

 PH + optimality cuts:

– 154 iterations, 16.4 seconds: objective = -108390

 PH + optimality cuts + � setter:

– 40 iterations, 4.42 seconds: objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 21

 Recall:
 Optimal solution (extensive form): 19.9756

 Default PH (� = 1):

 17 iterations, objective = 22.9997, total time 123 seconds

 PH (� = 1) + Feasibility cuts:

 3 feasibility cut iterations at PH iteration 0

– Improved Lagrangian bound from 19.7 to 19.88

 12 iterations, objective = 20.11, total time 568 seconds

 Now:
 PH + Feasibility cuts + � setter

 20 iterations, objective = 19.9808, total time 494 seconds

Case studies: UC + N-1 analysis

Siirola, Watson, and Woodruff 22

For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

If ��(�
�∗, �) feasible ∀	� ∈ �:

If ∑����,� < �∗:

�∗ ≔ ∑����,�
��∗ ≔ ��∗

Generate optimality cut

Record � = ��∗ dual values
Update �

PH + feasibility + optimality cuts+ �

Siirola, Watson, and Woodruff 23

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

 Open-source optimization modeling
environment written in Python

 All experiments performed using
Pyomo’s PySP PH implementation

 Cuts and � updates implemented
using PH callbacks

 Project homepage

 http://www.pyomo.org

 Development recently moved to GitHub

 “The Book”
 Second edition going to press in O(weeks)

 Mathematical Programming Computation papers
 Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)

 PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

Our software environment: Pyomo

Siirola, Watson, and Woodruff 24

 Significant benefits from using “Cross-scenario” information
 Lagrangian bound improvement

 Cycle breaking

 Convergence acceleration

 Automatic tuning

 “Fewer” problem-specific tuning parameters

 Open questions
 � � subproblem solves to evaluate solutions is expensive

 Although it is “trivially” parallelizable

 Can we gain most of the benefit using only � � subproblems?

 New (scalar) tuning parameters

 How frequently to evaluate cross-scenario information?

 How aggressively to update �?

 what is the most robust � update formula?

Conclusions and future directions

Siirola, Watson, and Woodruff 25

