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Elastic-Plastic Model Integration ~ [JE.

Schematic of CPP-RMA

o, . (elastic predictor)

= Most stress-updating algorithms still based
on Return Mapping Algorithms (RMAs)

= Fully Implicit Closest Point Projection (CPP)
¢=

nel N \ . constant
~—return path

\¢=0 (yield ;urface)
= Implicit integration of constitutive models
P 5 Schematic of CCP-RMA

desirable for

P (elastic
predictor)

= Semi-Implicit Convex Cutting Plane (CCP)

ELASTIC
DOMAIN

= Accuracy

= Speed

= Key requirement of implicit capabilities ELASTIC
integration routines must be robust

tangent (limiting) cut
¢ =0 (yield surface)

Ortiz and Simo, 1986 IUNME 23, 353-366




Complex Plasticity Models

mh

= Plasticity models becoming increasingly complex, common

= Anisotropic and/or non-quadratic yield function forms

= e.g. Hill, Hosford, Kara
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= Pose additional challe
numerical schemes
= High curvature
= Anisotropy
= Misaligned material di

= Lose guaranteed conv
with these implement

von Mises
Hosford

- -

Hill
Barlat




RMA as Optimization ) .

= “The interpretation of the algorithm... as optimality
conditions of a convex minimization problem is of
fundamental significance... This interpretation opens the
possibility of applying a number of algorithms well developed
in convex mathematical programming to solving elastoplastic
problems.” [Simo and Hughes, 1998, Sec 1.4.3.2]

= Most implementations still based on Newton-Raphson

= Some line search implementations — not widely adopted

= Substepping schemes find considerable use




Proposed Novel RMA Solver =

= Numerical methods in non-linear optimization widely studied
in recent decades
= Number of algorithms developed
= Very few considered for RMA problems

= Objective: Develop a novel trust-region (TR) based integration
scheme tailored for constitutive model integration
= Analyze robustness

= Address scaling inherit to non-linear optimization schemes

= |nvestigate impact of algorithmic parameters on performance




MODELING




Plasticity Models ) g2,
= Consider two different plasticity models/yield surfaces:

= Non-quadratic Hosford
= Anisotropic and non-quadratic Barlat (Y|d2004-18P)

= Focus on perfect plasticity, o, (¢¥) = 02
Considered Yield Surfaces

Con. Equation: op

655 = Cajn (Ep1 — 1)
Yield Surface:

f(oij, &) = ¢ (045) — ¢

Assoc. Flow Rule:

ép — A 8f O3 01
ij — )

80',,;]'

KKT Conditions:

y20; 3f=0; f<0

— Hosford — Barlat




Hosford Yield Surface

mh

= Non-quadratic yield surface requiring only two parameters

" If a =2, 4, the surface reduces to the von Mises form

= g — 00 yields the Tresca condition

HnaefAarA vviald ciirfara with Aiffarant
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Barlat (YId2004-18P) Yield Surface .

= Anisotropic and non-quadratic yield surface
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Return Mapping Problem

= Elastic predictor/inelastic corrector; Fully implicit RMA-CPP
= Solution to non-linear problem TYL_H) (x7) =0

5(n—|—1) —de p(n—l—l) ‘|—d (n+1) 8¢

Residual Vector T ey
1J n-—+
ry = [r?., rf]T — ey
(Y] n +1 n
pFn+1) f( (D) g +1))
State Vector Ty — [O‘ ij d’)/]

= Problem solved by iteratively updating the state vector
1
MCOIMORINONO
/ \

Step Size Step Vector




Existing Solution Approaches ) 2.

= Newton-Raphson (NR) 1
o® =1 vk pr = (J(k)) ry’

1J
_ ) oo ]
(Lijri) 1 P :
Jrg = o
0p  _Ooy
- Doy JeP - _
P\
o= (ot
G%ijl (Czﬂcl ™ d/yao'ijaa'kl>

= Line-search augmented NR (LS-NR): As before but
alF) = minw(r_(,k) () ), a € (0,1]
(@
- =&



Merit Function rh) pes

= For optimization methods need to introduce a merit function

= Assess conve rgence

= Gauge improvement over an increment

1
Y (ry) = §D§KTKD§LTL

plo_ { Ve el N()?;j }CN‘C:, ¢/ — Normalization
" 0ij MM We - Wi weight

= With a equal weighted, stress normalization:

1 E\’ . e rf\°
v(rr) =3 (g) TigTij 7 <00>

Y Yy




Trust-Region Based Solver

= Step 1: Construct a scaled model problem, i F) (pr)

~(k)

= Step 2: With k) = 1, find pr rsnnlmmT

trustedmlgﬂm@n M)w(k) + g

mode

—prB

Bproblem in

1J PJ
en trial increment, p;
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~(k)

= Step 3: Calculate |mprovem&gt>p’|, @,j)qlgr‘\z/

= Step 4: H)ate Jamal@l@é\ _
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Determination of Step Vector ).

= To find the step vector, use the dogleg method

4.0
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Cauchy Point:

A (k)

~c(k ~(k

pz( ) =) ( (k) >9§ )
Hgl |

~) — min |1 H§§k)|’3 ]
o P Xy ~ (k) (k) ~(k
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Performance of Trust-Region Approach (Hosford)

RESULTS




Convergence Maps ) iz
= Determine number of correction iterations needed for TR
algorithm at ¢ (o) < 3002
a =&

Ty

W
o

N N
o w
Convergence lterations
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Cumulative Convergence Distributions @&z
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= Convergence of TR method well in excess of traditional NR
= Comparable with LS-NR
= TR better at higher iterations



Trust-Region Return Trajectory ) .
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Return Trajectory — Comparison (A) @

Trust Region | Line Search




Return Trajectory — Comparison (B) &

Trust Region | Line Search




Scaling in TR ) i,

2 f 2
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Impact of Algorithmic Parameters (Barlat)

RESULTS




Algorithmic Parameters ) &

= Use of non-linear optimization schemes introduces series of
algorithmic parameters
= Scaling in residual, state variables
= Acceptability conditions
= Values often taken from optimization literature — not RMA tailored

= How does the choice of these parameters affect performance?
= First look at merit function normalization:

1 2 o 2 1D Idealization of Different
Stress Normalized: ¢ (r1) = <(0> i+ (—O) ) Merit Functions

2 Uy Uy ? . " Mix
N i\i . b

_ _ 1 r T o
Strain Normalized: 5 (1) = = ( {75 + | o= RNV
2 20 A
: 1 g € f 2 -5'§ |
Mixed Measure: 3 (ry) = 2 TV T (7” ) \\ R

e — WS _ o




Barlat CCDs -- Normalization ) e,

= LS-NR shows stronger dependence on merit function selection

= Scaled forms do better at lower iterations; Mixed first to hit 100%

= Mixed measure TR converges < 1% of the time
LS-NR
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Impact of Weighting ) .
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= Weighting can be
used aid in selecting
appropriate path

Minimum number of
correction iterations
not at 1

Necessary Correction Iteration
% of Unconverged Cases
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Weighting Return Maps ) .




Conclusions )

= Novel implicit integration scheme for CPP-RMA implemented
= Tailored trust-region approach for complex plasticity models
= Scales addressed in both state variables and merit functions

" |nvestigated impact of algorithmic parameters on RMA
performance
= Appropriate selection can aid performance
= Way to automatically select scaling?

= This algorithm has potential for more complex problems:
= Multisurface (e.g. Crystal Plasticity; Multiple inelastic mechanisms)
= More complex mechanisms (Damage)
= Coupled multiphysics (thermal-mechanical analysis)
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Performance: TR vs LS-NR =
lteration change, @ = &

iter (TR) — iter (LS)

o “:‘3 L|ne Search

Al g e oo e

Ilteration Change
Average lteration Difference

Trust Reglon

] ]
0 5 10 15 20 25 30

Effective Trial Stress, ¢(c)7)/0,)

= Regions of large performance increase
= TR seems to do better as(a) increases




Importance of Scaling w/ TR ) .

Convergence Thresholds for Return Trajectories with Different
. Different Scalings o Scalings
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Scalar multiplying ¢, 3

= Appropriately scaling the problem essential for TR to
converge




Iteration Difference Maps --
Normalization

= Preferable merit function varies with dominant loading
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= Limited regions exhibit large differences

iter (v5) — iter (¢7)
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Merit Functions -- Weighting ) .

= Weighting can be used to bias the residual towards either
consistency or plastic strain residual

= |nfluence return mapping path?
iter (CWE — 1.5) — iter (CWE — 1.0)

0
Yy

2ud~v/o

Iteration Change
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Scaled Relations )

o . 1
™ (5) = ® + g7 pr + 5

Gradient: §§k) = DiKT(k)DLJJ(k) (DQ)J_V%T
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Selecting TR Size )

= For TR, need to set initial, A(”) and maximum, A , radii
= Final stress lies between previous converged and trial
= Maximum plastic strain increment would correspond to input strain

= Want to enable single step solution

2
— n+1 n+1
de = \/gdsij daij

= For robustness analysis

A=A = b"\/(a’?r — o) (0" — o)+ bVde

] 2
A=v"\/(¢(olr) = 09) (6 (o) — a9) +b7 \/ggijwi’igwmngfﬁn




Verification )

= Verification through Sierra/SM
= Consider series of plane stress, biaxial displacement problems
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Verification -- Results ) i,
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Verification — Large Problem ) .

= Rod in Tension and Shear Problem
= Previously considered by Shterenlikht and Alexander

|lu|| (mm)
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E45
-30




Verification -- Rod Results ) i

= NR Cannot finish simulation
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Material Parameters

E =200 GPa o, = 200 MPa
v=0.3 =8
cls | -0.069888 cts 0.981171
)5 0.936408 ¢y | 0.476741
chy 0.079143 & 0.575316
Chs 1.003060 ¥y | 0.866827
chy 0.524741 & 1.145010
Cho 1.363180 4y | -0.079294
s 1.023770 cl, 1.051660
chs 1.069060 cts 1.147100
Cos 0.954322 s 1.404620
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Scaling Impact )

bY = B2 and & = (E/O'O) bY = B2 and ¢© = (E/OO)
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