

Implicit Integration of Plasticity Models via Trust-Region Methods

Brian T. Lester
William M. Scherzinger

Solid Mechanics Department
 Sandia National Laboratories
 Albuquerque, NM USA

12th World Congress on Computational Mechanics
 Seoul, Korea
 July 28, 2016

Sandia
 National
 Laboratories

Exceptional
 service
 in the
 national
 interest

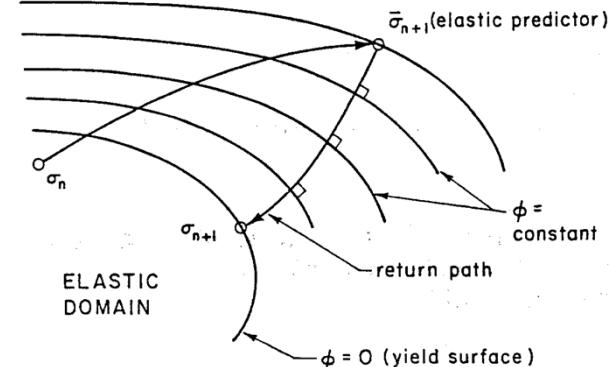
U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

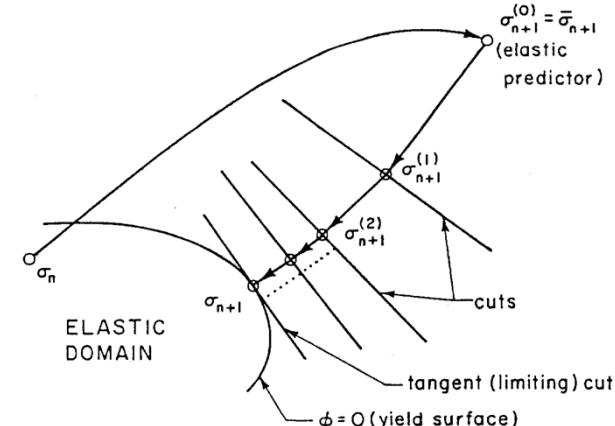
Elastic-Plastic Model Integration

- Most stress-updating algorithms still based on Return Mapping Algorithms (RMAs)
 - Fully Implicit Closest Point Projection (CPP)
 - Semi-Implicit Convex Cutting Plane (CCP)
- Implicit integration of constitutive models desirable for
 - Accuracy
 - Speed
- Key requirement of implicit capabilities integration routines must be robust

Schematic of CPP-RMA



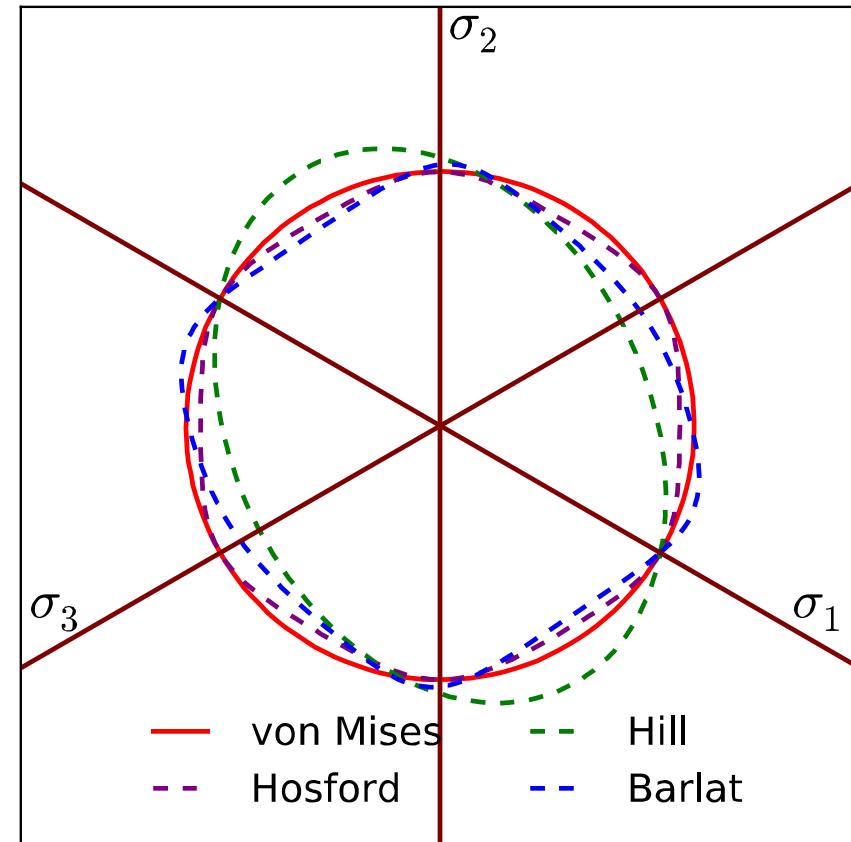
Schematic of CCP-RMA



Ortiz and Simo, 1986 IJNME 23, 353-366

Complex Plasticity Models

- Plasticity models becoming increasingly complex, common
 - Anisotropic and/or non-quadratic yield function forms
 - *e.g.* Hill, Hosford, Kara
- Pose additional challenges for numerical schemes
 - High curvature
 - Anisotropy
 - Misaligned material directions
- Lose guaranteed convergence with these implementations



RMA as Optimization

- “The interpretation of the algorithm... as optimality conditions of a **convex minimization problem** is of fundamental significance... This interpretation opens the possibility of **applying** a number of **algorithms** well **developed in convex mathematical programming** to solving elastoplastic problems.” [Simo and Hughes, 1998, Sec 1.4.3.2]
- Most implementations still based on Newton-Raphson
 - Some line search implementations – not widely adopted
 - Substepping schemes find considerable use

Proposed Novel RMA Solver

- Numerical methods in non-linear optimization widely studied in recent decades
 - Number of algorithms developed
 - Very few considered for RMA problems
- ***Objective:*** Develop a novel trust-region (TR) based integration scheme tailored for constitutive model integration
 - Analyze robustness
 - Address scaling inherit to non-linear optimization schemes
 - Investigate impact of algorithmic parameters on performance

MODELING

Plasticity Models

- Consider two different plasticity models/yield surfaces:
 - Non-quadratic Hosford
 - Anisotropic and non-quadratic Barlat (Yld2004-18P)
 - Focus on perfect plasticity, $\sigma_y (\bar{\varepsilon}^p) = \sigma_y^0$

Considered Yield Surfaces

Con. Equation:

$$\dot{\sigma}_{ij} = \mathbb{C}_{ijk} (\dot{\varepsilon}_{kl} - \dot{\varepsilon}_{kl}^p)$$

Yield Surface:

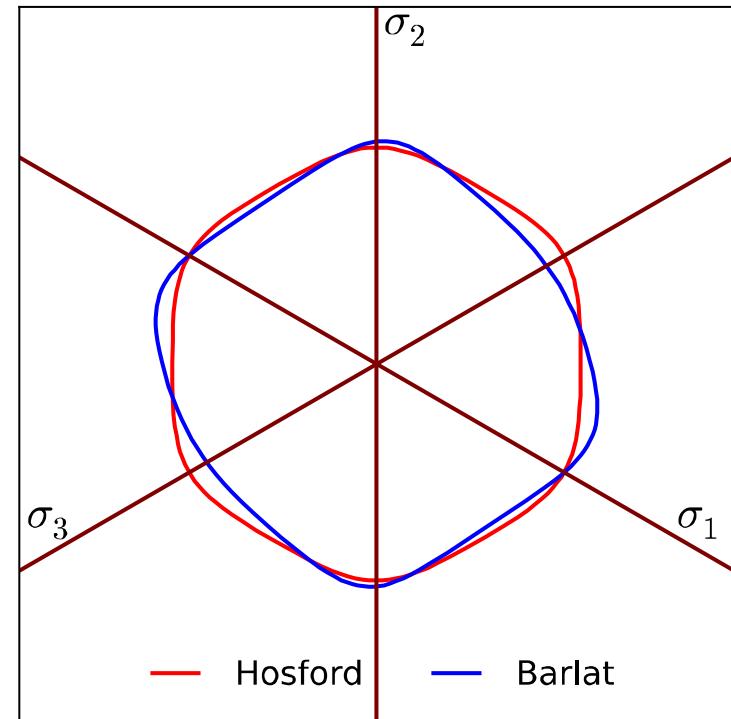
$$f (\sigma_{ij}, \bar{\varepsilon}^p) = \phi (\sigma_{ij}) - c$$

Assoc. Flow Rule:

$$\dot{\varepsilon}_{ij}^p = \dot{\gamma} \frac{\partial f}{\partial \sigma_{ij}}$$

KKT Conditions:

$$\dot{\gamma} \geq 0; \quad \dot{\gamma} f = 0; \quad f \leq 0$$

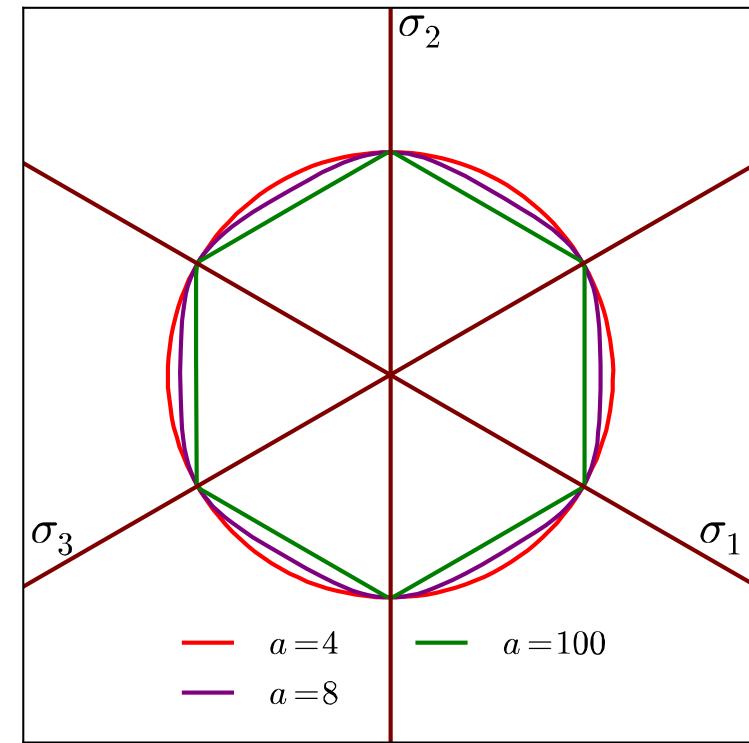


Hosford Yield Surface

- Non-quadratic yield surface requiring only two parameters
 - If $a = 2, 4$, the surface reduces to the von Mises form
 - $a \rightarrow \infty$ yields the Tresca condition

Hosford yield surface with different

$$\phi(\sigma_{ij}) = \left[\frac{1}{2} (|\sigma_1 - \sigma_2|^a + |\sigma_2 - \sigma_3|^a + |\sigma_3 - \sigma_1|^a) \right]^{1/a}$$



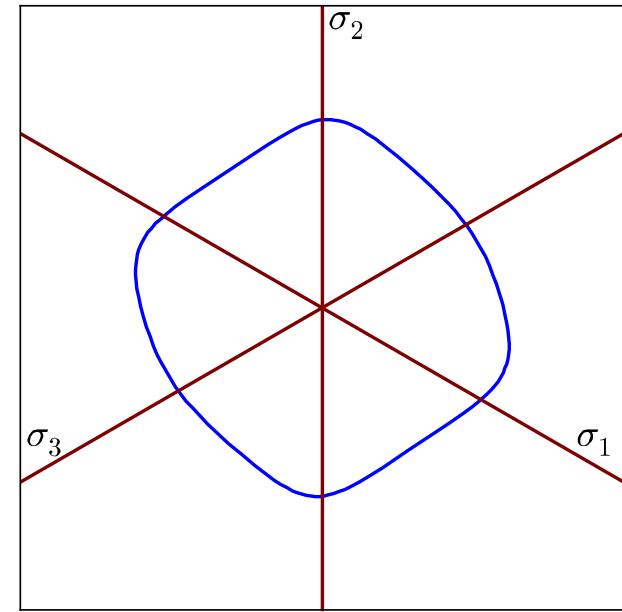
Barlat (Yld2004-18P) Yield Surface

- Anisotropic and non-quadratic yield surface

$$\phi(\sigma_{ij}) = \left\{ \frac{1}{4} \left[|s'_1 - s''_1|^a + |s'_1 - s''_2|^a + |s'_1 - s''_3|^a + |s'_2 - s''_1|^a + |s'_2 - s''_2|^a + |s'_2 - s''_3|^a + |s'_3 - s''_1|^a + |s'_3 - s''_2|^a + |s'_3 - s''_3|^a \right] \right\}^{1/a}$$

$$s'_{ij} = C'_{ijkl} s_{kl} ; \quad s''_{ij} = C''_{ijkl} s_{kl}$$

$$[C'] = \begin{bmatrix} 0 & -c'_{12} & -c'_{13} & 0 & 0 & 0 \\ -c'_{21} & 0 & -c'_{23} & 0 & 0 & 0 \\ -c'_{31} & -c'_{32} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c'_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c'_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & c'_{66} \end{bmatrix}$$



Return Mapping Problem

- Elastic predictor/inelastic corrector; Fully implicit RMA-CPP
- Solution to non-linear problem $r_I^{(n+1)}(x_I) = 0$

Residual Vector

$$r_I = [r_{ij}^\varepsilon, r^f]^T \quad \left\{ \begin{array}{l} r_{ij}^{\varepsilon(n+1)} = -d\varepsilon_{ij}^{p(n+1)} + d\gamma^{(n+1)} \frac{\partial \phi}{\partial \sigma_{ij}^{(n+1)}} \\ r^{f(n+1)} = f(\sigma_{ij}^{(n+1)}, d\gamma^{(n+1)}) \end{array} \right.$$

State Vector

$$x_I = [\sigma_{ij}, d\gamma]^T$$

- Problem solved by iteratively updating the state vector

$$x_I^{(k+1)} = x_I^{(k)} + \alpha^{(k)} p_I^{(k)}$$

Step Size *Step Vector*

Existing Solution Approaches

- Newton-Raphson (NR)

$$\alpha^{(k)} = 1 \quad \forall k \quad p_I^{NR(k)} = - \left(J^{(k)} \right)_{IJ}^{-1} r_J^{(k)}$$

$$J_{IJ} = \begin{bmatrix} (\mathcal{L}_{ijkl})^{-1} & \frac{\partial \phi}{\partial \sigma_{ij}} \\ \frac{\partial \phi}{\partial \sigma_{ij}} & -\frac{\partial \phi}{\partial \bar{\varepsilon}^p} \end{bmatrix}$$

$$\mathcal{L}_{ijkl} = \left(\mathbb{C}_{ijkl}^{-1} + d\gamma \frac{\partial^2 \phi}{\partial \sigma_{ij} \partial \sigma_{kl}} \right)^{-1}$$

- Line-search augmented NR (LS-NR): As before but

$$\alpha^{(k)} = \min_{\alpha} \psi \left(r_I^{(k)}(\alpha) \right), \quad \alpha \in (0, 1]$$

Merit Function

- For optimization methods need to introduce a merit function
 - Assess convergence
 - Gauge improvement over an increment

$$\psi(r_I) = \frac{1}{2} D_{JK}^1 r_K D_{JL}^1 r_L$$

$$D_{IJ}^1 = \begin{bmatrix} c^{N\varepsilon} c^{W\varepsilon} \mathbb{I}_{ijkl} & 0_{ij} \\ 0_{ij} & c^{Nf} c^{Wf} \end{bmatrix} c^{N\varepsilon}, \quad c^{Nf} \rightarrow \text{Normalization} \\ c^{W\varepsilon}, \quad c^{Wf} \rightarrow \text{Weight}$$

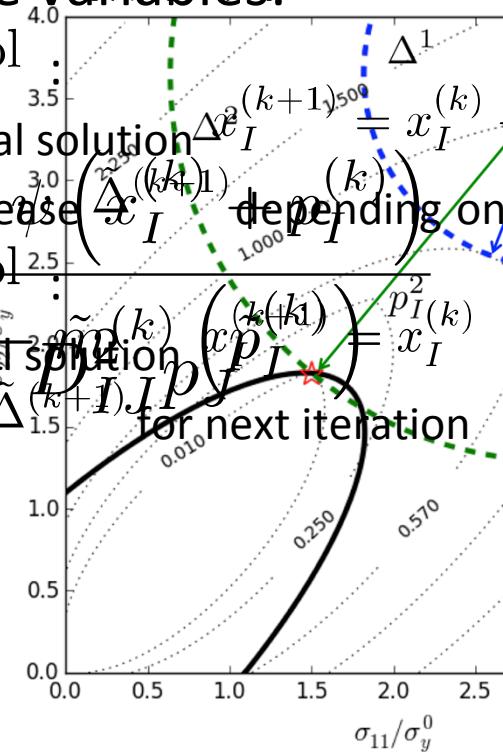
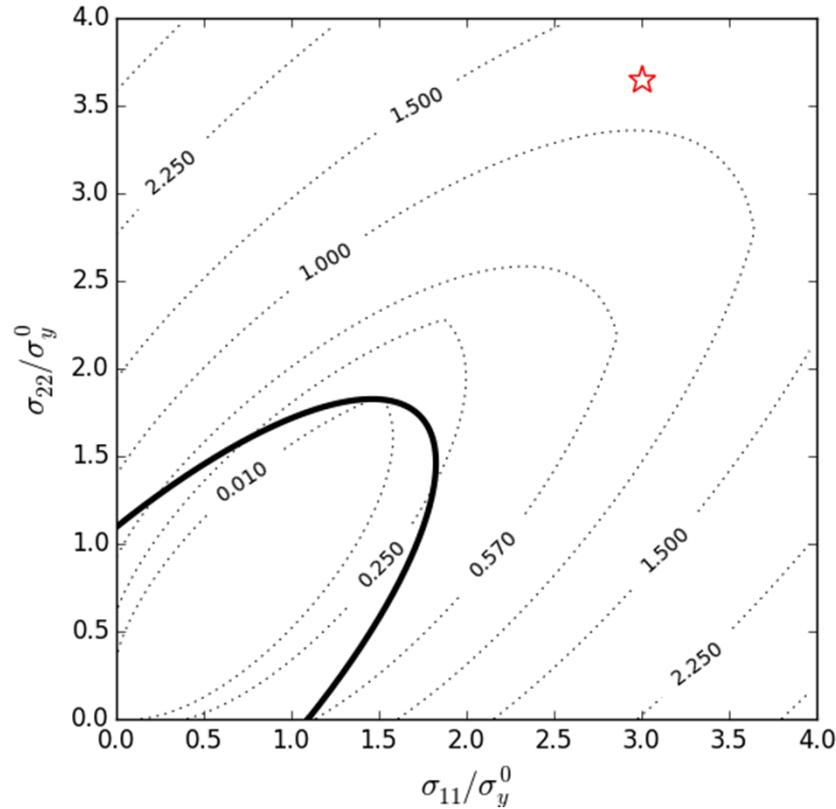
- With a equal weighted, stress normalization:

$$\psi(r_I) = \frac{1}{2} \left(\left(\frac{E}{\sigma_y^0} \right)^2 r_{ij}^\varepsilon r_{ij}^\varepsilon + \left(\frac{r^f}{\sigma_y^0} \right)^2 \right)$$

Trust-Region Based Solver

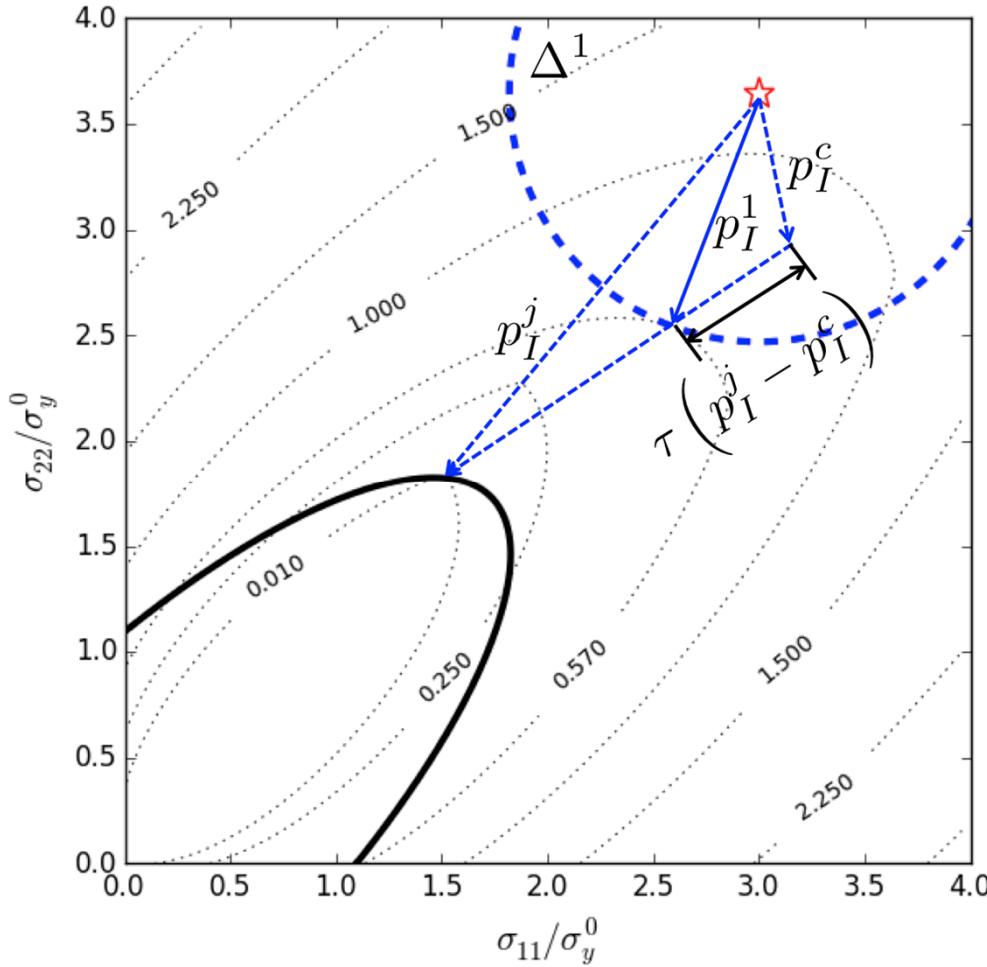
- Step 1: Construct a scaled model problem, $\tilde{m}^{(k)}$ (\tilde{p}_I)
- Step 2: With $\alpha^{(k)} = 1$, find $\tilde{p}_I^{(k)}$ minimizing model problem in trusted domain $\tilde{p}_I^{(k)} \tilde{\Delta}^{(k)} \psi^{(k)} + \tilde{g}_I^{(k)} \tilde{p}_I + \frac{1}{2} \tilde{p}_I \tilde{B}_{IJ}^{(k)} \tilde{p}_J$
- Step 3: Calculate improvement, $\rho^{(k)}$, of a given trial increment, $\tilde{p}_I^{(k)}$
- Step 4: Update variables:
 - If $\rho^{(k)} \geq \text{tol}$
 - Accept trial solution $\tilde{p}_I^{(k+1)} = x_I^{(k)}$
 - Keep/Increase $\Delta^{(k+1)}$ depending on $\rho^{(k)}$
 - If $\rho^{(k)} < \text{tol}$
 - Reject trial solution $\tilde{p}_I^{(k+1)} = x_I^{(k)}$
 - Decrease $\Delta^{(k+1)}$ for next iteration

$$D_{IJ}^2 = \left[\begin{array}{c} \end{array} \right]$$



Determination of Step Vector

- To find the step vector, use the dogleg method



Cauchy Point:

$$\tilde{p}_I^{c(k)} = -\tau^{(k)} \left(\frac{\tilde{\Delta}^{(k)}}{\|\tilde{g}_I^{(k)}\|} \right) \tilde{g}_I^{(k)}$$

$$\tau^{(k)} = \min \left[1, \frac{\|\tilde{g}_I^{(k)}\|^3}{\tilde{\Delta}^{(k)} \tilde{g}_I^{(k)} \tilde{B}_{IJ}^{(k)} \tilde{g}_J^{(k)}} \right]$$

Fullstep:

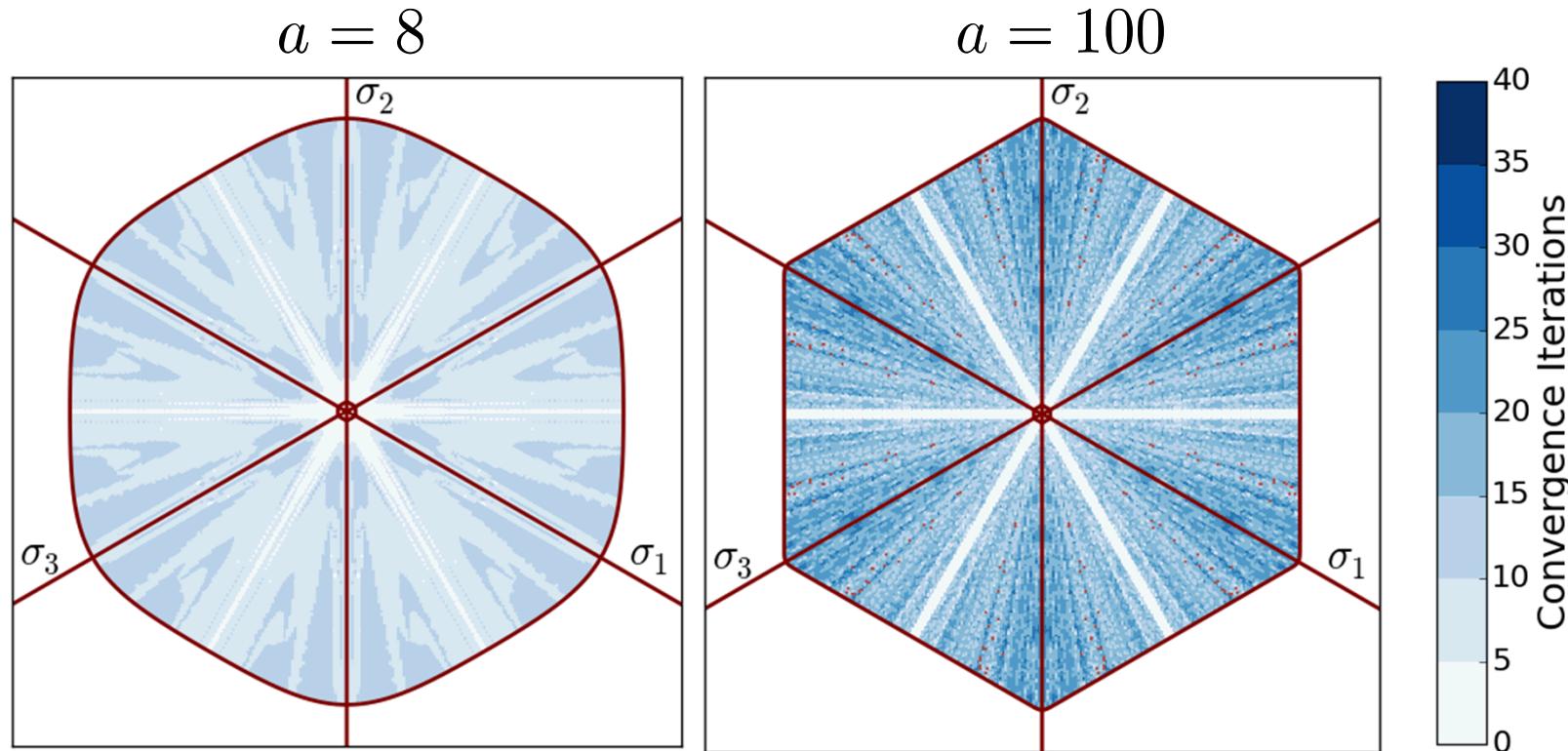
$$\tilde{p}_I^{j(k)} = - \left(\tilde{B}^{(k)} \right)_{IJ}^{-1} \tilde{g}_J^{(k)}$$

Performance of Trust-Region Approach (Hosford)

RESULTS

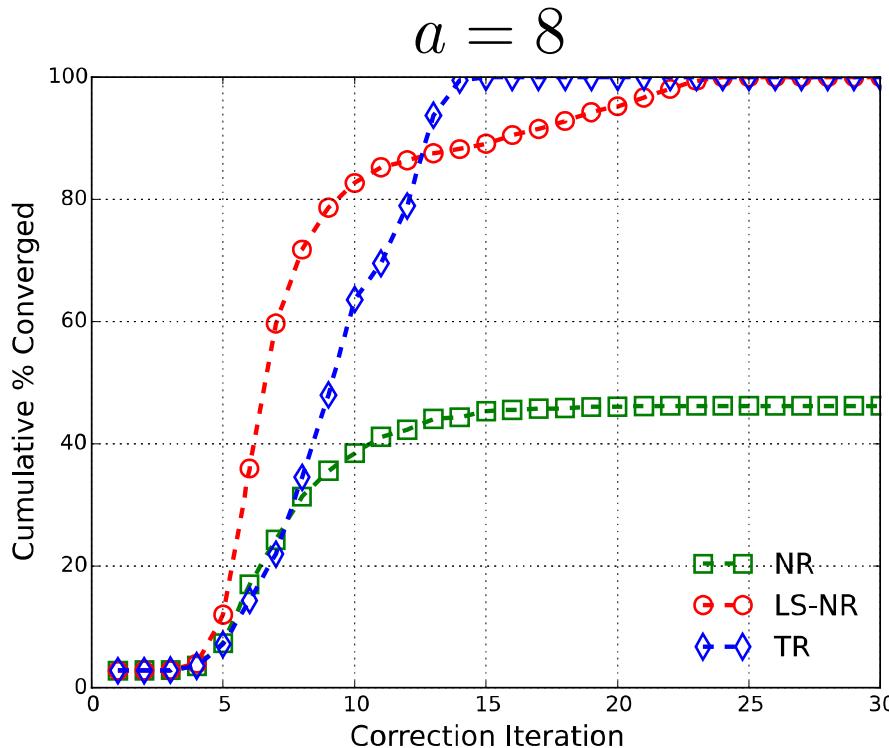
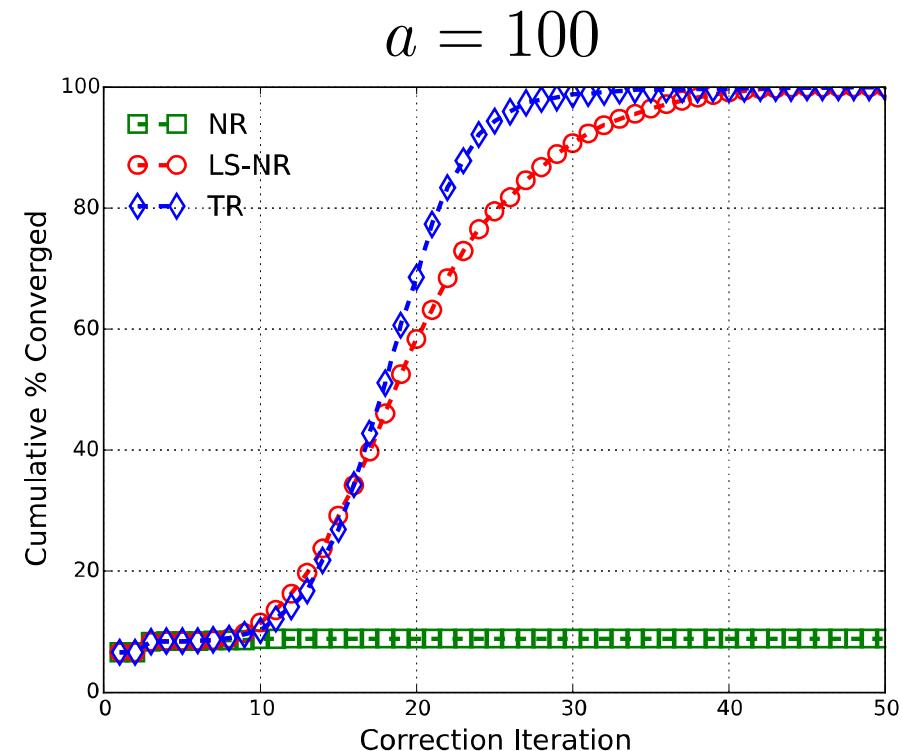
Convergence Maps

- Determine number of correction iterations needed for TR algorithm at $\phi(\sigma_{ij}) \leq 30\sigma_y^0$



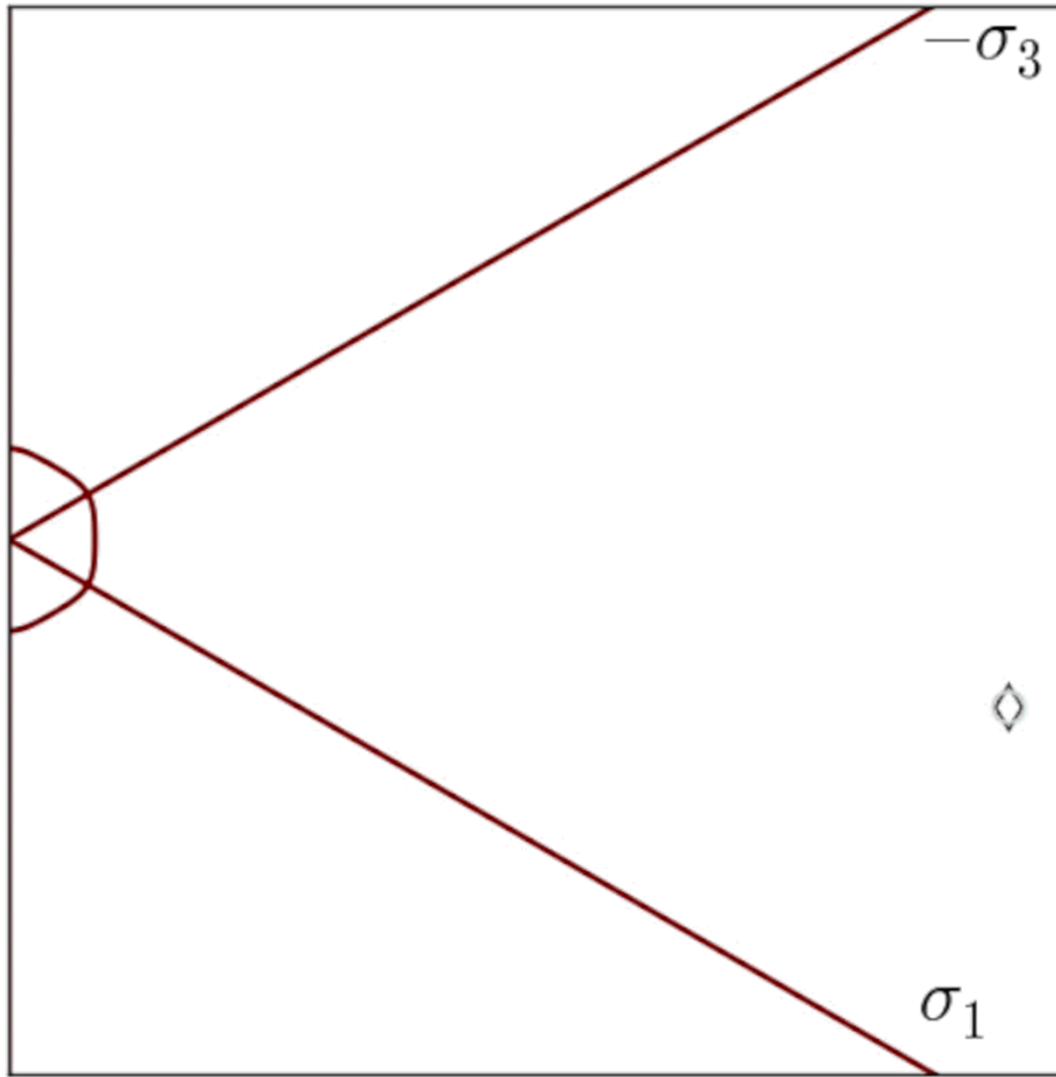
- Proposed algorithm converges for nearly every trial stress

Cumulative Convergence Distributions



- Convergence of TR method well in excess of traditional NR
 - Comparable with LS-NR
 - TR better at higher iterations

Trust-Region Return Trajectory



Return Trajectory – Comparison (A)

Trust Region

$-\sigma_3$

◊

σ_1

Line Search

$-\sigma_3$

□

σ_1

Return Trajectory – Comparison (B)

Trust Region

$-\sigma_3$

σ_1 \diamond

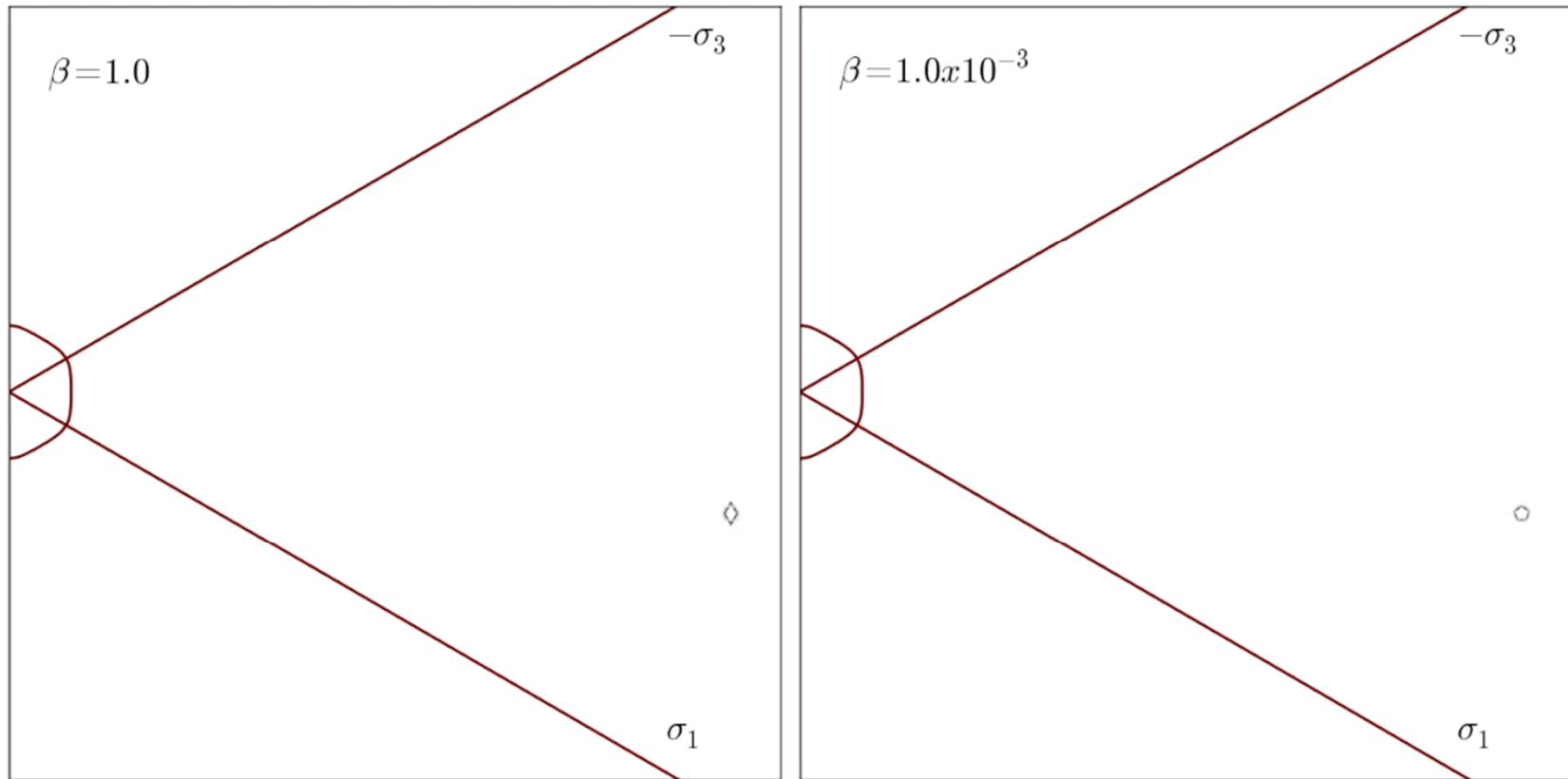
Line Search

$-\sigma_3$

σ_1 \square

Scaling in TR

$$\psi(r_I) = \frac{1}{2} \left(\left(\beta \frac{E}{\sigma_y^0} \right)^2 r_{ij}^\varepsilon r_{ij}^\varepsilon + \left(\frac{r^f}{\sigma_y^0} \right)^2 \right)$$



Impact of Algorithmic Parameters (Barlat)

RESULTS

Algorithmic Parameters

- Use of non-linear optimization schemes introduces series of algorithmic parameters
 - Scaling in residual, state variables
 - Acceptability conditions
 - Values often taken from optimization literature – not RMA tailored
- How does the choice of these parameters affect performance?
- First look at merit function normalization:

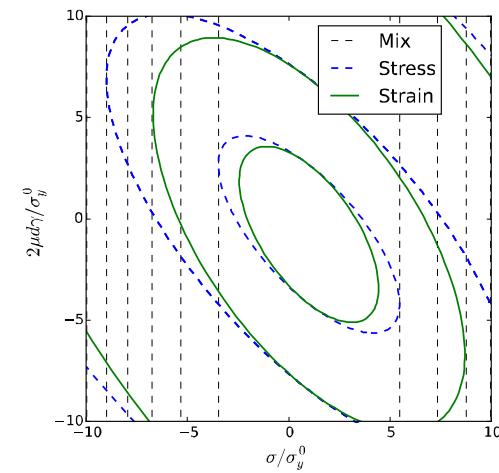
Stress Normalized: $\psi_1^\sigma(r_I) = \frac{1}{2} \left(\left(\frac{E}{\sigma_y^0} \right)^2 r_{ij}^\varepsilon r_{ij}^\varepsilon + \left(\frac{r^f}{\sigma_y^0} \right)^2 \right)$

Strain Normalized: $\psi_2^\varepsilon(r_I) = \frac{1}{2} \left(r_{ij}^\varepsilon r_{ij}^\varepsilon + \left(\frac{r^f}{2\mu} \right)^2 \right)$

Mixed Measure: $\psi_3(r_I) = \frac{1}{2} \left(r_{ij}^\varepsilon r_{ij}^\varepsilon + (r^f)^2 \right)$

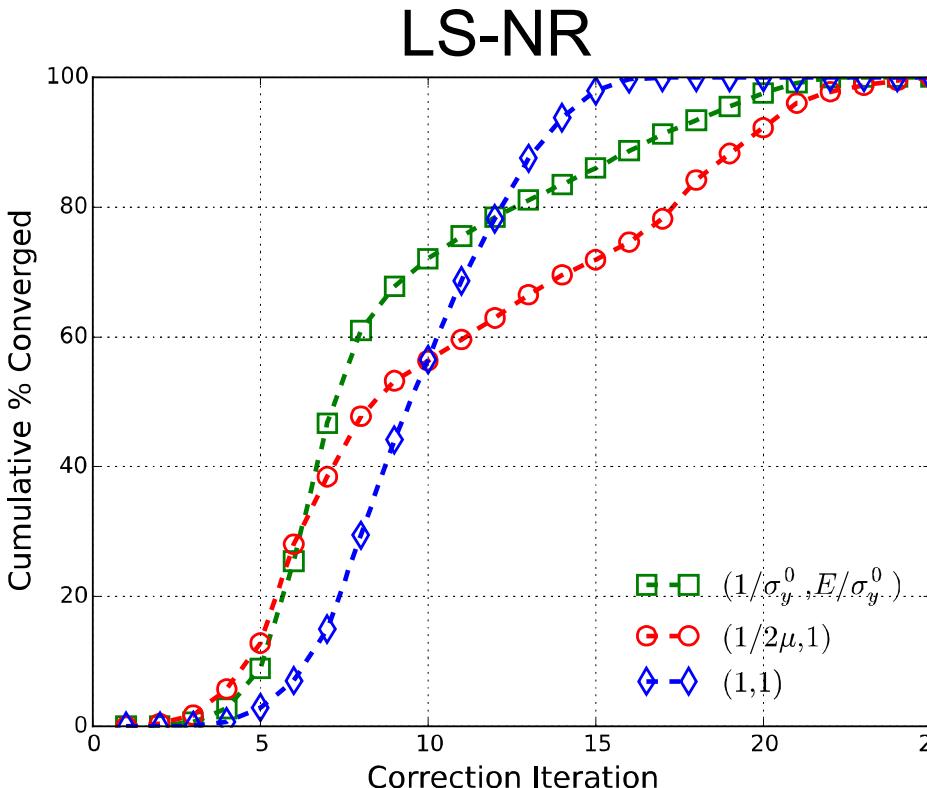
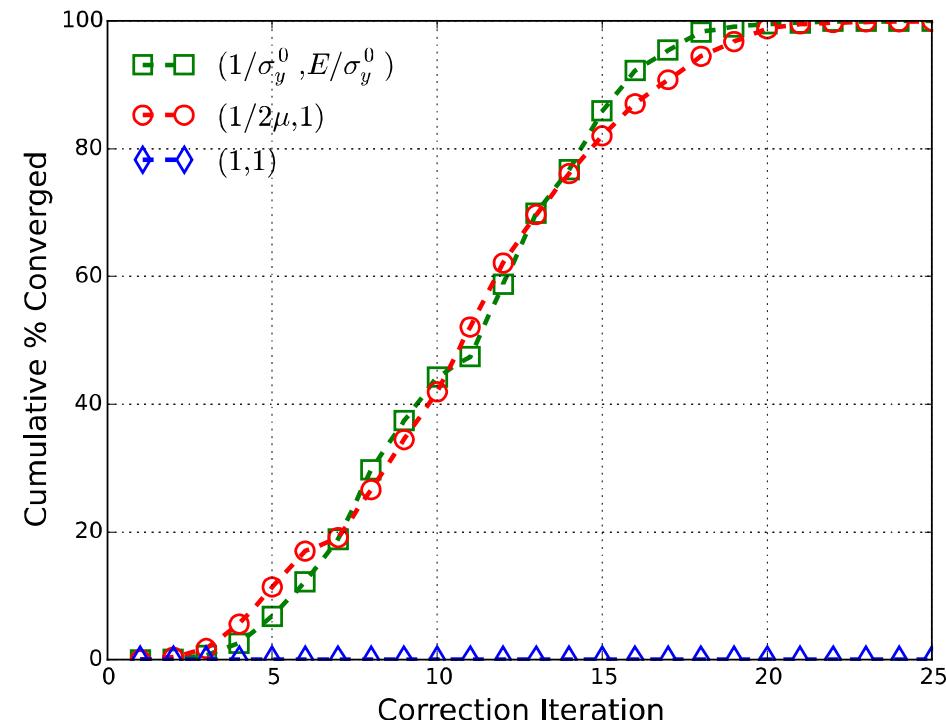
$$c^{W\varepsilon} = c^{Wf} = 1$$

1D Idealization of Different Merit Functions



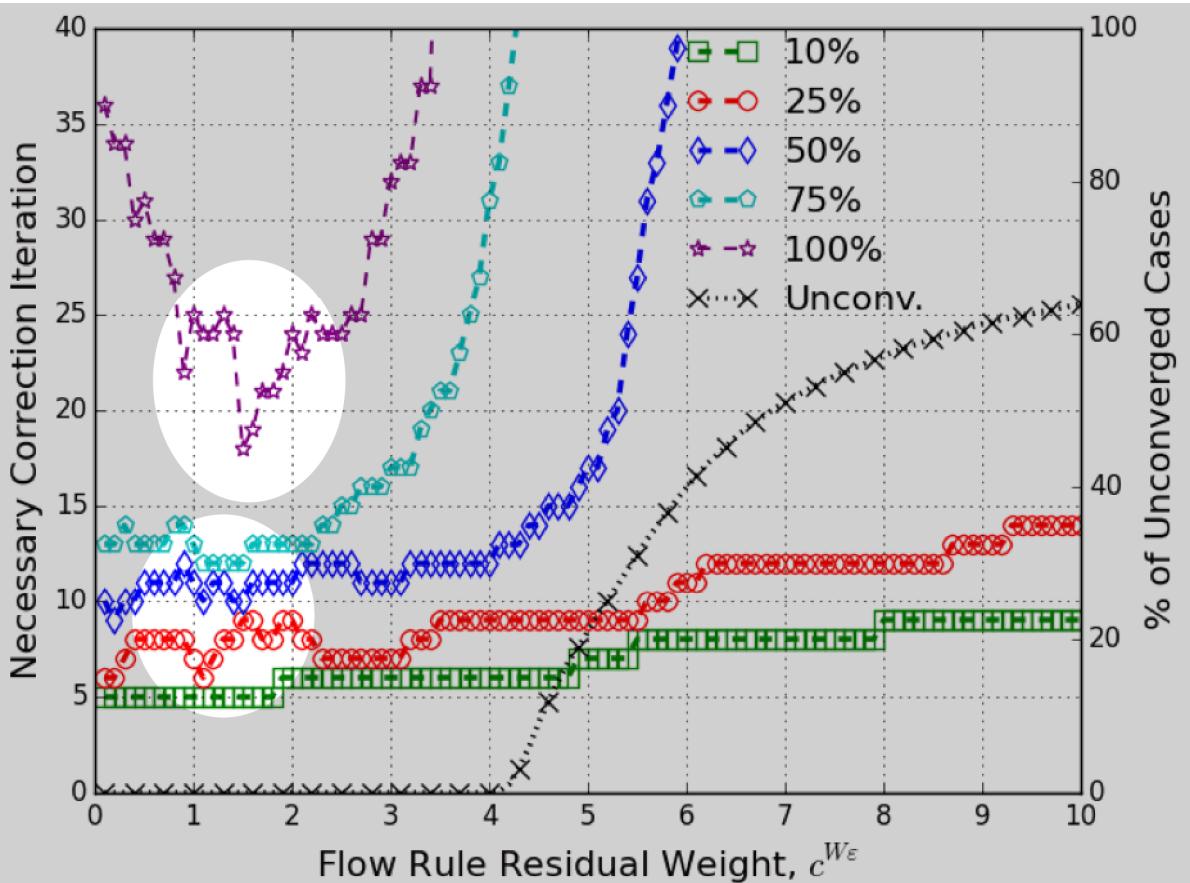
Barlat CCDs -- Normalization

- LS-NR shows stronger dependence on merit function selection
 - Scaled forms do better at lower iterations; Mixed first to hit 100%
- Mixed measure TR converges < 1% of the time



Impact of Weighting

$$\psi_1^\sigma(r_I) = \frac{1}{2} \left(\left(c^{W_\varepsilon} \frac{E}{\sigma_y^0} \right)^2 r_{ij}^\varepsilon r_{ij}^\varepsilon + \left(\frac{r^f}{\sigma_y^0} \right)^2 \right)$$



- Weighting can be used aid in selecting appropriate path
- Minimum number of correction iterations **not** at 1

Weighting Return Maps

$$c^{W\varepsilon} = 0.5$$

$$-\sigma_3$$

□

$$\sigma_1$$

$$c^{W\varepsilon} = 1.5$$

$$-\sigma_3$$

◊

$$\sigma_1$$

Conclusions

- Novel implicit integration scheme for CPP-RMA implemented
 - Tailored trust-region approach for complex plasticity models
 - Scales addressed in both state variables and merit functions
- Investigated impact of algorithmic parameters on RMA performance
 - Appropriate selection can aid performance
 - Way to automatically select scaling?
- This algorithm has potential for more complex problems:
 - Multisurface (e.g. Crystal Plasticity; Multiple inelastic mechanisms)
 - More complex mechanisms (Damage)
 - Coupled multiphysics (thermal-mechanical analysis)

Acknowledgements

- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000
- Original inspiration and motivation for this work came arose from discussions with Jakob Ostien, Jay Foulk, and Alejandro Mota (SNL-CA)

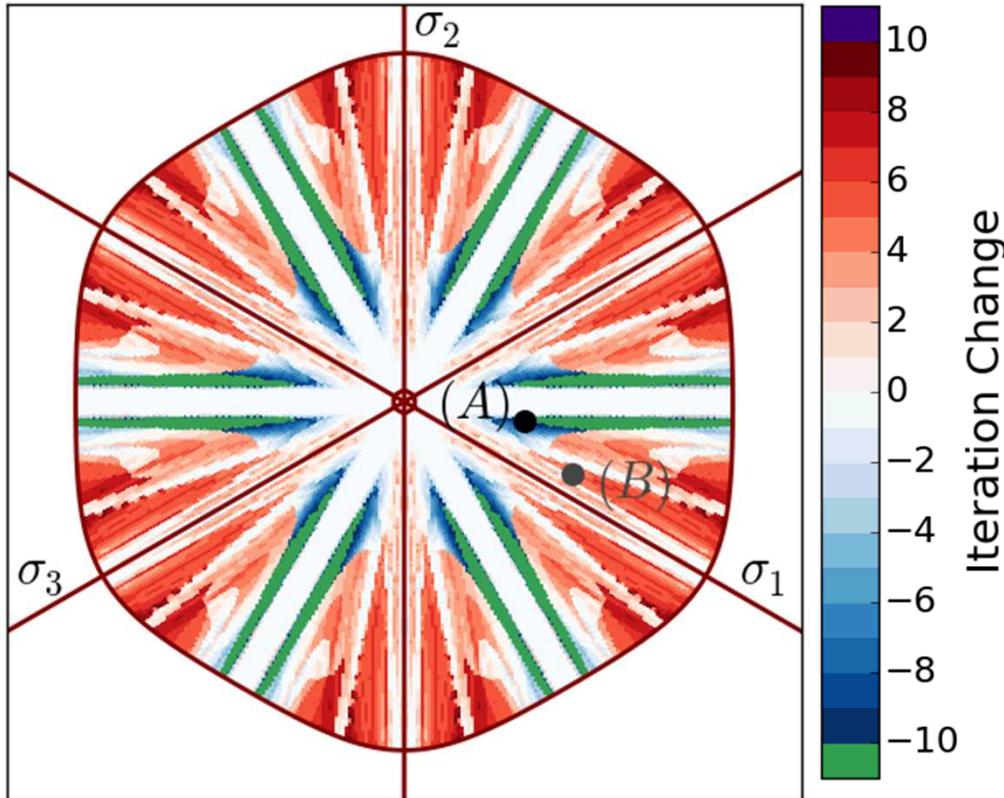
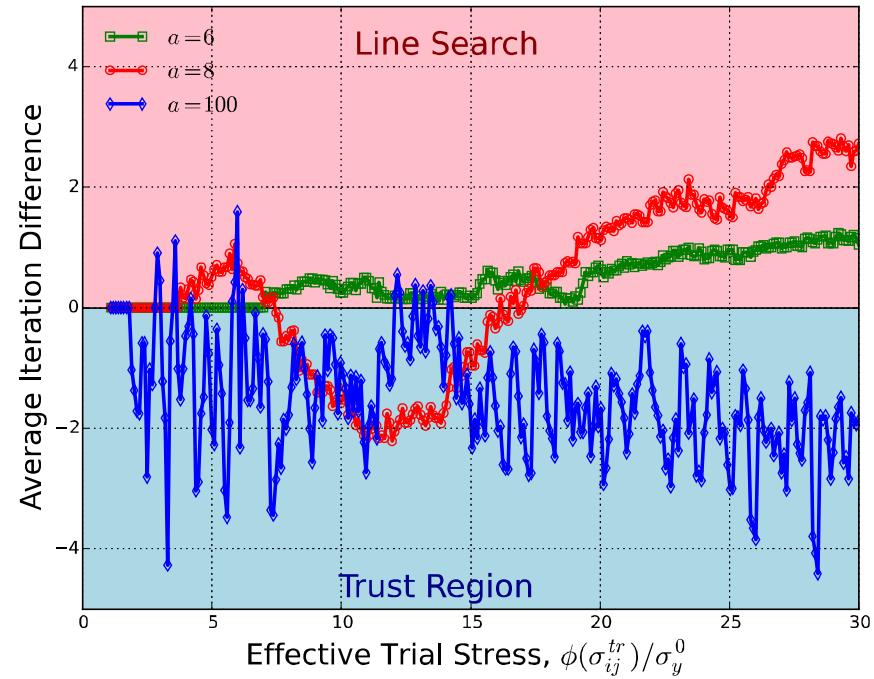
Exceptional service in the national interest

Appendix

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Performance: TR vs LS-NR

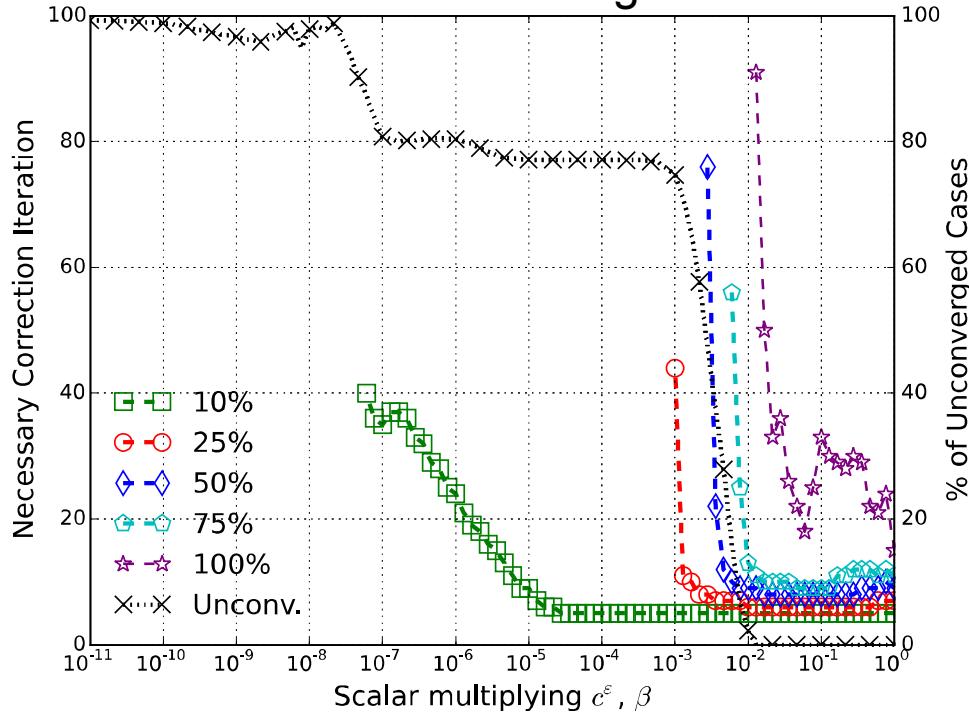
Iteration change, $a = 8$
 iter (TR) – iter (LS)



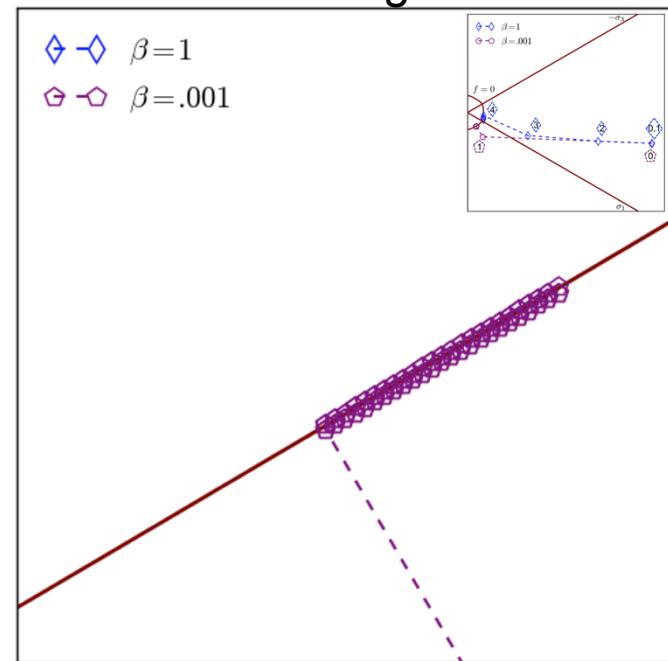
- Regions of large performance increase
- TR seems to do better as (a) increases

Importance of Scaling w/ TR

Convergence Thresholds for Different Scalings



Return Trajectories with Different Scalings

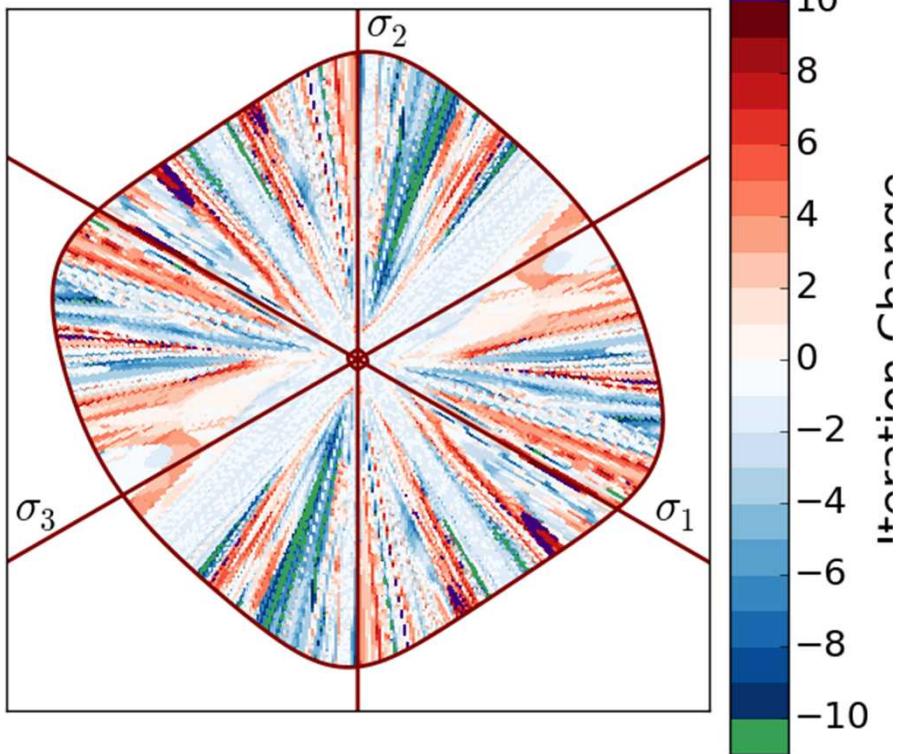
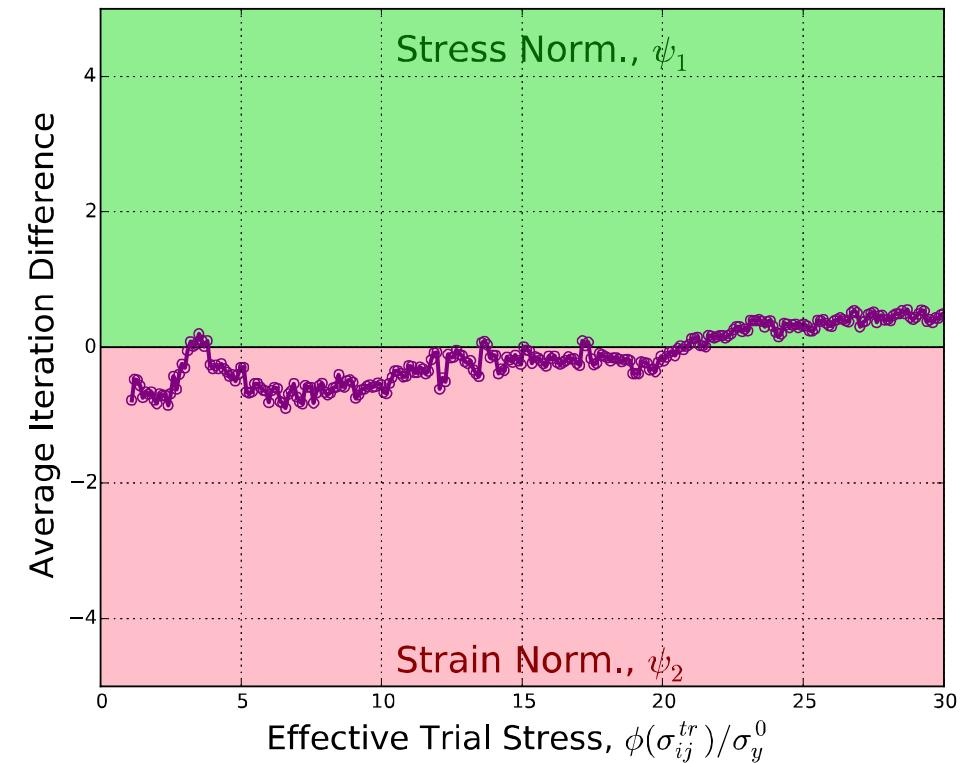


- Appropriately scaling the problem essential for TR to converge

Iteration Difference Maps -- Normalization

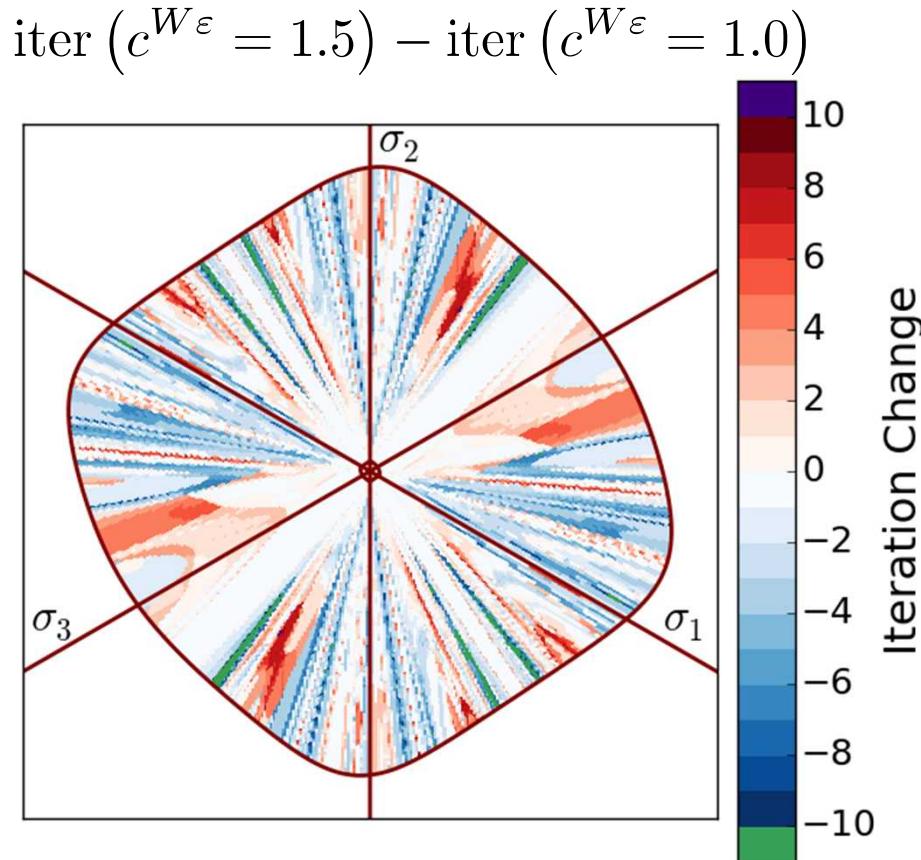
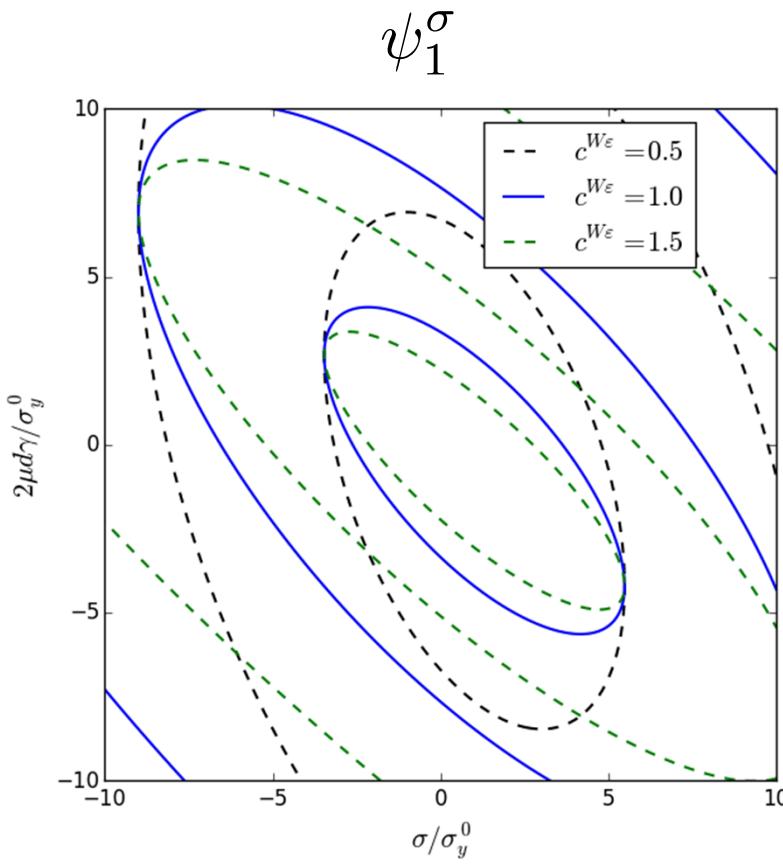
- Preferable merit function varies with dominant loading
- Limited regions exhibit large differences

$$\text{iter}(\psi_2^\varepsilon) - \text{iter}(\psi_1^\sigma)$$



Merit Functions -- Weighting

- Weighting can be used to bias the residual towards either consistency or plastic strain residual
 - Influence return mapping path?



Scaled Relations

$$\tilde{m}^{(k)}(\tilde{p}) = \psi^{(k)} + \tilde{g}_I^{(k)} \tilde{p}_I + \frac{1}{2} \tilde{p}_I \tilde{B}_{IJ}^{(k)} \tilde{p}_J$$

Gradient: $\tilde{g}_I^{(k)} = D_{LK}^1 r_K^{(k)} D_{LJ}^1 J_{JN}^{(k)} (D^2)_{NI}^{-1}$

Approximate Hessian: $\tilde{B}_{IJ}^{(k)} = (D^2)_{IL}^{-1} D_{MK}^1 J_{KN}^{(k)} D_{MA}^1 J_{AL}^{(k)} (D^2)_{NJ}^{-1}$

$$\tilde{g}_I^k = \left[\begin{array}{l} \frac{(c^\varepsilon)^2}{b^\sigma} r_{ij}^{\varepsilon(k)} S_{ijkl}^{ep} + \frac{(c^f)^2}{b^\gamma} r^{f(k)} \frac{\partial \phi}{\partial \sigma_{ij}^{(k)}}, \quad \frac{(c^\varepsilon)^2}{b^\gamma} r_{ij}^{\varepsilon(k)} \frac{\partial \phi}{\sigma_{ij}^{(k)}} - \frac{(c^f)^2}{b^\gamma} r^{f(k)} \frac{\partial \sigma_y}{\partial \bar{\varepsilon}^{p(k)}} \end{array} \right]^T$$

$$\tilde{B}_{IJ}^k = \left[\begin{array}{l} \left(\frac{c^\varepsilon}{b^\sigma} \right)^2 S_{ijrs}^{ep} S_{rskl}^{ep} + \left(\frac{c^f}{b^\sigma} \right)^2 \frac{\partial \phi}{\partial \sigma_{ij}^{(k)}} \frac{\partial \phi}{\partial \sigma_{kl}^{(k)}}, \quad \frac{(c^\varepsilon)^2}{b^\sigma b^\gamma} S_{ijrs}^{ep} \frac{\partial \phi}{\partial \sigma_{rs}^{(k)}} - \frac{(c^f)^2}{b^\sigma b^\gamma} \frac{\partial \sigma_y}{\partial \bar{\varepsilon}^{p(k)}} \frac{\partial \phi}{\partial \sigma_{ij}^{(k)}} \\ \frac{(c^\varepsilon)^2}{b^\sigma b^\gamma} S_{klrs}^{ep} \frac{\partial \phi}{\partial \sigma_{rs}^{(k)}} - \frac{(c^f)^2}{b^\sigma b^\gamma} \frac{\partial \sigma_y}{\partial \bar{\varepsilon}^{p(k)}} \frac{\partial \phi}{\partial \sigma_{kl}^{(k)}}, \quad \left(\frac{c^\varepsilon}{b^\gamma} \right)^2 \frac{\partial \phi}{\partial \sigma_{rs}^{(k)}} \frac{\partial \phi}{\partial \sigma_{rs}^{(k)}} + \left(\frac{c^f}{b^\gamma} \right)^2 \frac{\partial \sigma_y}{\partial \bar{\varepsilon}^{p(k)}} \frac{\partial \sigma_y}{\partial \bar{\varepsilon}^{p(k)}} \end{array} \right]$$

Selecting TR Size

- For TR, need to set initial, $\tilde{\Delta}^{(0)}$, and maximum, $\bar{\Delta}$, radii
 - Final stress lies between previous converged and trial
 - Maximum plastic strain increment would correspond to input strain
 - Want to enable single step solution

$$\tilde{\Delta}^0 = \bar{\Delta} = b^\sigma \sqrt{(\sigma_i^{tr} - \sigma_i^n)(\sigma_i^{tr} - \sigma_i^n)} + b^\gamma d\bar{\varepsilon}$$

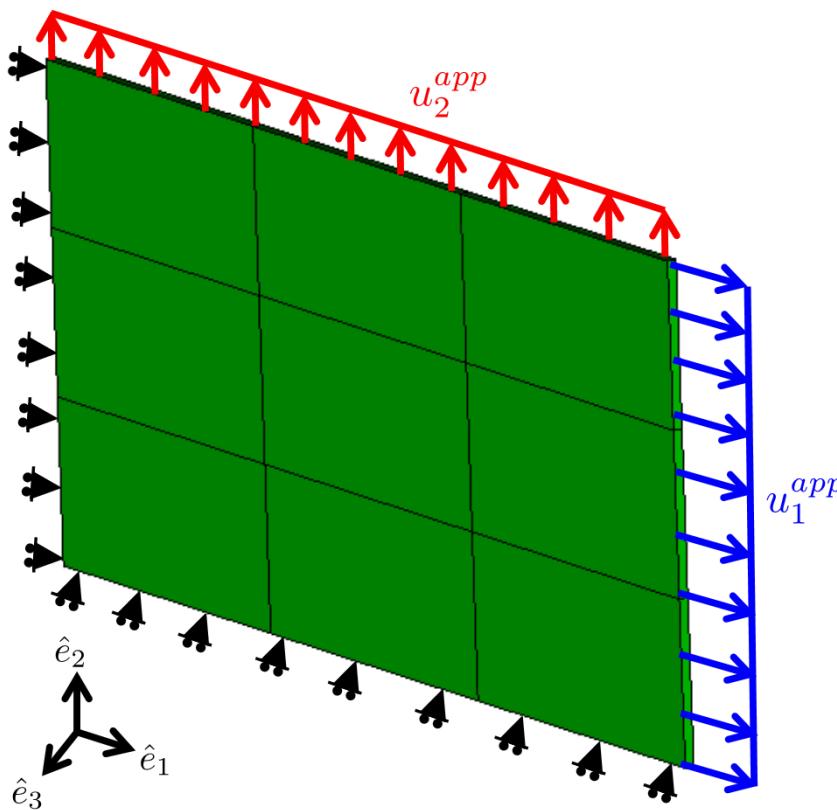
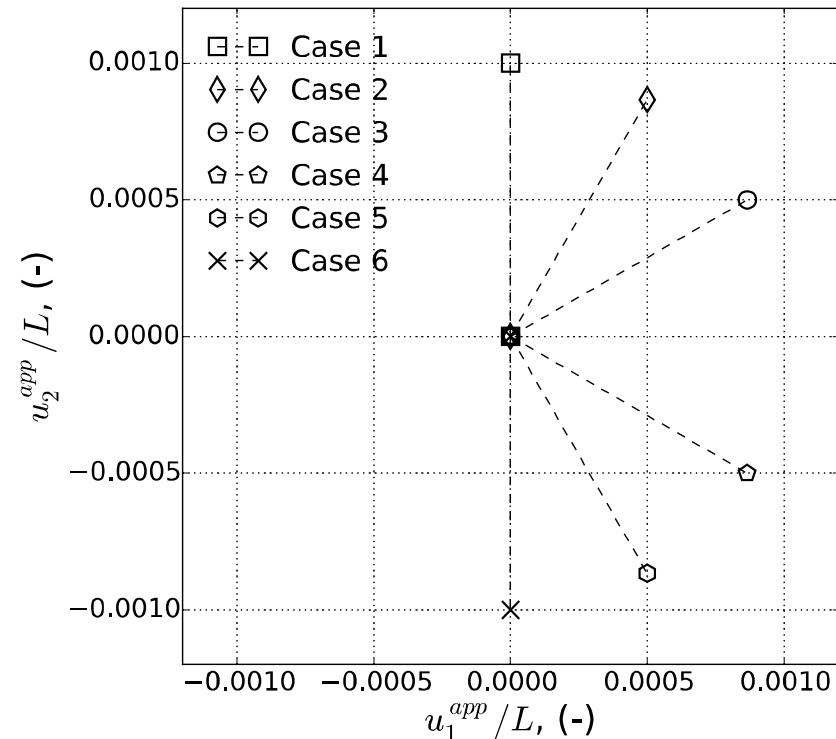
$$d\bar{\varepsilon} = \sqrt{\frac{2}{3} d\varepsilon_{ij}^{n+1} d\varepsilon_{ij}^{n+1}}$$

- For robustness analysis

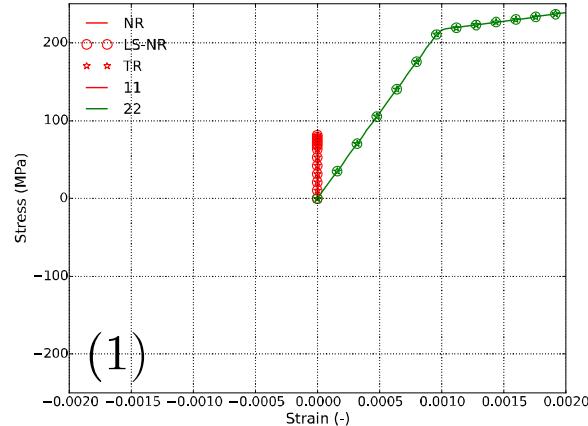
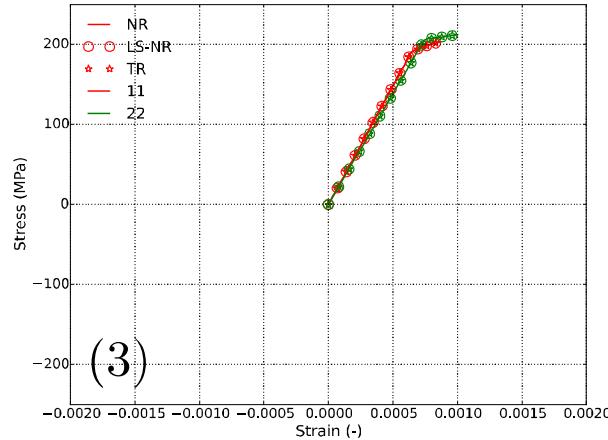
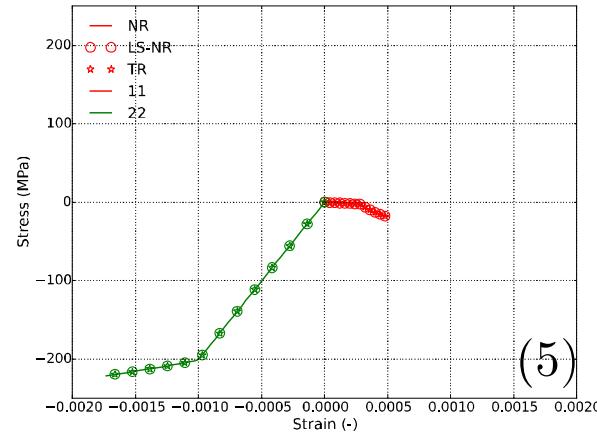
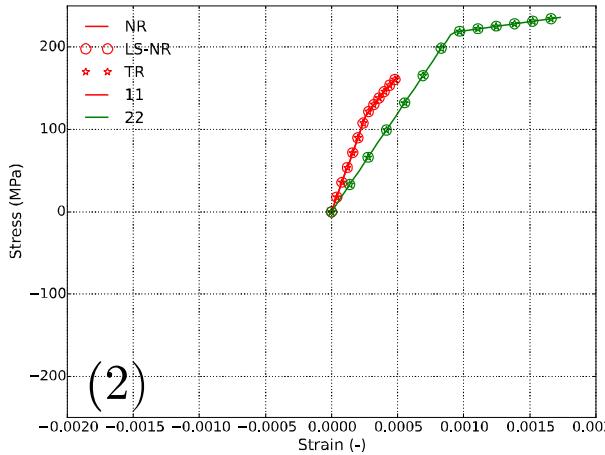
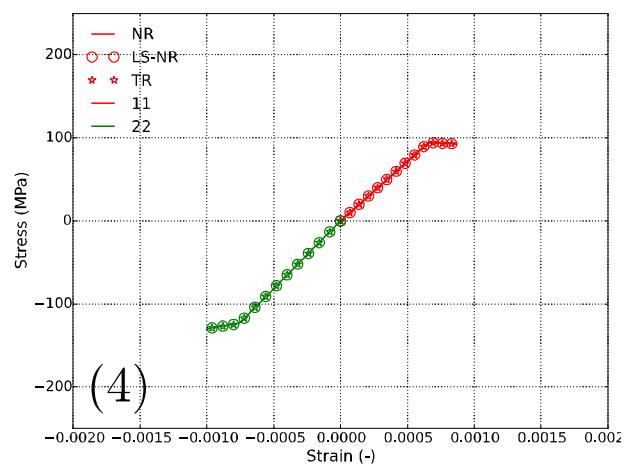
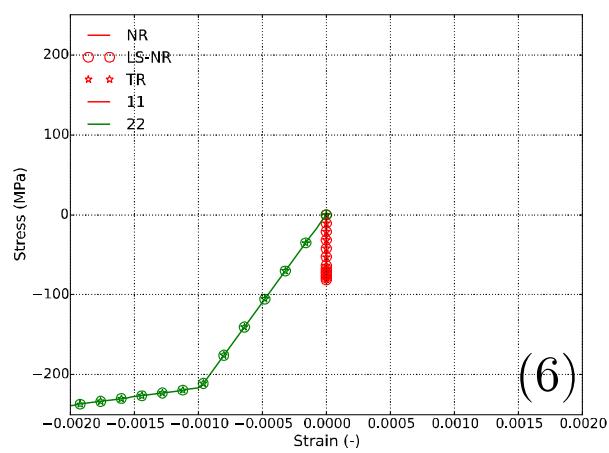
$$\bar{\Delta} = b^\sigma \sqrt{(\phi(\sigma_{ij}^{tr}) - \sigma_y^0)(\phi(\sigma_{ij}^{tr}) - \sigma_y^0)} + b^\gamma \sqrt{\frac{2}{3} \mathbb{S}_{ijk} \sigma_{kl}^{tr} \mathbb{S}_{ijmn} \sigma_{mn}^{tr}}$$

Verification

- Verification through Sierra/SM
- Consider series of plane stress, biaxial displacement problems

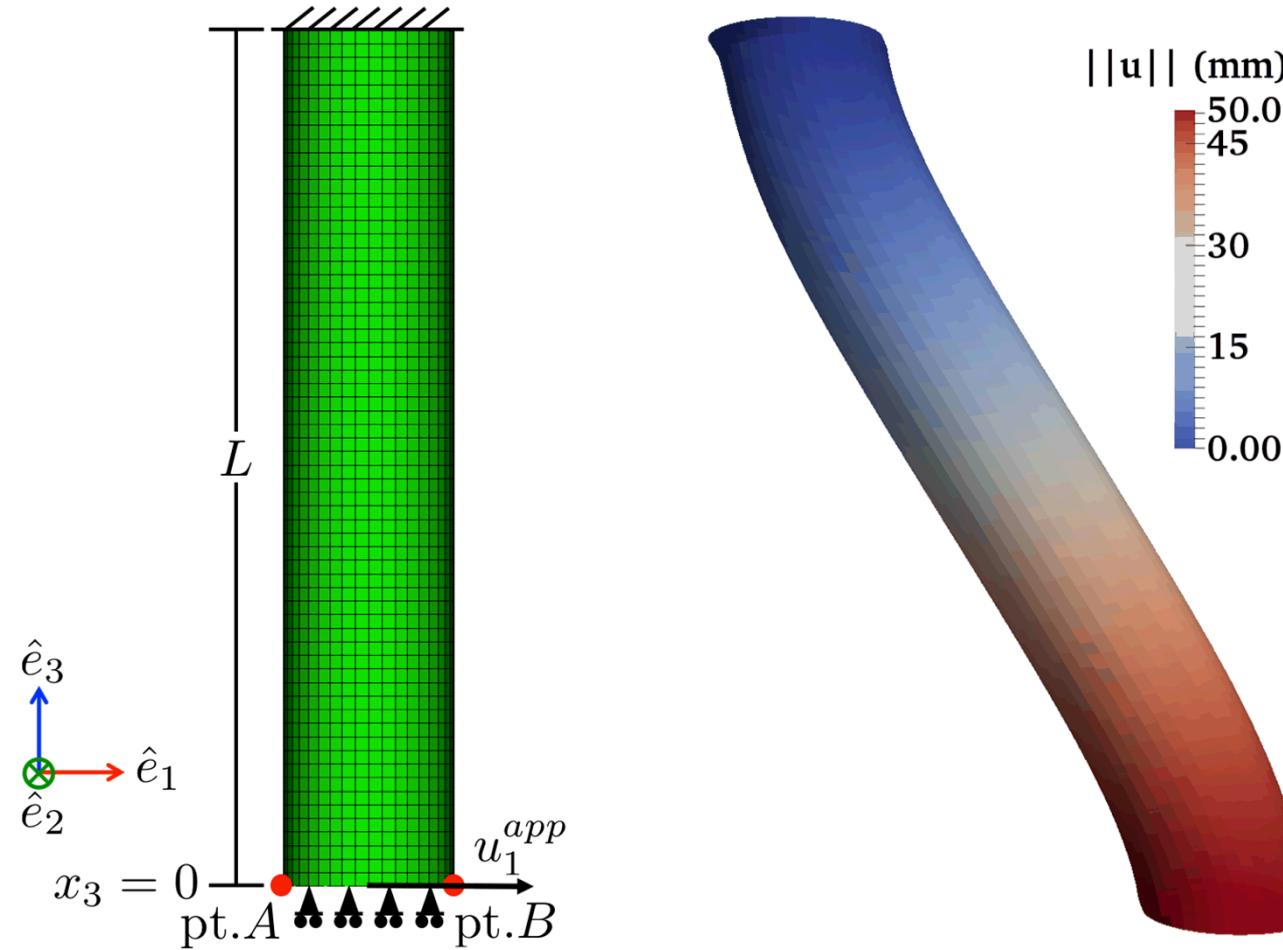


Verification -- Results



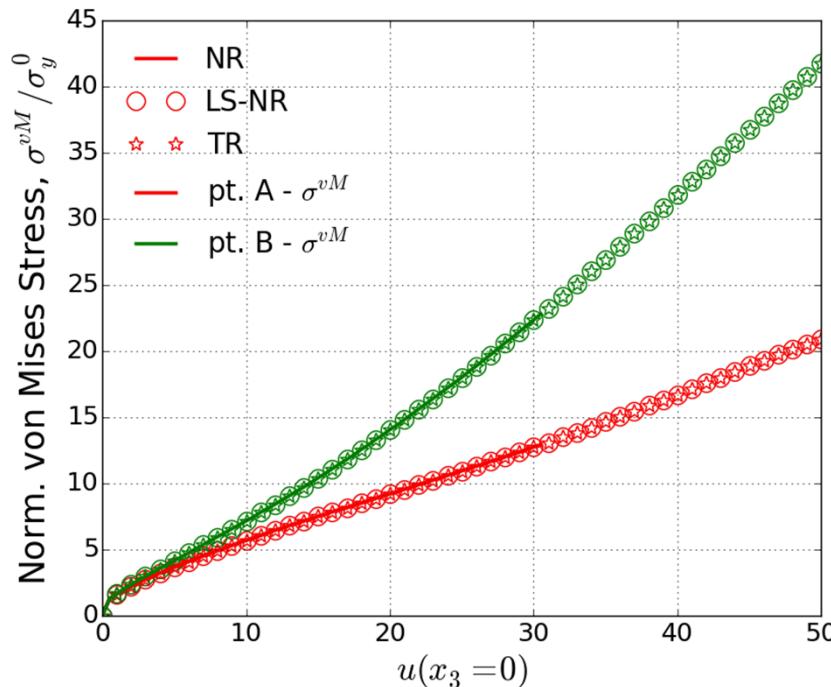
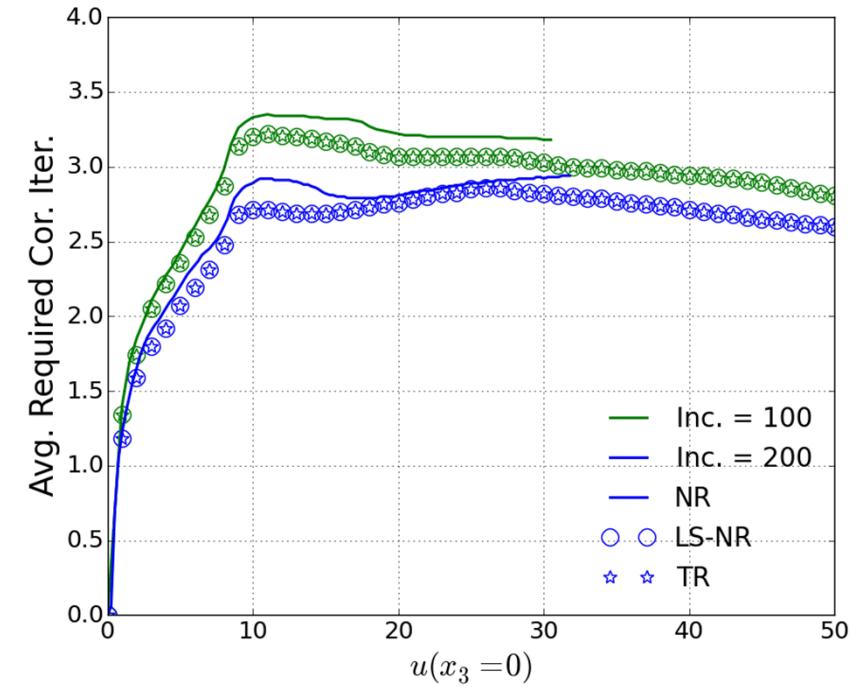
Verification – Large Problem

- Rod in Tension and Shear Problem
- Previously considered by Shterenlikht and Alexander



Verification -- Rod Results

- NR Cannot finish simulation



Material Parameters

$$E = 200 \text{ GPa}$$

$$\sigma_y^0 = 200 \text{ MPa}$$

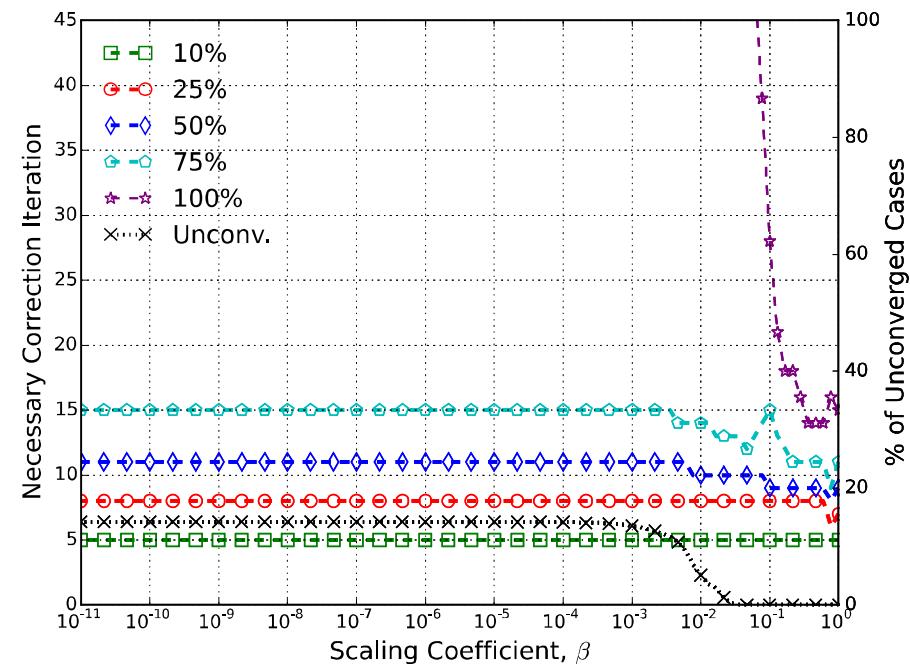
$$\nu = 0.3$$

$$a = 8$$

c'_{12}	-0.069888	c''_{12}	0.981171
c'_{13}	0.936408	c''_{13}	0.476741
c'_{21}	0.079143	c''_{21}	0.575316
c'_{23}	1.003060	c''_{23}	0.866827
c'_{31}	0.524741	c''_{31}	1.145010
c'_{32}	1.363180	c''_{32}	-0.079294
c'_{44}	1.023770	c''_{44}	1.051660
c'_{55}	1.069060	c''_{55}	1.147100
c'_{66}	0.954322	c''_{66}	1.404620

Scaling Impact

$$b^\gamma = \beta 2\mu \text{ and } c^\varepsilon = (\bar{E}/\sigma_y^0)$$



$$b^\gamma = \beta 2\mu \text{ and } c^\varepsilon = \beta (\bar{E}/\sigma_y^0)$$

