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Rogowski coils for studies of detonator initiation and other diagnostics 
Doug Tasker, Pat Bowden, Elizabeth Francois, John Gibson, Teagan Nakamoto, Dalton Smith, 
Chris Trujillo and Zak Wilde 
 
The Rogowski coil dates back to 1887 and it has commonly been employed to measure rapid 
changes of electrical currents without direct contact with the circuits, especially in high energy 
density applications. Recently, it has been used to measure currents in relatively low energy 
devices such as semiconductor circuits; here we report its utility in the analysis of detonator 
initiation. 
 
From an electrical perspective, the coil is essentially an air-cored transformer and measures the 
temporal rate of change of current dI/dt. Following a careful characterization of the circuit, an 
accurate measurement of this derivative is shown to provide a complete solution of the 
detonator circuit, including current, voltage, power and energy delivered to the detonator. The 
dependence of the electrical sensitivity, accuracy and bandwidth on coil design will be 
discussed and a new printed circuit design will be presented. 
 
Interesting features in the initiation of exploding bridgewire detonators have been observed 
with this coil and the results of various experiments will be discussed. 
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Diagnostics for detonators

• Detonators are fundamental to most explosive systems, yet the detonators 
themselves are rarely diagnosed to determine how well they function or why 
they fail
• As a collective student project we sought to explore the application of various 

novel electrical diagnostics to remedy this:

Rogowski coils

PVDF stress sensors in unconventional orientations

RF antennae

• Initially we focused on Rogowski coils but have recently discovered some 
interesting phenomena with RF antennae

If you haven’t already, please see the posters by John Gibson, Teagan Nakamoto, 
Dalton Smith, Chris Trujillo and Zak Wilde for more details
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Rogowski redux

1912
• Rogowski coils date back more than a century

• (Rogowski and Steinhaus-Germany, 1912, Chattock-
England, 1887)

• Measures change of electrical current (dI/dt) without 
direct contact with the circuits
• Especially useful in high energy density applications 

(explosive pulsed power)
…
2017
• Commercial company (PEM) uses electronic 

integration to measure currents (I(t) -not dI/dt) in low 
energy devices
• E.g., semiconductor circuits

• Not suitable for dI/dt measurement

• Here, we use LANL Rogowski coils, to measure dI/dt, 
for our detonator initiation study
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Rogowskis – how they work

• High fidelity, high speed, dielectric-cored 
transformer
• Measures dI/dt
• Based on Ampere’s law
• Magnetic field B induces a voltage across 

the helix, 
• Measures the current enclosed by the 

Rogowski OVER ANY PATH
• Includes compensating loop (cable return) for 

external field rejection

0 0. Iµ µ= =∫ ∫B dl J.da

/ /V nA dB dt dI dt= × ∝
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Low frequency effects – skin effect

• The area A is not really πr2 all the time – or all the frequencies!!

• Area A includes the return conductor (hopefully copper*)
• At modest frequencies the magnetic field is pushed out of the central core by 

the skin effect – this reduces A and therefore reduces the sensitivity M

• Examples:
• M falls to 92% of its original value above ~28 kHz for RG223, above ~106 

kHz for RG174.
• This means that the Rogowski is more sensitive at low frequencies and can 

distort the data. BUT here’s the good news…

• …For a typical fireset signal the lowest frequency of interest is ~250 kHz, 
so RG174 and RG223 are great for all our work
• WARNING, some commercial probes (e.g., PEM CWT Ultra Mini) have high 

transition frequencies which causes problems when integrated
• The numerically integrated PEM-dI/dt data will NOT match the electronically integrated data

• *PS. Ask Doug about the copper and RG174

0M Apµ=



Los Alamos National Laboratory

6

High frequency effects: self-integration

• Self-integration
• When the high frequency reactance of the coil’s inductance exceeds the load resistance (e.g., 

50 ohm scope termination)

• Examples
• For an RG-223 cable with 1 turn/cm and 300 mm long (L = 23.6 nH)

• HF limit = 337 MHz into 50 ohm 
• HF limits into 1 Mohm are always too large to be meaningful (THz)

• For an RG-223 cable with 1 turn/cm and 20 mm long (L = 1.5 nH)
• HF limit = 5.3 GHz into 50 ohm 

• For an RG-174 cable with 4 turn/cm and 300 mm long (L = 101.1 nH)
• HF limit = 78.7 MHz into 50 ohm X

• For an RG-174 cable with 4 turn/cm and 20 mm long (L = 6.5 nH)
• HF limit = 1.22 GHz into 50 ohm  

• Take away – for high frequencies keep the Rogowski short (could terminate with 1 Mohm)
• Highest frequency of interest: probably < 100 MHz, which corresponds to a risetime of 

3.5 ns
• Typical 10-90% risetime of dI/dt at burst of a bridgewire is 10 ns (~35 MHz)

2L fL Rω π= ≥
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Tests to determine how burst signature changes with 
detonator filling

• Standard detonator headers used with 1 x 10-mil Au bridgewires
• dI/dt signatures were obtained for bare bridgewire bursts and 

compared to bursts with various “fillings:”
• Air
• Sugar mock
• Plastic putty
• Powdered creamer!
• PETN

• What we found was that if the bridgewire was fired in air, OR was 
separated from the powder filling, the signature was markedly different …
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… Rogowski data for a series of detonators, 
one with poor solids loading.

Shows reproducibility of data and one failure
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dI/dt analysis as an initiation diagnostic

• Can clearly distinguish between bare wire and powders in contact with 
wires

• Can easily detect electrical failures (not shown)

• Not surprisingly , could not distinguish between goes and no-goes 
unless there was an electrical failure
• As to be expected, DDT processes not captured by dI/dt data
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Rogowski: as a complete circuit diagnostic
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Voltage across bridgewire & switch derived
from dI/dt

• With good dI/dt data can calculate voltage across bridgewire and 
switch
• Accurate voltage measurement difficult because of impedances of 

connections and mutual L between det circuit and measurement circuit
• Can detect a “voltage” with shorted leads

• Math:
• From Rogowski dI/dt, integrate to get I and 

• Voltages across R, L and C found:

• Process:
• For a short-circuited load, calculated R, L and C for circuit from ringdown
• Then fired circuit with 1 x 10-mil Au bridgewire

.I dt∫
= − = =

+ = − − = =

∫0
1450 . ; ; 

; (t 0) 450V

t

C R L

wire sw C R L C

dIV I dt V IR V L
C dt

V V V V V V
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Ringdown data & switch performance

• TL: CVR trace, integrated 
Rogowski trace, fit (red) (SD 3.4 A, 
SD signal noise 2.5 A)

• TR: Rogowski trace
• BL: Calculated solid state switch 

voltage
• On: 50 V typical (typical switch 

resistance ~1/10th ohm)
• Calculated power and energy 

omitted
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V calculation, switch and load
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Rogowski diagnostics summary

• Provides more information than conventional current viewing resistor (CVR)

• Can clearly detect electrical failures (not shown)

• Can clearly detect separation of bridgewire from explosive fill
• Will be testing the dependence of waveform on actual separation distances

• As to be expected, differences in reaction buildup are not seen

• Can calculate voltage across load and switch
• Obviously works best for low impedance switch

• Have high electrical bandwidths (~1 GHz), small, unobtrusive, isolated from 
circuit
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Radio frequency (RF) generation 
by shocked and detonating PETN
• Can we detect the electric fields generated by collapsing PETN crystals 

and use them as a diagnostic?
• PETN crystals, like many explosives, are piezoelectric
• Ultimate goal is to diagnose detonators, but for simplicity bare PETN 

pellets were studied

• Work inspired by Bud Hayes: HAYES, B. 1967. The Detonation Electric 
Effect. Journal of Applied Physics, 38, 507-511.

PETN

Wrap-around Antenna

Detonator
Side

PETN

Antenna

Plan Attenuator



Los Alamos National Laboratory

16

Experiment

• 1.30 g/cc PETN initiated by RP-
2 detonator via PVC 
attenuators
• TMD 1.78 g/cc, i.e., 27% 

porosity

• Attenuators (gaps) adjusted to 
find 50% GO / NOGO point

• Wrap-around copper-foil 
antenna used to detect 
piezoelectric RF signature (if 
any) from reacting PETN

• RF data examined for gaps 
close to the 50% point

PETN

Wrap-around Antenna

Detonator
Side

PETN

Antenna

Plan Attenuator
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Temporal data from PETN pellets around 50%-point
(200 ps resolution)

Attenuated 
below 10 MHz

• Temporal data difficult to interpret

8

9

10

11

Shot
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Spectra from PETN pellets around 50%-point

8

9

10

11

Shot

Spectra below 
10 MHz 
attenuated
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Spectra from PETN pellets around 50%-point

8 GO

9 NOGO

10 NOGO

11 GO

Spectra below 
10 MHz 
attenuated

Shot
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Particle diameters predominantly 30~150 µm, what 
frequencies might we expect?

 Electric field generation not fully understood
 We expect crushed piezoelectric PETN particles to generate large local electric 

fields that discharge along crystal fracture planes
 Estimate pore collapse time dt ~0.37d / Up (Up: particle velocity*)

– For Up = ~3 km/s (guess), dt = 4~19 ns; 1/dt = 50~250 MHz

• *For perfect spheres gap = (√3 – 1)d/2
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Spectra from PETN pellets around 50%-point
Additional peaks only seen in NOGOs

8 GO

9 NOGO

10 NOGO

11 GO

Spectra below 
10 MHz 
attenuated

• Resonant peaks consistent with estimated pore collapse times 
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Why do the spectral resonances disappear for 
detonation?

• We don’t know yet, but …
• … We do know detonating explosives are electrically conductive

• i.e., reaction zones are conductive

• We recovered most of the pellet as pulverized powder when there was a 
NOGO
• Therefore little or no reaction

• Hypothesis:
• Assuming the electrical noise is generated by the collapsing piezoelectric 

crystals, the conducting plasma may suppress or shield piezoelectric field 
generation
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RF diagnostics summary

• Have observed RF spectral structure from pulverized PETN pellets that 
is not present in detonating PETN
• We speculate that:

• The emissions are due to the piezoelectric effect causing electrical discharges along 
fractured PETN surfaces

• Conducting plasma within the detonation zone suppress or shield these electric fields 

• Much work to be done
• Other explosives, particle sizes, …
• Determine electric field polarization with various antennae designs
• Gas gun compression
• Optical initiation
• Use magnetic antenna, … 
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