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First proposal for electrons with g*0: 
E. Yablonovitch, et. al, "Optoelectronic quantum telecommunications 
based on spins in semiconductors,"
Proc. IEEE, v. 91, 761-780 (2003).

Quantum information transfer from a flying qubit to hole spin 
qubit

• Holes in GaAs have reduced 
hyperfine interaction compared to 
electrons => longer spin coherence 
times

• GaAs features direct band gap 
(unlike Silicon - requirement for 
hybridization with photons)

• Heavy hole g*-factor can be tuned 
in-situ (required for hybridization 
protocols)

Motivation



P- Double Quantum Dot Device

Sandia NRC

Silicon Dots:
R. Li, F. E. Hudson, A. S. Dzurak, and A. R. Hamilton, Nano Letters 15, 7314 (2015)
B.Voison,…. S.De Franceschi et al. Nano Letters 16 (2016) 88  
R.Maurand et al. arXiv1605.07599

InSb Nanowires: GaAs Dots:
V.S. Pribiag, S,Nadj-Perge, S.M.Frolov,…L.Kouwenhoven Nature Nano. 8 (2013) 170            D.Q Wang et al. Nanotechnolgy 27 (2016) 334001
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Spin non-conserving tunnelling 
transitions

1 Hole 

g * ~ 1.4

For comparison with electron case see
T.Fujita et al. arXiv:1603.04861

“nb. current not derivative”

2 Holes
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Predicted Spectrum of 2-hole single quantum dot.
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High-Bias 2 Hole Magneto-Transport Spectra

“dilution fridge measurements”
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g0 = 1.45  0.1
gmin = -0.04  0.04

Minimal heavy/light-hole mixing

Effective Heavy Hole g*-Factor in Tilted Magnetic Field
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Power

4GHz

6.7 GHz

15.9GHz

B=0
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B=0

g-factor from Landau-Zener-Stückelberg Interferometry
utilizing non-spin conserving transitions
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For related electron LZS
see e.g.
• Forster et al. 
PRL 112 (2014) 116803
• Stehlik et al.
PRB 86 121303(2012)1213003 

g* ~1.45
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For ‘electron’ spin-flip photon assisted rates
See Braakman et al. PRB89 (2014) 07417



Summary

• Magneto-transport spectroscopy for 1 and 2 hole 
systems

• Non-spin conserving tunneling in direct transport 
and LZS interferometry 

• Anisotropic g-factor of the hole with g~0 for in plane 
field
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Summary


