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Bounding of Captive Carry Environments

 Over the course of a single lifetime, military munition systems 
are exposed to various sources of mechanical vibrations 
affecting system performance.

 Significant exposure occurs when munition systems are 
carried by aircraft, even in “straight and level” flight 
conditions. 

 It is of interest to characterize the distribution of vibration 
levels using Acceleration Spectral Densities (ASDs) measured 
by sensors in order to compute appropriate bounds. 

 These vibration levels are clearly dependent on 
environmental factors during flight.
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Example of ASD Curves
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Motivation of Research

 Recent work by Rathnayake and Choudhary (2015) provides a 
method for computing tolerance bounds on functional data 
using a bootstrap procedure. 
 This method does not consider the presence of covariates.

 We propose a parametric bootstrap procedure for computing 
tolerance bounds with covariates present based on functional 
PCA.

 The computed tolerance bounds can serve as a basis for 
creating bounds on vibration behavior. 
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Notation

 Let �� = ���, ���, … , ��� be a vector of ASD responses for test 

flight i=1,2,…n across frequency levels j=1,2,…,J. 

 Let �� be the matrix of mean-centered data.

 The matrix ��×�of eigenvectors corresponding to p latent 

components are computed from the principal component 
decomposition of the covariance matrix of the mean-
centered data .

 The matrix � = ��� consists of the loadings or scores on the 
eigenvectors.

 Let �� be the dynamic pressure measured during the ��� test 
flight. 
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Model and Extrapolation

 It is assumed that the scores of the first component are 
related to the covariates through some model.
 For illustrative purposes, we only use one covariate with a linear 

model. 

 �� = �� + ���� + ��, � = 1,2, … , �;	��~������(0, �
�)

 It is desired to compute tolerance bounds at some target level 
Q-target of the dynamic pressure.

 The scaled spectra at the target value are computed as ���� = � +

�� ������� − � ��, where �� is the eigenvector associated with the 

first principal component.
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Model Example
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Parametric Bootstrap Procedure
 For b=1,2,…,B

1. Simulate ����~��� ∙
��

���
� , � = 1,2,…�

• � is the number of principal components 

• df is the degrees of freedom (df=n-2 for component 1 and df=n-1 otherwise)

• ���
� is a chi-squared random variable with df degrees of freedom

• ��� is the estimated standard deviation for component k

2. Simulate ����~������(�̂� , ���
�)

• ���
� = ���

� ∙ ��
� ∙ ��� �� ∙ �� for k=1	and ���

� =
���
�

�
for all other k

• �̂� = ��
��� for k=1	and 0	for all other k

• ��
� = {1	�������}

3. Compute ��� = �� + [����, ����, … , ����] ∙ �
� and ��� = ∑ ���

� ����
��

���

4. Compute ��� = ���� + ���� ∙ ���, where ���� is the 1-α percentile of the standard 

normal distribution.

 The pointwise �-level upper confidence bound is given by the �-percentile of ���, 

b=1,2,…B.
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Coverage Investigation

 Assessment of coverage using simulation 

 Considered both simulated data sets of the same size as 
original (N<20) and one with 10 replicates of each 
observation.

 Content/coverage pairs taken from the following: 99/90, 
99/50, 99/75, 95/90, and 95/50.

 Data simulation based on simulated scores; original data 
mean and eigenvectors retained.
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Simulation Results (original N)

99/90

10
1

10
2

10
3

10
4

76

78

80

82

84

86

88

90

92

94

Frequency (hz)

C
o
v
e
ra

g
e
 (

%
)

99/50
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Simulation Results (original N)

95/90 95/50
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Simulation Results

99/90 – original N 99/90 – 10 replicates

13

10
1

10
2

10
3

10
4

76

78

80

82

84

86

88

90

92

94

Frequency (hz)

C
o
v
e
ra

g
e
 (

%
)

10
1

10
2

10
3

10
4

80

82

84

86

88

90

92

94

Frequency (hz)

C
o
v
e
ra

g
e
 (

%
)



Simulation Results

99/75 – original N 99/75 – 10 replicates
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Simulation Results

99/90 – original N – w/o 1st PC 99/90 – 10 replicates – w/o 1st PC

15

10
1

10
2

10
3

10
4

85.5

86

86.5

87

87.5

88

88.5

89

89.5

Frequency (hz)

C
o
v
e
ra

g
e
 (

%
)

10
1

10
2

10
3

10
4

86

87

88

89

90

91

92

93

94

95

Frequency (hz)

C
o
v
e
ra

g
e
 (

%
)



Potential Reasons for Results

 Bootstrap simulation only accounts for random variation in 
score values 
 Does not account for variation in loadings (eigenvector definition).

 When eigenvectors are well defined (e.g., 10 reps), this 
variation is small 
 The bootstrap simulations now provide more accurate coverage 
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Summary and Continued Work

 Current work focused on alternative tolerance bound 
computation methods.

 Also considering methods to separate and account for phase 
variation. 
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