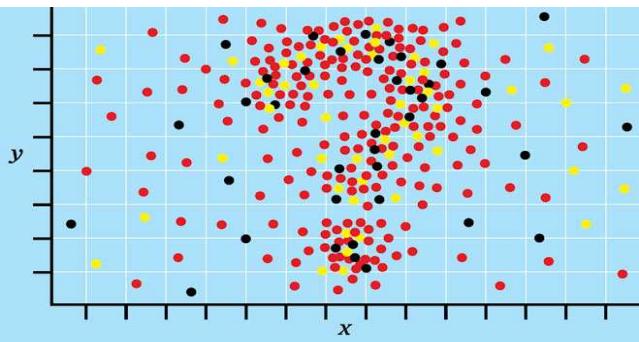


Exceptional service in the national interest



$$\begin{aligned}
 & \frac{\partial \ln(S^2 + (X - \mu_0)^2)}{\partial \mu_0} = \frac{1}{S^2 + (X - \mu_0)^2} \cdot 2(X - \mu_0) = 0 \\
 & \Rightarrow 2(X - \mu_0) = 0 \Rightarrow \mu_0 = X
 \end{aligned}$$

Construction of Tolerance Bounds for a Multivariate Response Associated with a Covariate: A Case Study

Edward Thomas, Caleb King, Jerry Cap, and
Angela Montoya

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

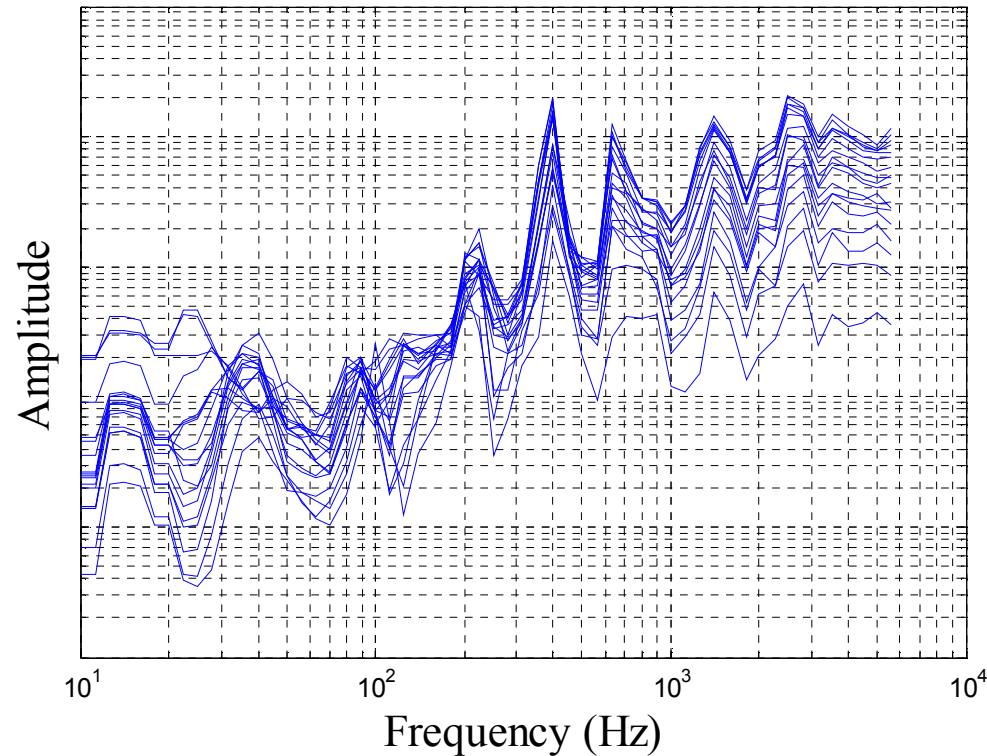
Outline

- Motivating Example
 - Captive Carry
- Notation and Definitions
- Parametric Bootstrap Procedure
- Coverage Investigations
- Conclusions and Ongoing Work

Bounding of Captive Carry Environments

- Over the course of a single lifetime, military munition systems are exposed to various sources of mechanical vibrations affecting system performance.
- Significant exposure occurs when munition systems are carried by aircraft, even in “straight and level” flight conditions.
- It is of interest to characterize the distribution of vibration levels using Acceleration Spectral Densities (ASDs) measured by sensors in order to compute appropriate bounds.
- These vibration levels are clearly dependent on environmental factors during flight.

Example of ASD Curves



Motivation of Research

- Recent work by Rathnayake and Choudhary (2015) provides a method for computing tolerance bounds on functional data using a bootstrap procedure.
 - This method does not consider the presence of covariates.
- We propose a parametric bootstrap procedure for computing tolerance bounds with covariates present based on functional PCA.
- The computed tolerance bounds can serve as a basis for creating bounds on vibration behavior.

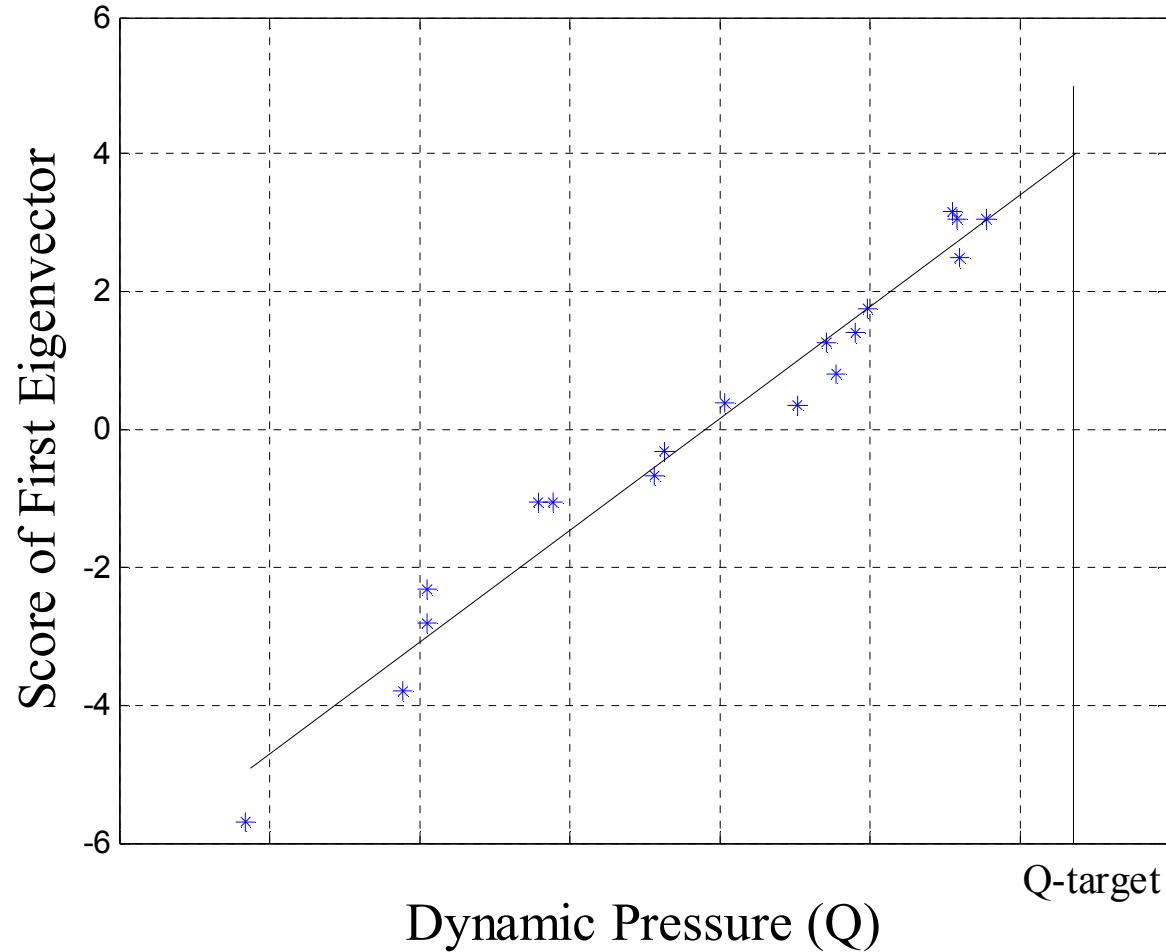
Notation

- Let $Y_i = \{Y_{i1}, Y_{i2}, \dots, Y_{iJ}\}$ be a vector of ASD responses for test flight $i=1,2,\dots,n$ across frequency levels $j=1,2,\dots,J$.
- Let Y_c be the matrix of mean-centered data.
- The matrix $E_{p \times p}$ of eigenvectors corresponding to p latent components are computed from the principal component decomposition of the covariance matrix of the mean-centered data .
- The matrix $S = Y_c E$ consists of the loadings or *scores* on the eigenvectors.
- Let Q_i be the dynamic pressure measured during the i^{th} test flight.

Model and Extrapolation

- It is assumed that the scores of the first component are related to the covariates through some model.
 - For illustrative purposes, we only use one covariate with a linear model.
 - $S_i = \beta_0 + \beta_1 Q_i + \epsilon_i, \quad i = 1, 2, \dots, n; \quad \epsilon_i \sim Normal(0, \sigma^2)$
- It is desired to compute tolerance bounds at some target level Q -target of the dynamic pressure.
 - The scaled spectra at the target value are computed as $\mathbf{Y}_{adj} = \mathbf{Y} + \beta_1(Q_{target} - Q)\mathbf{e}_1$, where \mathbf{e}_1 is the eigenvector associated with the first principal component.

Model Example



Parametric Bootstrap Procedure

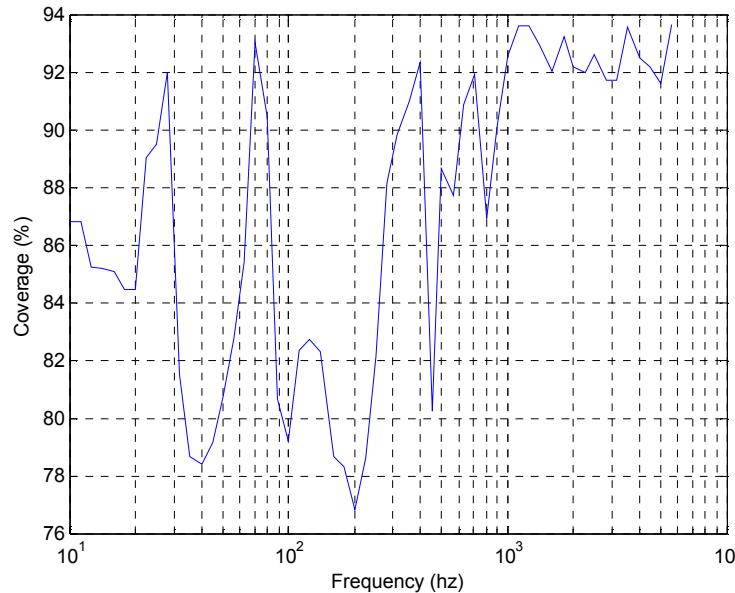
- For $b=1,2,\dots,B$
 1. Simulate $\tilde{\sigma}_{kb} \sim \hat{\sigma}_k \cdot \sqrt{\frac{df}{\chi_{df}^2}}, k = 1, 2, \dots, p$
 - p is the number of principal components
 - df is the degrees of freedom ($df=n-2$ for component 1 and $df=n-1$ otherwise)
 - χ_{df}^2 is a chi-squared random variable with df degrees of freedom
 - $\hat{\sigma}_k$ is the estimated standard deviation for component k
 2. Simulate $\tilde{\mu}_{kb} \sim \text{Normal}(\hat{\mu}_k, \tilde{\sigma}_\mu^2)$
 - $\tilde{\sigma}_\mu^2 = \tilde{\sigma}_1^2 \cdot \mathbf{x}_0^T \cdot (\mathbf{X}^T \mathbf{X})^{-1} \cdot \mathbf{x}_0$ for $k=1$ and $\tilde{\sigma}_\mu^2 = \frac{\tilde{\sigma}_k^2}{n}$ for all other k
 - $\hat{\mu}_1 = \mathbf{x}_0^T \hat{\beta}$ for $k=1$ and 0 for all other k
 - $\mathbf{x}_0^T = \{1 \ Q_{target}\}$
 3. Compute $\bar{\mathbf{Y}}_b = \bar{\mathbf{Y}} + [\tilde{\mu}_{1b}, \tilde{\mu}_{2b}, \dots, \tilde{\mu}_{pb}] \cdot \mathbf{E}^T$ and $S_{bj} = \sqrt{\sum_{k=1}^p E_{jk}^2 \tilde{\sigma}_{kb}^2}$
 4. Compute $P_{bj} = \bar{Y}_{bj} + z_{1-\alpha} \cdot S_{bj}$, where $z_{1-\alpha}$ is the $1-\alpha$ percentile of the standard normal distribution.
- The pointwise γ -level upper confidence bound is given by the γ -percentile of P_{bj} , $b=1,2,\dots,B$.

Coverage Investigation

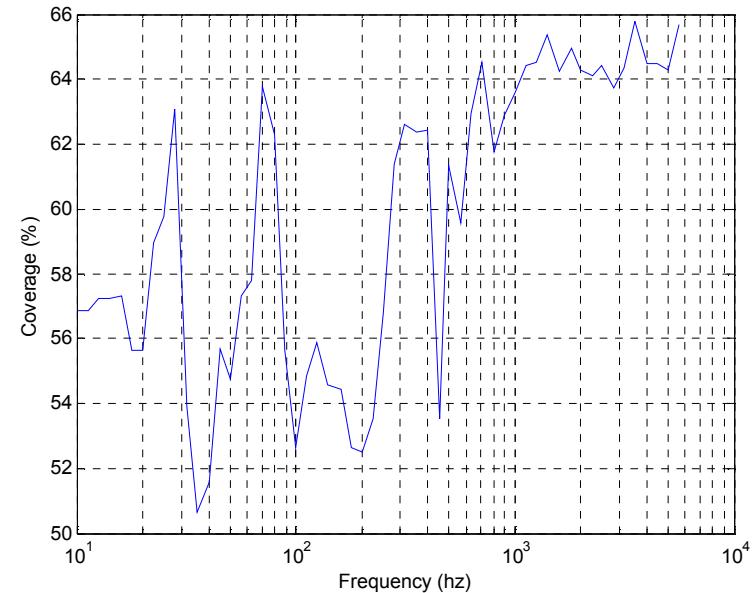
- Assessment of coverage using simulation
- Considered both simulated data sets of the same size as original ($N < 20$) and one with 10 replicates of each observation.
- Content/coverage pairs taken from the following: 99/90, 99/50, 99/75, 95/90, and 95/50.
- Data simulation based on simulated scores; original data mean and eigenvectors retained.

Simulation Results (original N)

99/90

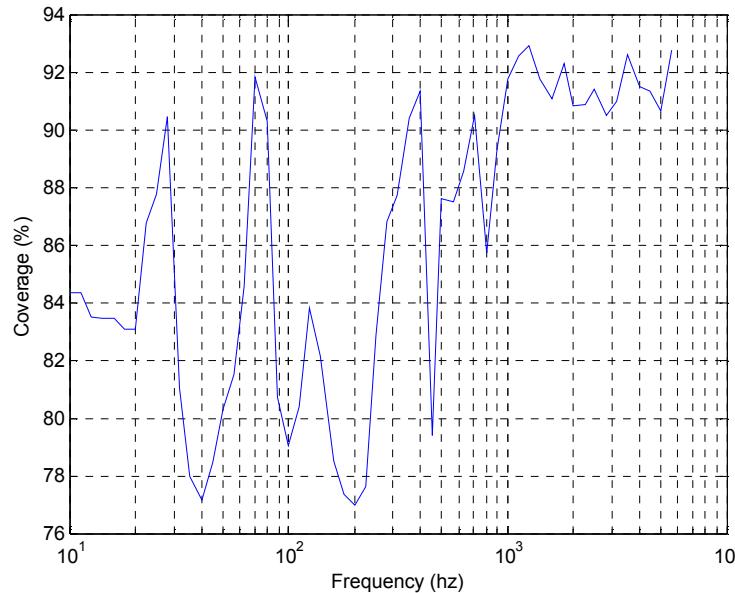


99/50

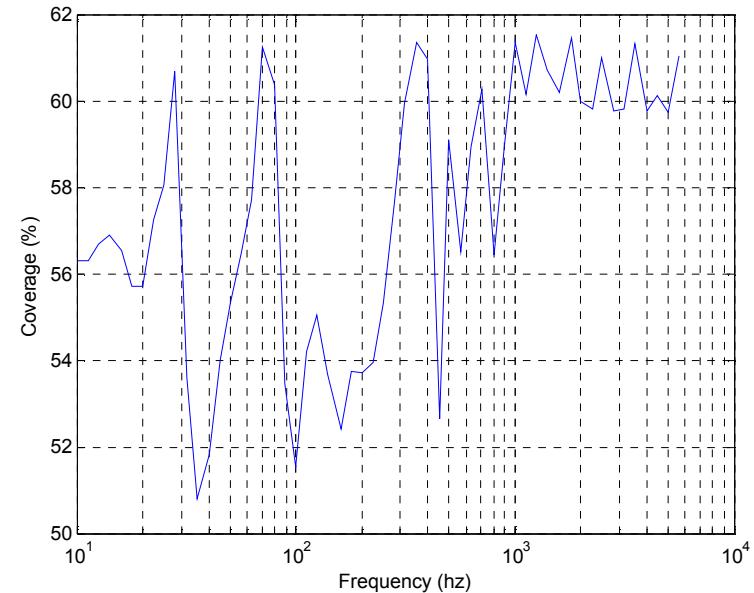


Simulation Results (original N)

95/90

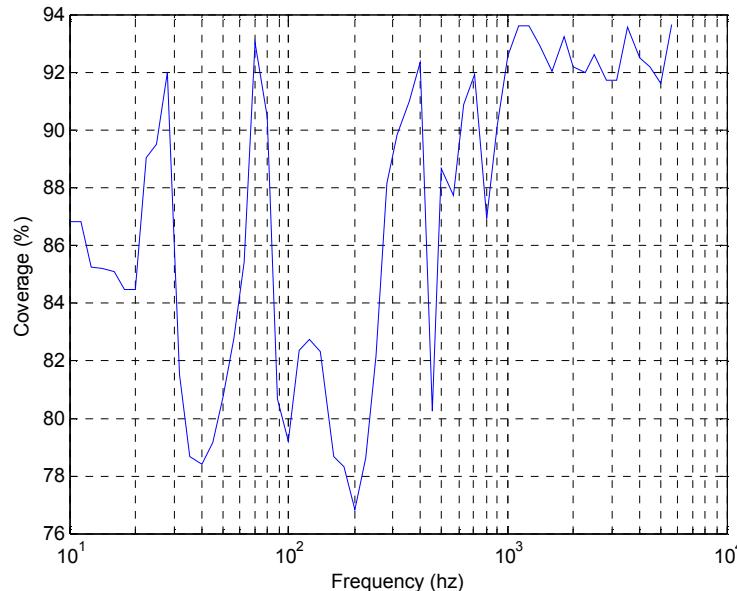


95/50

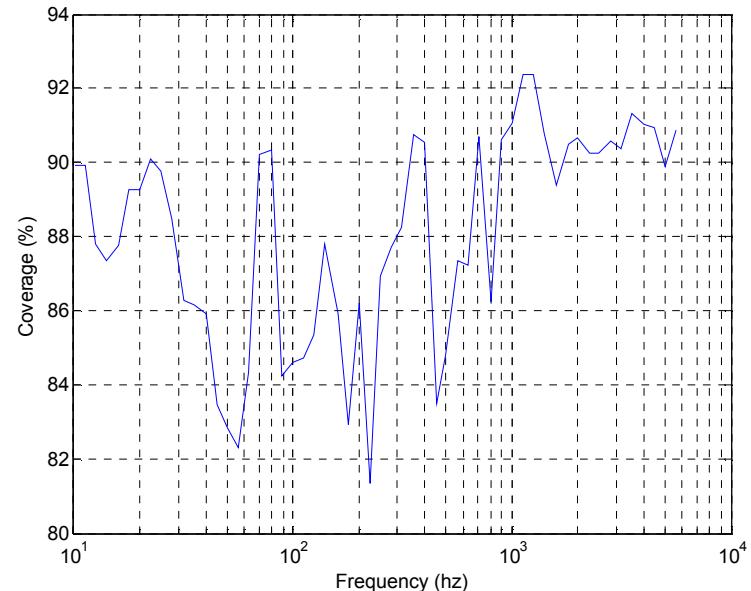


Simulation Results

99/90 – original N

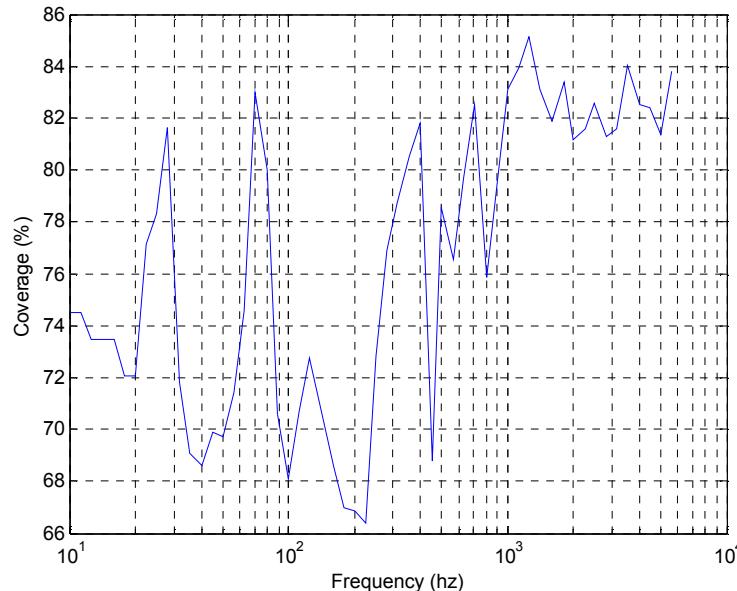


99/90 – 10 replicates

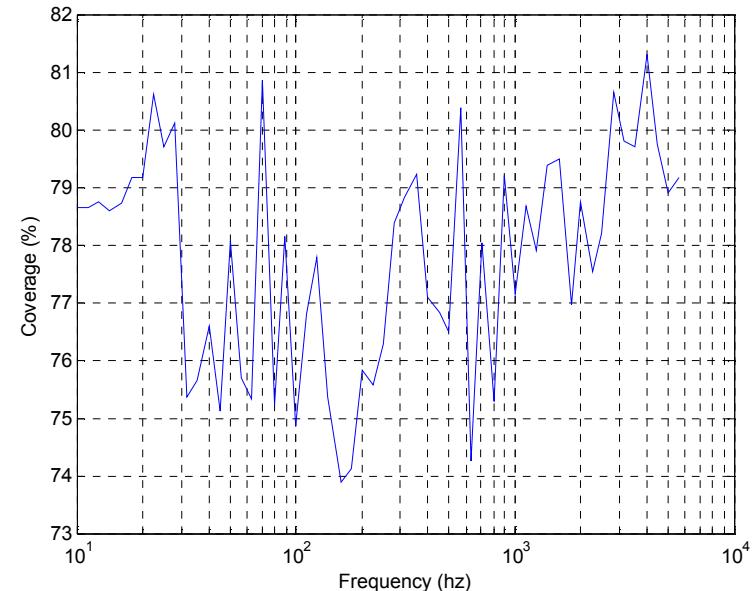


Simulation Results

99/75 – original N

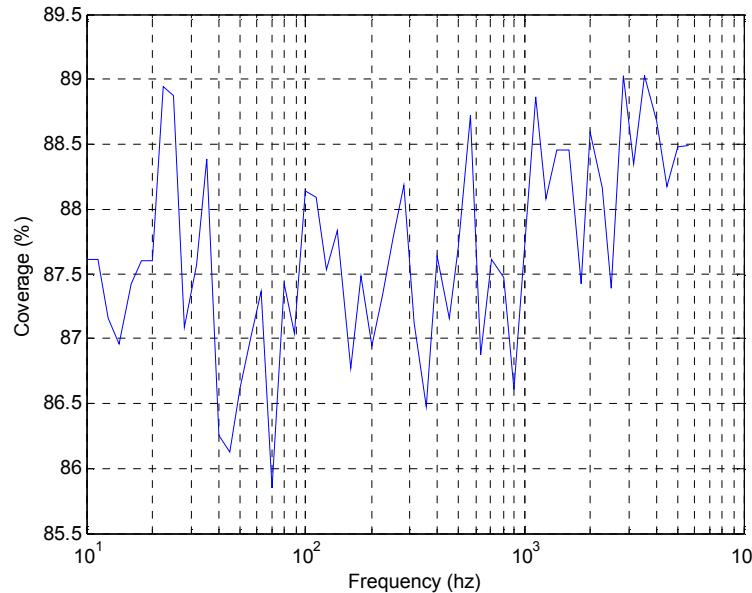
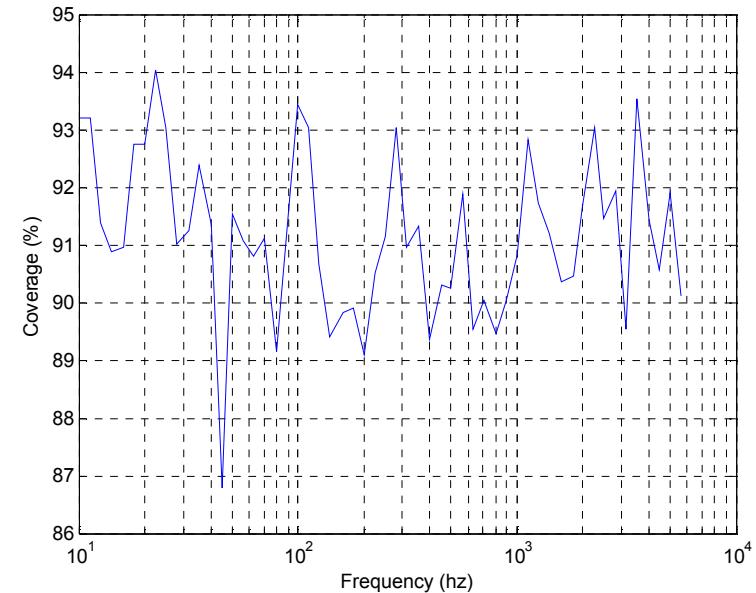


99/75 – 10 replicates



Simulation Results

99/90 – original N – w/o 1st PC 99/90 – 10 replicates – w/o 1st PC



Potential Reasons for Results

- Bootstrap simulation only accounts for random variation in score values
 - Does not account for variation in loadings (eigenvector definition).
- When eigenvectors are well defined (e.g., 10 reps), this variation is small
 - The bootstrap simulations now provide more accurate coverage

Summary and Continued Work

- Current work focused on alternative tolerance bound computation methods.
- Also considering methods to separate and account for phase variation.