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Motivation

* Previously demonstrated cryogenic preamplification at 4 K.

* Goal: Increase signal-to-noise ratio, bandwidth, and charge
sensitivity of readout circuit in dilution refrigerator.

e Approach: Heterojunction-Bipolar-Transistor (HBT) as cryogenic
preamplifier physically located on device PCB at base temperature
(T = 15 mK).

* Challenges: Power dissipation and noise.

Why HBT cryogenic preamp?
* Current input
* Relatively simple implementation
* Superior gain vs. power over HEMT
* Low power (50 n\W to 5 pW)
* Low 1/f corner frequency

 Take-home message: Comparable time-domain charge sensitivity
to RF techniques with low overhead.
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Silicon Metal-Oxide-Semiconductor (MOS) Devices Fabricated at Sandia
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Cryogenic Preamplification Using a Heterojunction Bipolar Transistor (HBT) T =4 K
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HBT DC Biasingat T=4 Kand T =15 mK

Inside of Dilution Refrigerator
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Readout Circuit Output-Referred Noise Spectral Density T = 15 mK
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Readout Circuit Output-Referred Noise Spectral Density T = 15 mK
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Readout Circuit Input-Referred Noise Spectral Density T = 15 mK
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Readout Circuit Input-Referred Noise Spectral Density T
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Charge Sensing With HBT In Dilution Refrigerator T = 15 mK
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RTS Measurements With HBT Inline In Dilution Refrigerator T = 15 mK

Bandwidth = 1 MHz
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RTS Measurements With HBT Inline In Dilution Refrigerator T = 15 mK
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RTS Measurements With HBT Inline In Dilution Refrigerator T = 15 mK
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RTS Measurements With HBT Inline In Dilution Refrigerator T = 15 mK

Bandwidth = 1 MHz
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Time-Domain Single-Shot Readout: State of the Art
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Conclusion

* Single-shot charge readout demonstration in
dilution fridge.

* HBT cryogenic preamp benefits:
* Relatively simple implementation
 Low power (50 nW to 5 pW)
 Low 1/f corner frequency

* Take-home message: Comparable time-domain

charge sensitivity to RF techniques with low
overhead.
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* Take-home message: Comparable time-domain Future Work: Minimize Te with
charge sensitivity to RF techniques with low lower bias current HBT
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