
LA-UR-17-25908
Approved for public release; distribution is unlimited.

Title: FleCSPH notes

Author(s): Lim, Hyun
Loiseau, Julien

Intended for: Report

Issued: 2017-07-17

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FleCSPH notes

Hyun Lim, Julien Loiseau

July 5, 2017

1 FleCSI

FleCSI is a compile-time configurable framework designed to support multi-physics application development. As
such, FleCSI provides a very general set of infrastructure design patterns that can be specialized and extended to
suit the needs of a broad variety of solver and data requirements. FleCSI currently supports multi-dimensional
mesh topology, geometry, and adjacency information, as well as n-dimensional hashed-tree data structures, graph
partitioning interfaces, and dependency closures.

FleCSI introduces a functional programming model with control, execution, and data abstractions that are
consistent both with MPI and with state-of-the-art, task-based runtimes such as Legion and Charm++. The
abstraction layer insulates developers from the underlying runtime, while allowing support for multiple runtime
systems including conventional models like asynchronous MPI.

The intent is to provide developers with a concrete set of user-friendly programming tools that can be used
now, while allowing flexibility in choosing runtime implementations and optimization that can be applied to future
architectures and runtimes.

FleCSI’s control and execution models provide formal nomenclature for describing poorly understood concepts
such as kernels and tasks. FleCSI’s data model provides a low-buy-in approach that makes it an attractive option
for many application projects, as developers are not locked into particular layouts or data structure representations.

FleCSI currently provides a parallel but not distributed implementation of Binary, Quad and Oct-tree topology.
This implementation is base on space filling curves domain decomposition, the Morton order.

The current FleCSI version requires the implementation of a driver and a specialization driver. The role of
the specialization driver is to provide the data distribution. This feature is not complete in FleCSI code and we
provide it. The next step will be to incorporate it directly from FleCSPH to FleCSI as we reach a good level of
performance. Then the driver represent the general execution of the resolution without worrying of the data locality
and communications. As FleCSI is an On-Development code the structure may change in the future and we keep
track of these changes in FleCSPH.

2 Domain and tree construction

As explain in the previous section we described the FleCSI framework. In this part we will give more details on the
domain decomposition and the tree construction and search.

2.1 Domain decomposition

In the current version of FleCSI the domain decomposition is done using the Morton Ordering. It first allows us to
describe, sort and distribute the particles based on a unique value.

Several kind of space filling curves can be use:

• Morton order: easy to compute, interlace the bits of X, Y and Z positions to create the key. The problem of
this space filling curve are the discontinuities.

• Hilbert-Peano: More complex to compute, interlace the bits like the Morton order but add rotations base on
the gray-code. but solve the problem of discontinuities.

• Other space-filling curves: Hexagonal space filling curves, ...?

i

This first implementation is based on the Morton ordering which is used during several steps:

• The distribution part, to be able to split the particles between the processes providing a good locality in the
data.

• The tree construction and search. The keys are used

3 Binary, Quad and Oct - trees

Describe the tree and the splitting version of it
Explain the ghosts, exclusive and shared particles.

4 General algorithm

The main distributed algorithm is presented in algorithm 1

Algorithm 1 Main algorithm

1: procedure specialization driver(input data file f)
2: read data file in a distributed way
3: Set physics constant from data file
4: while iterations do
5: Distribute the particles using distributed quick sort . Using Morton keys
6: Compute total range
7: Generate the local tree
8: Share branches
9: Compute the ghosts particles

10: Update ghosts data
11: Do physics
12: Update ghosts data
13: Do physics
14: Distributed output to file
15: end while
16: end procedure

In the current version the 5 is base on a distributed quick sort algorithm. Each process send to the master (or
submaster for larger cases) a sample of its keys. We determined this size to be 256 Ko of key data per process
but can be refine for larger simulations. Then the master determines the general ordering for all the processes and
shares the pivots. Then each process locally sort its local keys and, in a global communication step, the particles
are distributed to the process on which they belong. This distribution provide a quick distribution but can lead to
bad load balancing.

• The ordering can be not perfect in term of number of particles per processes. But by changing the number of
data exchanged to the master can lead to better affectation.

• The load balance also depend on the number of neighbors of each particles. If a particle get affected a poor
area with large space between the particles this can lead to bad load balancing too.

After the sorting step the local tree can be created on each process. To be able to look for the ghosts and shared
particles we need to share some information with the neighbors on the tree. In the 8 line we will search for these
interesting branches. We compute the global bounding box of each processes and based on this information each
process can then compute the interesting branches to share from its local tree. These new information are then
added in the local tree by considering NON LOCAL particles. This data structure does just contain the position
and mass of the distant particle.

The branch sharing allow to compute the ghosts for this step. Each process performs a local search in the tree
and computes the required ghosts particles (the NON LOCAL bodies). Those data for shared and ghosts are stored

ii

and are use to share the complete particle information when 10 is invoke. As the ghosts data remain the same
within an iteration, the 10 can be use several to update local information on remote particles.

5 I/O

In large simulation an efficient, parallel and distributed I/O implementation is require. We base this first imple-
mentation on HDF5 file structure with H5Part and H5Hut. The I/O code was developed internally in the LANL
and provide a simple way to write and read the data in H5Part format. The first requirement is to allow the user
to work directly with the Paraview visualization tool and splash1.

6 SPH Formulation in FleCSPH

Smoothed particle hydrodynamics (SPH) is explicit numerical mesh-free method that solves hydrodynamical par-
tial differential equations (PDE) by discretizing in set of fluid elements called particle. The fundamental SPH
formulation is

〈A〉(~r) '
∑
b

mb

ρb
A(~rb)W (|~r − ~rb|, h) (1)

where W is the smoothing kernel, h is the smoothing length (hydro interaction range) that evolved for each particle.
SPH has several advantages. SPH can handle deformations, low densities, and vacuum very well. Also, it

conserves mass, linear and angular momentums, and energy by its construction that implies independent of the
numerical resolution. Another strong benefit of using SPH is its exact advection of fluid properties. Furthermore,
the particle structure of SPH easily combines with tree method for solving Newtonian gravity through N-body
simulations. However, there are several cons of using SPH. It is restricted to low-order convergence. Also, SPH
requires careful setup of initial distribution of particles. Further, it can be struggle to resolve turbulence dominated
flows and special care must be taken when handling high gradients such as shocks and surface structure of neutron
stars

Here, we want to solve the Lagrangian conservation equations for mass, energy and momentum of an ideal fluid
such that

dρ

dt
= −ρ∇ · ~v (2)

du

dt
=

(
P

ρ2

)
dρ

dt
(3)

d~v

dt
= −∇P

ρ
(4)

where d/dt = ∂t + ~v · ∇
By using the volume element Vb = mb/ρb, we can formulate the Newtonian SPH scheme such that

ρa =
∑
b

mbWab(ha) (5)

dua
dt

=
Pa
ρ2
a

∑
b

mb~vab · ∇aWab (6)

d~va
dt

= −
∑
b

mb

(
Pa
ρ2
a

+
Pb
ρ2
b

)
∇aWab (7)

where Wab = W (|~ra−~rb|, h). Further, we add artifical viscosity (or artificial dissipation) terms in SPH formulation

1Describe it! url too

iii

such that (
dua
dt

)
art

=
1

2

∑
b

mbΠab~vab · ∇aWab (8)(
d~va
dt

)
art

= −
∑
b

mbΠab∇aWab (9)

(10)

In general, we can express the equations for internal energy and acceleration with artificial viscosity

dua
dt

=
∑
b

mb

(
Pa
ρ2
a

+
Πab

2

)
~vab · ∇aWab (11)

d~va
dt

= −
∑
b

mb

(
Pa
ρ2
a

+
Pb
ρ2
b

+ Πab

)
∇aWab (12)

Πab may define different way but here we use

Πab =

{
−αc̄abµab+βµ2

ab

ρ̄ab
for ~rab · ~vab < 0

0 otherwise
where µab =

h̄ab~rab · ~vab
r2
ab + εh̄2

ab

(13)

For speed of sound, cs the usual form is

cs =

√
∂p

∂ρ
(14)

For example, from the Newton-Laplace equation, c =
√

Ks
ρ where Ks is a coefficient of stiffness, the isentropic bulk

modulus The values of ε, α, and β can be chosen differently. Here, we use ε = 0.01h2, α = 1.0, and β = 2.0. Now,
we need to test some cases for performance of code

6.1 Kernel

There are many kernels for SPH. We use simple cubic spline kernel for our case. Other higher order kernels will be
added soon. The Monaghan’s cubic spline kernel is

W (~r, h) =
σ

hD


1− 3

2q
2 + 3

4 if 0 ≤ q ≤ 1
1
4 (1− q)3 if 1 ≤ q ≤ 2

0 otherwise

(15)

where q = r/h, D is the number of dimensions and σ is a normalization constant with the values

σ =


2
3 for 1D
10
7π for 2D
1
π for 3D

(16)

Using this, we can calculate kernel gradient. Below procedure shows the steps of kernel gradient in 3D

W =
1

πh3
×


1− 3

2 (rh)2 + 3
4 (rh)3, si 0 ≤ r

h < 1
1
4 [2− r

h]3, si 1 ≤ r
h < 2

0, si r
h ≥ 2

And r =
√

(xi − xj)2 + (yj − yj)2 + (zi − zj)2 with r =
√
u2 + v2 + w2 and ~rij =


u = xi − xj
v = yi − yj
w = zi − zj

iv

~∇.W =
∂W

∂u
~x+

∂W

∂v
~y +

∂W

∂w
~z =

∂W

∂r

∂r

∂u
~x+

∂W

∂r

∂r

∂v
~y +

∂W

∂r

∂r

∂w
~z

=
∂W

∂r

[∂r
∂u
~x+

∂r

∂v
~y +

∂r

∂w
~z
]

=
∂W

∂r

~rij
r

For 0 ≤ r
h < 1 :

∂W

∂r
= − 3

h2
r +

9

4h3
r2

~∇iW (~rij , h) =
(
− 3

h2
r +

9

4h3
r2
) ~rij
r

=
(
− 3

h2
+

9

4h3
r
)
~rij

For 1 ≤ r
h < 2 :

∂W

∂r
=
−3

4h

(
2− r

h

)2

=
−3

4h

(
4− 4r

h
+
r2

h2

)
=
−3

h
+

3r

h2
+
−3r2

4h3

~∇iW (~rij , h) =
(−3

h
+

3r

h2
+
−3r2

4h3

) ~rij
r

=
(−3

hr
+

3

h2
+
−3r

4h3

)
~rij

So:

~∇iW (~rij , h) =
1

πh4
×


(− 3

h + 9
4h2 r) ~rij , si 0 ≤ r

h < 1

(−3
r + 3

h + −3r
4h2) ~rij , si 1 ≤ r

h < 2

0, si r
h ≥ 2

7 Applications

7.1 Sod Shock Tube

The Sod shock tube is the test consists of a one-dimensional Riemann problem with the following initial parameters

(ρ, v, p)t=0 =

{
(1.0, 0.0, 1.0) if 0 < x ≤ 0.5

(0.125, 0.0, 0.1) if 0.5 < x < 1.0
(17)

This link shows some references and values for Sod shock tube problem that also includes boundary and jump
conditions(http://www.phys.lsu.edu/~tohline/PHYS7412/sod.html).

Also, we would like to re-generate the shock test result from Rosswog’s paper. In that paper, he shows the
result of a 2D relativistic shock tube test where the left state is given by [P, vx, vy, N]L = [40/3, 0, 0, 10] and the
right state by [P, vx, vy, N]R = [10−6, 0, 0, 1] with Γ = 5/3

In our code, we use below parameters to get results

7.2 Sedov Blast Wave

A blast wave is the pressure and flow resulting from the deposition of a large amount of energy in a small very
localized volume. This is another great test problem for computational fluid dynamics field.

There are different version of blast wave test but we consider the analytic solution for a point explosion is
given by Sedov, making the assumption that the atmospheric pressure relative to the pressure insider the explosion
negligible. The position of the shock as a function of time t, relative to the initiation of the explosion, is given by

R(t) =

(
et2

ρ0

) 1
δ+2

(18)

with δ = 2 and δ = 3 for cylindrical and spherical geometry respectively. The initial density ρ0 whereas e is a
dimensionless energy. Right behind the shock we ahve the following properties

ρ2 =
Γ + 1

Γ− 1
ρ0P2 =

2

Γ + 1
ρ0w

2v2 =
2

Γ + 1
w (19)

v

where the shock velocity is

w(t) =
dR

dt
=

2

δ + 2

R(t)

t
(20)

In numerical simulations, energy deposition in a single point is difficult to achieve. A solution to the problem is
to make use of the bursting balloon analogue. Rather than depositing the total energy in a single point, the energy
is released into a balloon of finite volume V

e =
(P − P0)V

Γ− 1
(21)

The energy release in a balloon of radius r0 raises the pressure to the value

P =
3(Γ− 1)e

(δ + 1)πrδ0
(22)

Here, we test 2D blast wave test. In this simulation, we use ideal gas EOS with Γ = 5/3 and we are assuming that
the undistributed area is at rest with a pressure P0 = 1.0−5. The density is constant ρ0, also in the pressurized
region.

7.3 Equations of State

To understand the inner property of stars, one needs to find the equation which describes the relation between the
pressure of matter and its density, temperature and other compositions such that

P = P (ρ, T, Ye, ...) (23)

First, we consider analytic equations of state that are relevant for binary neutron stars

7.3.1 Ideal Gas

Ideal gas equation of state is
P (ρ, u) = (Γ− 1)ρu (24)

where Γ is the adiabatic index of the gas. For a monatomic gas, we set Γ = 5/3. For another test such as sod tube,
people use Γ = 1.4

7.3.2 Piecewise Polytrope

For more relevant simulation, we choose piecewise polytropic EOS.(Ideal gas EOS is still good for many simple
test cases like Sod tube) In our case, we assume constant entropy so that many thermodynamic situations can be
approximated as polytropes or piecewise functions made up of polytropes.

For neutron star case, we assume degenerated Fermi gas of neutrons then polytropic constant for a non-relativistic
degenerated neutron gas is

K0 =
(3π2)2/3~2

5m
8/3
n

(25)

where mn is the mass of a proton and ~ is a Planck constant. For polytropic index, we set

γ0 =
5

3
(26)

In the relativistic case,

γ1 =
5

2
(27)

Then, piecewise polytrope EOS is

P (ρ) =

{
K0ρ

γ0 if ρ ≤ ρ0

K0ρ
γ0
0

ρ
γ1
0

ργ1 if ρ > ρ0
(28)

where ρ0 = 5× 1014g/cm3. We can combine the piecewise polytropic EOS with ideal gas to attain an EOS valid at
both low and high densities. For more realistic studies, we need to consider different types of analytic EOSs such
as Maxwell-Boltzmann and Helmholtz EOSs. Also, we will put the functionality that can control tabulated EOS.

vi

7.3.3 Zero Temperature Equations of State

Another interesting problem using SPH is the double white dwarf (DWD) simulations for studying possible pro-
genitors to type Ia supernovae. Here, we use zero temperature equations of state (ZTWD) as a variation of the self
consistent field technique. In ZTWD, the electron degeneracy pressure P varies with the mass density ρ according
to the relation

P = A
[
x(2x2 − 3)(x2 + 1)1/2 + 3 sinh−1 x

]
(29)

where the dimensionless parameter

x ≡
(ρ
B

)1/3

(30)

and the constant A and B are

A ≡ πm4
ec

5

3h3
= 6.00288× 1022 dynes cm−2 (31)

B

µe
≡ 8πmp

3

(mec

h

)3

= 9.81011× 105 g cm−3 (32)

8 Time Integration Scheme

8.1 Leap-Frog Method

Leap-frog time integration is frequently used in particle simulation. The name comes that the velocities are updated
on half steps and the positions on integer steps so the two leap over each other. After computing accelerations, one
step takes the form

vi+1/2 = vi−1/2 + ai∆t (33)

ri+1 = ri + vi+1/2∆t (34)

For vi+1, a common approximation in SPH is to assume that the velocity at the current time plays a minor role
in the computation of the acceleration (i.e. velocity changes are small with each time step) and then the following
approximation can be made

vi+1 =
1

2
(vi−1/2 + vi+1/2) (35)

At the first step, we only have initial velocity so we need to follow below routing

v1/2 = v0 + a0∆t/2 (36)

r1 = r0 + v1/2∆t (37)

The time step is adaptive and determined with ∆t = Min(∆t1,∆t2):

∆t1 = kMini(
hi

ci + 1.2αci + 1.2βMaxjµij
) with k ≈ 0.1

∆t2 = Mini

√
(
hi

| ~̇vi|
)

9 Solving Lane-Emden Equation

We need to determine the density function based on the radius.
As we consider the star as a polytropic fluid, we use the equation of Lane-Emden which is a form of the Poisson

equation:

d2θ

dξ2
+

2

ξ

dθ

dξ
+ θn = 0 (38)

vii

With ξ and θ two dimensionless variables. There is only exact solutions for a polytropic index n = 0.5, 1 and 2.
In our work we use a polytropic index of 1 which can correspond to a NS simulation.

For n = 1 the solution of equation 38 is:

θ(ξ) =
sin(ξ)

ξ
(39)

We note ξ1 = π, the first value of ξ as θ(ξ) = 0. θ(ξ) is also defined as:

θ(ξ) =
(ρ(ξ)

ρc

) 1
n

=
ρ(ξ)

ρc
(40)

With ρc the internal density of the star and ρ the density at a determined radius. ξ is defined as:

ξ = Ar =

√
4πG

K(n+ 1)
ρ

(n−1)/n
c × r =

√
2πG

K
× r (for n = 1)

With K a proportionality constant.
From the previous equations we can write the stellar radius R as:

R =

√
K(n+ 1)

4πG
ρ(1−n)/2
c ξ1 =

√
K

2πG
× ξ1 (41)

(We note that for n = 1 the radius does not depend of the central density.)
If, for example, we use dimensionless units as G = R = M = 1 (for the other results we use CGS with

G = 6.674× 10−8cm3g−1s−2) We can compute K as:

K =
R22πG

ξ2
1

(42)

NS1 NS2 NS3 NS4

Radius (cm) R = G = M = 1 1500000 1400000 960000
K 0.636619 95598.00 83576.48 39156.94

Then we deduce the density function of r as :

ρ(ξ) =
sin(A× r)
A× r

× ρc with A =

√
2πG

K

As we know the total Mass M , the radius R and the gravitational constant G we can compute the central density
as:

ρc =
MA3

4π(sin(AR)−ARcos(AR))

Then we normalize the results to fit R = M = G = 1: K ′ = K/(R2G), m′i = mi/M , h′i = hi/R, ~xi
′ = ~xi/R

9.1 Gravitational force

The self-gravity ~FGravi for each particles:

~FGravi =
∑
j

G
mimj

(|~rj − ~ri|)3
~rij (43)

In this part we will need Fast Multiple Method (FMM) for the computation to avoid O(N2) complexity.

viii

10 Resolution order

The resolution is done in this order:

Load data from file
while TotalTime not reached do

Move particles
Apply rotation with defined angular velocity
Compute density ρ
Compute pressure P and sound speed c
Compute ~Fhydro
Compute ~Fgrav
if relaxation then

Compute ~Froche or ~Frot
end if
Compute acceleration ~a with the equation of motion
Compute ∆t
Compute new velocity from new acceleration
if output step then

output data to file
end if
TotalTime ← TotalTime + ∆t

end while

11 Hydrostatic Equilibrium

The initial data are based on a cubic lattice within a sphere of radius R. The density function, based on radius, ρ(~r)
is known using the result of the Lane-Emden equation (we use polytropic index n = 1 here). The mass associate
to each particle i of the total N particles:

mi =
ρ(~ri)

nr
with nr =

3N

4πR3

The smoothing length is define constant and the same for all particles for all the simulation:

h =
1

2

√
3NN
4πn

Here we choose NN , the average number of neighbors, to be 100.

11.1 Roche lobe problem

To create Hydrostatic Equilibrium Models we use a different equation of motion. This version use Roche Lobe:

d~vi
dt

=
~FGravi

mi
+
~FHydroi

mi
+ ~FRochei − ~vi

trelax
(44)

With trelax ≤ tosc ∼ (Gρ)−1/2 and where ~FRochei is:

~FRochei = µ(3 + q)xi~̂x+ µqyi~̂y − µzi~̂z

With µ to be determined (for us µ = 0.069) and q = M ′

M = 1 as the two polytropes have the same total mass.
This is apply to each star to get the equilibrium and the simulate the tidal effect.

ix

11.2 Darwin problem

This is the way we use to generate the final simulation. The equation of motion for the relaxation is now:

d~vi
dt

=
~FGravi

mi
+
~FHydroi

mi
+ ~FRoti − ~vi

trelax
(45)

With trelax same as before and ~FRot defined by:

~FRot = Ω2(xi~̂x+ yi~̂y) (46)

With Ω =
√

G(M+M ′)
a3 .

Or Lz = QzzΩ and Qzz =
∑
i(x

2
i +y2

i). At t = 0 we compute the total angular moment Lz which stay constant.
Using it during the relaxation we can compute Ω as: Ω = Lz

Qzz
just by recomputing Qzz.

Here the scheme is in N2 but just for the relaxation step.
For this relaxation we use two stars generated as before, applying equation of motion 45. Using a as the distance

between the two polytropes (Here a = 2.9 for R = 1) and ~̂x going for the center of the first to the second star, and
~̂z is like the rotation vector.

12 Gravitation computation

The algorithm is presented in algorithm 2. In this algorithm, the macangle is the angle of the Multipole Acceptance
Criterion. The acceleration is, for a center of mass c, the sum of contributions from the local particles and the
distant cells with:

~fc(~rc) = −
∑
p

mp.(~rc − ~rp)

|~rc − ~rp|3
(47)

With p the particle inside this cell and cell the cells that are accepted with the MAC. Here we directly consider
the gravitational acceleration, we don’t take in account the mass of the center of mass c. And G = 1 in our context.

The acceleration at a point from this center of mass is based on taylor series:

~f(~r) = ~fc(~rc) + ||∂
~fc

∂ ~rc
|| · (~r − ~rc) +

1

2
(~r − ~rc)

ᵀ · || ∂ ~fc
∂ ~rc∂ ~rc

|| · (~r − ~rc) (48)

The Jacobi matrix ||∂ ~fc∂~r || is then:

−
∑
p

mp

|~rc − ~rp|3


1− 3(xc−xp)(xc−xp)

|rc−rp|2 − 3(yc−yp)(xc−xp)
|rc−rp|2 − 3(zc−zp)(xc−xp)

|~rc− ~rp|2

− 3(xc−xp)(yc−yp)
|~rc− ~rp|2 1− 3(yc−yp)(yc−yp)

|~rc− ~rp|2 − 3(zc−zp)(yc−yp)
|~rc− ~rp|2

− 3(xc−xp)(zc−zp)
|~rc− ~rp|2 − 3(yc−yp)(zc−zp)

|~rc− ~rp|2 1− 3(zc−zp)(zc−zp)
|~rc− ~rp|2

 (49)

||∂f
i
c

∂rjc
|| = −

∑
p

mp

|~rc − ~rp|3
[
δij −

3.(ric − rip)(rjc − rjp)
|~rc − ~rp|2

]
(50)

With δij the identity matrix with δij = 1 if i = j where i, j runs spatial index from 1 to 3. For example, r1 = x,
r2 = y, and r3 = z as usual sense. (We do not consider covariant form of this because we are not considering
spacetime).

The Hessian matrix || ∂ ~fc
∂ ~rc∂ ~rc

|| is then:

|| ∂
2fxc

∂ric∂r
j
c

|| = −
∑
p

3mp

|~rc − ~rp|5


5(xc−xp)3

|~rc− ~rp|2 − 3(xc − xp) 5(xc−xp)2(yc−yp)
|~rc− ~rp|2 − 3(yc − yp) 5(xc−xp)2(zc−zp)

|~rc− ~rp|2 − 3(zc − zp)
5(xc−xp)2(yc−yp)

|~rc− ~rp|2 − 3(yc − yp) 5(xc−xp)(yc−yp)2

|~rc− ~rp|2 − 3(xc − xp) 5(xc−xp)(yc−yp)(zc−zp)
|~rc− ~rp|2

5(xc−xp)2(zc−zp)
|~rc− ~rp|2 − 3(zc − zp) 5(xc−xp)(yc−yp)(zc−zp)

|~rc− ~rp|2
5(xc−xp)(zc−zp)2

|~rc− ~rp|2 − 3(xc − xp)


(51)

x

|| ∂
2fyc

∂ric∂r
j
c

|| = −
∑
p

3mp

|~rc − ~rp|5


5(xc−xp)2(yc−yp)

|~rc− ~rp|2 − 3(yc − yp) 5(xc−xp)(yc−yp)2

|~rc− ~rp|2 − 3(xc − xp) 5(xc−xp)(yc−yp)(zc−zp)
|~rc− ~rp|2

5(xc−xp)(yc−zp)2

|~rc− ~rp|2 − 3(xc − xp) 5(yc−yp)3

|~rc− ~rp|2 − 3(yc − yp) 5(yc−yp)2(zc−zp)
|~rc− ~rp|2 − 3(zc − zp)

5(xc−xp)(yc−yp)(zc−zp)
|~rc− ~rp|2

5(yc−yp)2(zc−zp)
|~rc− ~rp|2 − 3(zc − zp) 5(yc−yp)(zc−zp)2

|~rc− ~rp|2 − 3(yc − yp)


(52)

|| ∂f
z
c

∂ric∂r
j
c

|| = −
∑
p

3mp

|~rc − ~rp|5


5(xc−xp)2(zc−zp)

|~rc− ~rp|2 − 3(zc − zp) 5(xc−xp)(yc−yp)(zc−zp)
|~rc− ~rp|2

5(xc−xp)(zc−zp)2

|~rc− ~rp|2 − 3(xc − xp)
5(xc−xp)(yc−zp)(zc−zp)

|~rc− ~rp|2
5(yc−yp)2(zc−zp)

|~rc− ~rp|2 − 3(zr − zp) 5(yc−yp)(zc−zp)2

|~rc− ~rp|2 − 3(yc − yp)
5(xc−xp)(zc−zp)2

|~rc− ~rp|2 − 3(xc − xp) 5(yc−yp)(zc−zp)2

|~rc− ~rp|2 − 3(yc − yp) 5(zc−zp)3

|~rc− ~rp|2 − 3(zc − zp)


(53)

|| ∂
2f ic

∂rjc∂rkc
|| = −

∑
p

3mp

|~rc − ~rp|5

[
5(ric − rip)(rjc − rjp)(rkc − rkp)

|~rc − ~rp|2
− 3

w

(
δij(r

k
c − rkp) + δjk(ric − rip) + δik(rjc − rjp)

)]
(54)

where w = δij + δjk + δjk + εijk and εijk is 3D Levi-Civita symbol. We add Levi-Civita symbol to avoid zero in
denominator Here again, latin indices i, j, and k indicates spatial components

xi

Algorithm 2 Gravitation computation

1: procedure tree traversal grav(branch sink)
2: if sink.mass < Mcellmax then . Another choice criterion can be use
3: ~fc ← ~0

4:
∂ ~fc
∂~r ← ~0

5: TREE TRAVERSAL C2C(sink,tree.root,~fc,
∂ ~fc
∂~r) . Compute ~fc and ∂ ~fc

∂~r using MAC

6: SINK TRAVERSAL C2P(sink, ~fc,
∂ ~fc
∂~r) . Expand to the particles below

7: else
8: for All children c of sink do
9: TREE TRAVERSAL GRAV(c)

10: end for
11: end if
12: end procedure
13:

14: function MAC(branch sink,branch source,double macangle)
15: dmax ← source.radius× 2
16: dist← distance(sink.position, source.position)
17: return dmax/dist < macangle
18: end function
19:

20: procedure tree traversal c2c(branch sink, branch source, acceleration ~fc)
21: if MAC(sink, source,macangle) then

22: ~fc ← ~fc + (− source.mass×(sink.position−source.position)
|sink.position−source.position|3)

23:
∂ ~fc
∂~r ← ...

24: else
25: if source.is leaf() then
26: for All particles p of source do

27: ~fc ← ~fc + (−p.mass×(sink.position−p.position)
|sink.position−p.position|3)

28:
∂ ~fc
∂~r ← ...

29: end for
30: else
31: for All children c of source do
32: TREE TRAVERSAL C2C(sink, c, ~fc)
33: end for
34: end if
35: end if
36: end procedure
37:

38: procedure TREE TRAVERSAL C2P(branch current, acceleration ~fc)
39: if current.is leaf() then
40: for All particle p of current do

41: p.grav ← ~fc + δ ~fc
δcurrent.position .(p.position− current.position) + ...

42: end for
43: else
44: for All children c of current do
45: TREE TRAVERSAL C2P(c, ~fc,

∂ ~fc
∂ ~rc

)
46: end for
47: end if
48: end procedure

xii

