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Motivation

Holes in GaAs have reduced
hyperfine interaction compared to
electrons => longer spin coherence
times

GaAs features direct band gap
(unlike Silicon - requirement for
hybridization with photons)

Heavy hole g*-factor can be tuned
in-situ (required for hybridization
protocols)

1

\/E(IT)Jr [1)
AE = gougB L
o
P E(IT)— [1)
|Photon) =
alo+) + flo—) —
BII
—
. [T} =0)
Iy = 0
=1
3/ 4 = 1)

Quantum information transfer from a flying qubit to hole spin
qubit

First proposal for electrons with g*~0:

E. Yablonovitch, et. al, "Optoelectronic quantum telecommunications
based on spins in semiconductors,"

Proc. IEEE, v. 91, 761-780 (2003).




P- Double Quantum Dot Device

InSb Nanowires:

V.S. Pribiag, S,Nadj-Perge, S.M.Frolov,...L.Kouwenhoven Nature Nano. 8 (2013) 170

Sandia

L. A. Tracy, et al. "Few-holedouble quantumdotin an undoped
GaAs/AlGaAs heterostructure,"APL, v. 104, 123101 (2014).
SANDIA REPORT SAND2015-8132 (October 2015)
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Silicon Dots:

R. Li, F. E. Hudson, A. S. Dzurak, and A. R. Hamilton, Nano Letters 15, 7314 (2015)

B.Voison,.... S.De Franceschi et al. Nano Letters 16 (2016) 88
R.Maurand et al. arXiv1605.07599

GaAs Dots:
D.Q Wang et al. Nanotechnolgy 27 (2016) 334001




Spin non-conserving tunnelling
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For comparison with electron case see
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Predicted Spectrum of 2-hole single quantum dot.

Energy (neV)

0.1




High-Bias 2 Hole Magneto-Transport Spectra

“dilution fridge measurements”
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High-Bias 2 Hole Magneto-Transport Spectra

Sl
E, =0 E, >0 E, = E,
(2 Transport Conditions) (4 Transport Conditions) (3 Transport Conditions) o
2 = ' 4
T. = T
o 1E|1 S SR Y;
— 1,2
T
<€
IDOT

-0.640

1 (single spin flip) |
2 (no spin flip) €
3 (single spinflip) |s=Ey+Ez

4 (two spin flips) e=Ey+ 2E;

Vie(v)




Effective Heavy Hole g*-Factor in Tilted Magnetic Field
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Minimal heavy/light-hole mixing
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g-factor from Landau-Zener-Stuckelberg Interferometry

utilizing non-spin conserving transitions R \
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For related electron LZS
see e.g.
Forster et al.

PRL 112 (2014) 116803 For ‘electron’ spin-flip photon assisted rates
+ Stehlik et al.

PRB 86 121303(2012)121300 See Braakman et al. PRB89 (2014) 07417
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Summary

« Magneto-transport spectroscopy for 1 and 2 hole
systems

* Non-spin conserving tunneling in direct transport
and LZS interferometry

 Anisotropic g-factor of the hole with g~0 for in plane
field




