

*Exceptional service in the national interest*



# Spot Checking EOS with Ab Initio Calculations

L. Shulenburger



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

# What are the most useful spot checks of EOS from ab initio calculations?

- Direct comparison of experimental observables
  - Hugoniot
  - Isentropes
  - Vapor dome
  - Compressibility
  - Vapor dome
  - Phase boundaries
- Calculated model parameters
  - Gruneisen gamma
  - Heat capacity
  - Cold curve parameters
  - Debye temperature

# Where are ab initio calculations deemed trustworthy and why?

- What is required to validate results from a given approximation for use elsewhere?
- How can ab initio results be integrated into EOS when inconsistent with experimentally known data
  - For instance the ambient density is wrong but the Hugoniot and phase boundaries look good?
- How are grids of calculated P/T/rho/E points integrated into consistent models?
- What calculations would you like to see?

# Moving from warm dense to high temperatures

- The Mermin-DFT calculations that are currently relied on require calculation of enough quantum states to satisfy the Fermi-Dirac distribution
  - Kohn-Sham DFT (typical implementations) scale like  $O(N^3)$  with states or equivalently  $O(T^{4.5})$  at high temperatures
- Other methods are often used at higher temperatures
  - Average atom
  - Thomas-Fermi-Dirac
  - Orbital-Free DFT
  - Path Integral Monte Carlo
- How can these be stitched together?
  - LANL has some interesting work on matching families of orbital free functionals to standard low T approximations
  - Zhang et al., Phys. Plasmas **23**, 042707 (2016) – Combine analytic continuum states with typical low temperature approach