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Big Picture Goal:

Design scale computational models with quantum accuracy.

Computational Models at Various Scales

@ Quantum < Density Functional Theory
o Atoms & Molecules < Molecular Dynamics
@ Molecules to Continuum <— Peridynamics

e Continuum / Design / Experiment < Local PDE

v

Bridging with Weak Peridynamics

Machine— Learning Statistical
IAPs Coarse— Graining MSFEM
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Peridynamic Model*+?

o Let Q CRY d € {1,2,3} be a bounded body.

@ Any point x interacts directly with any point in
He={y e : [x—y|<d}.
@ 0 - horizon, Hy - family of x.

Minimization of Potential Energy — Peridynamic Equation of Motion

p(X)Uft(Xv t) = LU(X, t) + b(X7 t)7

where L is internal force density,

Lu(x,t) = f(u,q,x,t) dg.
Hx
u — displacement field, b — external force density,
p — density, reference configuration, f — pair-wise bond force density.

1S, Silling, Reformulation of elasticity theory for discontinuities and long-range forces, 2001.
25, Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic States and Constitutive
Modeling, 2007
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Linearized Model and Weak Formulation34

o For small displacements,

p(x)ue(x, t) = ., C(x; g, t)(u(q; t) — u(x, t)) dq + b(x; t).

e C(x,q,t) - tensor-valued micromodulus function, describes linear material.

@ Assumes small displacements, but allows material failure.

3B. Aksoylu, M. Parks, Variational theory and domain decomposition for nonlocal problems,
2011

4X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a
peridynamics model of mechanics, 2011
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Linearized Model and Weak Formulation34

o For small displacements,

p(X)ue(x,t) = [ C(x, q,t)(u(g, t) — u(x, t)) dg + b(x, t).

Hx

e C(x,q,t) - tensor-valued micromodulus function, describes linear material.

@ Assumes small displacements, but allows material failure.

@ Multiply to v € V (to be determined) and integrate to define,

a(w) =~ [ v { [ clnauta) - u) daf o

X

— %/ﬂ o C(x, q)(u(q) — u(x))(v(q) — v(x)) dq dx,

3B. Aksoylu, M. Parks, Variational theory and domain decomposition for nonlocal problems,
2011

4X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a
peridynamics model of mechanics, 2011

D.Littlewood, T. Costa, S. Bond NIMSFEM



Energy Space & Volume Constraints

. Qe
@ Define, Q.
QI
iz = [ [ clxauta) - ut)? da o |50 2
aJa
and the energy space o'~

E={v:Q—=R? : ||v|g < oo}

@ There is no trace in L2, problem ill-posed with standard boundary condition.

The model is nonlocal: consider x with dist(x,9) < §; x wants more
information.

Q' = QU Qc, where Q¢ is a volume surrounding € such that dist(9Q,0Q") > 4.
Define V={ve& : v|g =0}

Let A € L(V, V') be the operator induced by a(-,-), and write b(-) = (b,-) € V'.
Weak form, homogeneous Dirichlet peristatic problem:

findueVst. Au—b=0€e V.

SM. Gunzburger, R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal
boundary value problems, 2010
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Multiscale Finite Element Method: Overview

Model problem: FEM for the Dirichlet Poisson Problem

@ QCRY V=HQ)
@ a(u,v) = [qaVu-Vv, f(v)= [y Fv, F € L%(Q)

@ o : Q — Ris highly oscillatory, non-degenerate, bounded

@ 7" regular triangularization of Q, V" C V: FEM subspace with basis {#;},

v

MSFEM Motivation

@ Resolution required for {¢;},{\/:1 to capture oscillations due to « intractable

@ Enhance ¢; by a local (element) computation to include « oscillations

MSFEM

@ For each T; € T", define ai(u,v) = fT' aVu-Vv

@ 7, VFC H&(T,-): triangularization and FEM subspace, respectively

@ For each i, and for each ¢; with supp(¢;) C T;
find g; € VS s.t. ai(qj, v) = —ai(¢j, v°), Vv e VS

i

@ Define ¢>JMS = ¢ +qj, and Vs = span{qﬁj}j'\’:1
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Nonlocal and Local MS Basis Function Comparison

@ Mesh size: 0.001666,

(%

—— NIMS Basis 1, delta = 0.001000
—— NIMS Basis 2, delta = 0.001000
MS Basis 1
MS Basis 2

x) = (4 + 3sin(100x)) ",

f=1.

—— NIMS Basis 1, delta = 0.005000
——— NIMS Basis 2, delta = 0.005000

MS Basis 1
MS Basis 2

MS Basis 2

—— NIMS Basis 1, delta = 0.050000
—— NIMS Basis 2, delta = 0.050000
MS Basis 1
MS Basis 2
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Local and Nonlocal MSFEM

Horizon
12
NLMSFEM, 1000/1 element;
NLMSFEM, 6/1 elements
1
08
> 06
04
02
0
0 01 02 03 04 05 06 07 08 09 1

NIMSFEM



Convergence Tests
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Mixed-Locality (An eye ball test)

Local FEM 600

Nonlocal FEM 600

MI-MSFEM 6/30
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Model Problem

@ Let V be a Hilbert space with inner product (-,-) and norm || - ||v.
e B € L(V,V'): linear, continuous, coercive operator.

e f € V': continuous linear functional.

@ We consider the abstract model problem,

findue Vst. Bu—f=0e V'
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Ambulant Problem

o VM c Vv, with basis {qb,-},'.\’:’*l < 'approximation space.’
o /M v VM <— projection operator.
o V" = Ker(I") + 'residual space.’

e Note: V=V"gp V.
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Ambulant Problem

o VM c Vv, with basis {qb,-},'.\’:’*l < 'approximation space.’
o /M v VM <— projection operator.
o V" = Ker(I") + 'residual space.’

o Note: V=V"gqVv
@ 'Reconstruction’ R : V¥ — V and 'correction’ Q : VI — V" operators
defined by,

given ¢ € V" find Q(¢) € V' s.t. B(¢p+ Q(¢)) — f € (V')°,
and R(¢) = ¢ + Q(¢).
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Ambulant Problem

o VM c Vv, with basis {qb,-},'.\’:’*l < 'approximation space.’
o /M v VM <— projection operator.
o V" = Ker(I") + 'residual space.’

o Note: V=V"gqVv
@ 'Reconstruction’ R : V¥ — V and 'correction’ Q : VI — V" operators
defined by,

given ¢ € V" find Q(¢) € V' s.t. B(¢p+ Q(¢)) — f € (V')°,
and R(¢) = ¢ + Q(¢).

o VA= span{R(q&,-)},’.v:’“’1 < "ambulant space.’

@ Ambulant problem (finite dimensional):

find v € VA st. Bu* — f e (V).

Lemma: equivalence of ambulant and weak solutions.

o For any finite dimensional approximation space V' C V, the ambulant
and weak solutions are equivalent, i.e. ||u”® — u||v = 0.
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Ambulant Galerkin & Petrov-Galerkin Methods

o Let {V?},, a € (0,00) be a family of Hilbert spaces satisfying,

For each a, VH c V2 c V.
For each v € V 3 a sequence {v? € V?}, satisfying,

lim |lv —v?||y =0.
a—0

o For each a, V"? = Ker(I1"|v).
o Define R? and Q° by

given ¢ € V" find Q°(¢) € V"7 sit. B(¢p+ Q*(¢)) — f € (V"7)°,
and R°(¢) = ¢ + Q(¢).
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Ambulant Galerkin & Petrov-Galerkin Methods

o Let {V?},, a € (0,00) be a family of Hilbert spaces satisfying,

For each a, VH c V2 c V.
For each v € V 3 a sequence {v? € V?}, satisfying,

lim |lv —v?||y =0.
a—0

o For each a, V"? = Ker(I1"|v).
o Define R? and Q° by

given ¢ € V' find Q*(9) € V"7 s.t. B(o+ Q°(¢)) — F € (V°)°,
and R(¢) = ¢ + Q°(¢).

Ambulant Galerkin Method Ambulant Petrov-Galerkin Method
Define V42 = span{R?(¢;)}, then Define V42 = span{R?(¢;)}*, then
find u® € V™ st find u™® € V™ st
Bu® — f e (V*)°. Bu™ — f e (V7).
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Ambulant Galerkin & Petrov-Galerkin Methods

o Let {V?},, a € (0,00) be a family of Hilbert spaces satisfying,

For each a, VH c V2 c V.
For each v € V 3 a sequence {v? € V?}, satisfying,

lim |lv —v?||y =0.
a—0

o For each a, V"? = Ker(I1"|v).
o Define R? and Q° by

given ¢ € V' find Q*(9) € V"7 s.t. B(o+ Q°(¢)) — F € (V°)°,
and R(¢) = ¢ + Q°(¢).

Ambulant Galerkin Method Ambulant Petrov-Galerkin Method

Define V42 = span{R?(¢;)}, then Define V42 = span{R?(¢;)}*, then
find u® € V4 st find u®® € V% st
Bu® — f e (V*)°. Bu™ — f e (V7).
Theorem 1: AG Convergence Theorem 2: APG Convergence
lim ||u — u®]|v = 0. lim ||u — u®*]v = 0.
a—0 a—0

vy o’
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Why 'ambulant’: how does AFEM translate the problem on V7

o Let {w;}fv;l be a basis for V"% and let {w;}ij, 1 <i < Ny, 1 <j <N, be

defined by,
N,
R(¢:1) = Z Wi ;.
j=1
o Define,
B" ¢ RM M . Bl = Boi(¢;),
B e R . BEF = BR(¢1)(¢)),
Bf c R"M . BE = BR(¢1)(R*(¢))),
B™ e R 1 Byt = Byi(yy),
Bt e RY*M . Bf = Byi(¢)),
Bf c R""Ne . B = Boi(1),
W e RN Wy =
Then,

B¢ = B" + BfW’™ + wB! + WB™*W ',
and
B? = B" + wB".



AFEM as ROM: how does AFEM reduce the problem on V27?

@ Define a basis for V?, {6;}?’:’*1+Na,

0, — bi 1<i < Ny,
' Yieny No+1< Ny+ N,

@ Then define,
B € RNHHN)X(Ny+Na) . B = B6i(6;),

W e RNHX(Ny+Na) W, = dij ./ < Ny
v WiG—ny) J > Ny

B" BF In,
B_<BL Br,a>7 W_(W>

B = WBW',

or in blocks,

o Then,

and
B” = WB [INH 0] .
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From AFEM to Multiscale Finite Elements

e V: functional space whose elements are defined on R¢.

o V" is now a low DOFs finite element space.

Obtaining MSFEM from AFEM

Define the mesh in V? as a regular mesh refinement of the mesh in v,
Restrict computation of R*(¢;) to the support of ¢;.
Disregard f in computation of R?(¢;).

@ Error induced by @ and B (Controlled by H). )

Theorem 3: Source Removal —Orthogonality Preserving Translation

The map ¢ — R?(¢) = ¢ + Q?(p) where Q?(¢) is defined by,
find Q°(¢) € V™" s.t. B(o+ Q°(¢)) € (V™7)°,

is orthogonality preserving. In particular, if {¢; ,N:”l is an orthogonal basis for

V*# then {R"(d);)},{\l:”l is an orthogonal basis for V4.
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Conclusions & Future Work

Conclusions
@ Demonstrated MSFEM performance for linear Peridynamic model in 1d

o Demonstrated MSFEM performance for mixed nonlocal-local coupling
between scales

@ Introduced AGM as a strategy for mathematical analysis of MSFEM for
local and nonlocal models

Future Work
e 2d/3d
@ Nonlinear constitutive models

@ Analysis of mixed-locality method with AGM
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