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My Past ) e,

= From San Antonio/Boerne
= Went to Texas State in San Marcos for B.S.

= Completing Ph.D. at UNM (Fall) &

= Year-round intern at Sandia Labs now
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My Vacation ) e,

| #4 Flesh-eating bacter- x . B - X
, € & C' | B httpsy//www.theguardian.com/us-news/2076/jul/04/flesh-eating-bact ficus-gulf-co b

Flesh eatmg bacterla scare along Gulf
Coast has locals on alert

Infections from Vibrio vulnificus are rare and there is no official tracking of cases -
but some people have started to cobble together their own ideas




Research Interests )

= HPC/Scalable System:s,
= Networks, Communications,

= Modeling and Simulation,

= Monitoring Systems
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Past/Present Work )

= Wireless Sensor Networks (Xiao Chen @ TX State)
MRNet Overlay Network (Dorian Arnold @ UNM)

= Performance Modeling of Tree-based Data Aggregation

= Lightweight bootstrapping on clusters (LIBI)
= Scalable Network Monitoring (Yihua He @ Yahoo!)
= RDMA'’s Impact on Performance (Ryan Grant @ Sandia)

= MPI benchmarking (Matt Dosanjh and Ryan Grant @ Sandia)
= Network Topology Design & Power/Performance Tradeoffs

= (Ryan Grant, Scott Hemmert, Simon Hammond @ Sandia)
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NiMC: Characterizing and Eliminating
Network-Induced Memory Contention

Taylor Groves (UNM/SNL), Ryan E. Grant (SNL), Dorian Arnold
(UNM) IPDPS 2016

Extension with Aaron Gonzales (UNM/TripAdvisor).

Journal in submission




Traditional HPC ) &

R
—_

...l Computation ...l Synchronization ld Analytics/Other

= Bursty workloads

= Synchronous communication models

= Contention for shared resources, e.g. memory, networks
" Processes operating in private address space
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Future HPC: ) i

Laboratories

- .

—_

] Computation ...l Communication ld Analytics/Other

= Asynchronous many-task models
= Partitioned Global Address Space

Efforts to further parallelize memory and communication
Analytics to improve effective resource management

Most of these techniques want to leverage Remote Direct
Memory Access (RDMA)
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Background (RDMA) )

= Remote Direct Memory Access (RDMA)

= Bypass the CPU and access memory directly

= Facilitates overlap between communication and computation

Onload — data for
setting up

|Incoming Data DMA transfer —s»

—

Data for
DMA transfer

r -
L3 Cache
Offload RDMA

DRAM —

RNIC

Data Stream
to Node

Limited number
of nodes receive

Origin
data stream

Target

Data for
Application

CPU
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= However, there’s a downside.




Increased Contention for Memory @
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What is NiMC? ) e

Network-induced Memory Contention:

Contention for local memory resources
due to asynchronous communication
originating from a remote node
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Primary Goal

Evaluate the impact of RDMA on modern systems

Network-induced Memory Contention?
Characteristics on range of architectures?
Application Impact

I A\

Solution(s)?
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Preliminary Evaluation ) .

Test the worst case scenario
1. Run memory intensive workload

2. From a separate node, RDMA writes/puts to push as much data as
possible into the machine to further increase pressure.

TangetiNodel = ~Origin'Node
ﬁﬂ By & RDMA WR

STREAM




Preliminary Tests ) S,

= Experiments on small cluster of
AMD Piledriver (4 cores)

= Theo. Memory Bandwidth 29.9 GBps -

= Theo. Network bandwidth 4GBps 25

= STREAM benchmark (without RDMA)

= QObserved 12.7 GBps sustainable
memory bandwidth 10

4

= 17 GBps headroom for RDMA

® Mem. Theo. mSTREAM mRDMA theo.




STREAM w. RDMA write UL

= However, performance worsens

12.7

= 56% penalty to STREAM

= The penalty is greater than the
total amount of RDMA 6

= Why is performance so bad? )

m STREAM = STREAM w. RDMA = RDMA theo.
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Possible Culprits ) &,

= Memory Controllers: how is RDMA traffic distributed across
different memory controllers?

= Subtle policies like open page row-buffer management

= Memory Channels: ganged vs unganged

= CPU processing from Onload NICs: some portion of packet
processing is handled by the CPU

= |n our experiments this was never more than 2% of a single core

= QOther overlooked factors

17




Further Evaluation )

= Need more results to draw meaningful conclusions

= 7 different CPU architectures

= Ranging from Westmere (4-core) to Xeon Phi (57-core)

= 3 variations of Infiniband Networks

* |Including onload and offload NICs
= 6 different memory frequencies

= 7 workloads of varying memory intensity

18
-



STREAM results ) o

= 6 out of 8 systems see degradation of STREAM bandwidth
= 4-56% reduction in sustainable bandwidth
= Most noticeable for systems with onload NIC’s

= 3 offload systems see a reduction proportionate to the
volume of RDMA writes

Triad no RDMA | Triad w. RDMA Diff. (GB/s) Diff. %
(GB/s) (GB/s)

Westmere @ 800MHz, 1066MHz (offload) 12.9,16.8 9.7,12.8 -3.2,-4.0 -25%, -24%
Lisbon @ 800MHz, 1066MHz, 1333MHz (offload) 14,17.9,19.7 10.8,14.3,16.5 -3.2,-3.6,-3.2 -23%, -20%, -16%
Piledriver @ 1600MHz (onload) 12.4 7.4 -5 -40%

Piledriver @ 1866MHz (onload) 12.7 5.6 -7.1 -56%
SandyBridge-X2 (offload) 77.8 77.6 -0.2 0%
SandyBridge-X2 (onload) 73.4 36.1 -37.3 -51%

Xeon-Phi (on-chip, offload) 126.4 121.7 -4.7 -4%

Haswell-X2 (offload) 116.6 116.9 +0.3 0%

19



Further Evaluation )

= Similar setup to earlier STREAM experiment

= Applications run on single node
= \We don’t want to measure contention on the network

" |[njecting maximum possible amount of RDMA writes
= 2-6 GBps
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= Compressible Navier Stokes
Proxy app

= Stencil operations of a
combustion problem

= Very lightweight (does not
represent the computation)

Randy Montoya, SNL




HPCCG ) e

= Calculates conjugate gradient for a 3D chimney domain

= Mini-app, 27 point stencil

= Excellent weak scaling

= Memory intensive




LAMMPS

= Molecular Dynamics

= Excellent weak scaling

= Nearest Neighbor Communication
= 3D Lennard-Jones melt

= 32,000 atoms per core

Sandia
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= Explicit Hydrodynamics code

= Solves simple Sedov blast problem

= |ndicative of solvers in ALE3D

Multiple kernels

codesign.linl.gov/lulesh.php




SNAP h) i,

= Neutral particle transport
application

= Update to Sweep3D

= Number of neutral particles in
multi-dimensional space

= Communication follows a wave
propagation



XSBench )

= Nuclear reactor core

Monte-Carlo particle e
transport simulation .
= Memory intensive
, , —d J°a.jjﬁ-j Tl
= Not designed for scaling ) oS Secosses i

(not used for multi-node) B
https://en.wikipedia.org/wiki/Nuclear_reactor#/media/File:Crocus-p1020491.jpg

= Single communication
(reduction at the end)

26




Small Scale Results (Sandy-Onload) @&

NiMC single node slowdown

What about CNS?
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Why is LAMMPS
more impacted than
STREAM?

Mormalized increase to runtime
=
FJ

-
o

-a‘?“"‘"ﬁh

N
‘cﬁ“{'
S

W © i NS
C \JE'{’ \P“h‘h \}}\ 6\& 1‘%

Fig. 3: Normalized impact of NiMC on single node runs.
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Finding the Culprit ) .

= Profiled each workload on Sandy-Bridge-X2-Onload

= Ran with and without RDMA

= Collected 6 counters
= L1 miss
= |2 hit & miss
= |3 hit & miss
= Stalled cycles




Finding the Culprit ) .

Cache Counters and Idle Cycles

, (LAMMPS)
= Hugeincreaseto 3.0 ' ' '
EE (RDMA)
stalled cycles 5 5| [EEB (No RDMA)

=" |ncreases to
L1 & L2 Miss

=" |ncreases to
L1, L2 & L3 Hit




Evidence of Cache Pollution

= |n the absence of RDMA writes

= No real correlation between stalled cycles and any of the cache misses
= No real correlation between stalled cycles and runtime

= With RDMA writes

= Strong correlation between Stalled Cycles and misses throughout the
cache hierarchy

Sandia
National

= Correlation between runtime and L1 Misses becomes larger

Corr. Metric Stalled Cycle L1 Miss 1.2 Miss L3 Miss
Time 0.04 0.941 0.946 0.930
No RDMA | ¢, 1led Cycles N/A 0.086 0.030 0.068
COMA Time 0912 0.959 0.978 0.925
Stalled Cycles N/A 0.870 0.973 0.997

Laboratories
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= LAMMPS, scaling up to 8,192 processes

= Ran on the SandyBridge-X2 Onload system.

" |nterested in minimum runtime

= Don’t want to capture performance degradation due to nearby jobs




Impact at Scale ) i,

Impact of NiMC given a reasonable amount of traffic?

= Hypothetical example: uncoordinated in-memory checkpoints
= Reduced duration of RDMA writes (1 second)

= Only writing to a subset of nodes at any point in time:
1. 0.2% of nodes

2. Daly’s Optimal Coordinated Checkpoint Interval as an estimate (0.2-
0.5%)




Impact at Scale ) i,

RG1

Impact of NiIMC on LAMMPS (64-8k)

700 (SandyBridge-X2-onload)
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Slide 33

RG1 Application Process Count
Ryan Grant, 5/17/2016



Solutions for Congestion ) .

= Network Bandwidth Throttling

= (Offload Network Cards

= (for current-gen CPUs)

MON - FRI |

HOV - 2

LANE
BUSES & CARPOOLS

* =

= Core Reservation

Mariordo (Mario Roberto Duran Ortiz)



Offload NIC )

= Not a solution for
earlier gen. CPUs

Impact of NiMC on LAMMPS w. Offload (64-8k)

(Westmere & Lisbon)  ,,,  (sandyBridge-X2-FDR-offload)
A A Daly (med)
210¢ oo Daly (min)
e=e¢ No RDMA (min)
— 200}
= Requires headroom o
: £ 190
between effective E L RN KA A
and theoretical T 180, pndmnibes
memory bandwidth 170_'
168

P 7900 3000 o 6000 00 10 oo° oo
Process count
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Core Reservation

= Near constant overhead

(approx. 6% increase to runtime)

= Bump caused by

Sandia
r.h National
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MON - FRI
3% -6 PM

HovV -2
LANE
BUSES & CARPOOLS
{ Vv

== = -

Impact of NIMC on LAMMPS w. Core Reserv. (64-8k)

220

(SandyBridge-X2-onload)

L

poor mapping with
15 procs per node

= |f cores are “free”
this is a pretty good
solution
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Bandwidth Throttling ) .

= Evaluated for both
LLC and DRAM

. Impact of NIMC on STREAM w. Core Reserv.
= Flat lines show 120 ___(sandyBridge-X2-onload)

core reservation 1100,

= |nteresting OpportunitieS//ﬁ[

ndwitkh (GBPS)
ﬂ
=
VN

for d namica” Choosin 70 .Il':i"'llﬂ_.!l“lr”l”:f:l:lllIIIIIII.-.'H.':*:IHIh.
y y g /ﬁ o DRAM N i, Mo, ‘#,_‘*

the beSt SOIUtlon E 5[][ -m ORAM M-1 LU "i'_.'*r

z oo "t OnAMELL e, '

- aol i LLC N iy,

m LT N-1
38 Ell ﬁl l.::,l {:’_‘:I EI. )
1 RN VLR R '

RDMA Bandwidth (MEPS)
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Key Takeaways: h) .

= RDMA isn’t free:

= NiMC degraded performance on 6 out of 8 evaluated systems

= NiMC impact depends on architecture + workload:

= Ranges from no impact to,

= 3X slowdown in LAMMPS running on an onload system with 8k
processes

= We can deal with NiMC, if we are conscious of its impact:
= Offload NICs (for current CPUs)
= Network throttling

= Core reservation

38




NiMC Extension: Detect and Predict @&

= We know NiMC is a problem

= (primarily for systems with onload NICs)

= 3 solutions to mitigate NiMC

= But... We don’t know when to enact a solution
= Must be able to Detect NiMC

Which solution to enact (bandwidth throttling or core res.)?
= Must predict the impact it has on a wide range of applications




How can we detect NiMC? ) e,

= Limited knowledge of the volume of RDMA traffic on target

= Once memory is registered, the target NIC is largely bypassing
the CPU to interact with Memory

= Glean some insight from PCl-e/uncore PMU’s?

= Perhaps extract details from the driver in an onload NIC?

= Not always available, requires privileged access




What about basic PMU’s? ) s,

= Use basic PMU’s to detect presence and predict impact?
= |1, L2, L3, TLB, miss, hit, etc

= Readily available

= Evidence of cache pollution on machines with onload NIC’s




Random Forests get the job done  [@JE:.
Machine Learning: it’s trendy (and useful)

= Statistical method to create a classification/regression model

Take the output of random forests not as absolute truth, but as
smart computer generated guesses that may be helpful in

leading to a deeper understanding of the problem.
-- https://www.stat.berkeley.edu/~breiman/RandomForests/cc_philosophy.htm




The Decision Tree

= Many runs of a application used to train a tree

= We have a known outcome (supervised learning)

= e.g.arun with added RDMA or without, or a runtime

= \We have a vector of features associated with a run

= |n our case we use performance counters

" |mpurity measure uses features to place splits in the tree

= Different measures of impurity like Entropy or Gini index

Sandia
National
Laboratories




Random Forests ) &

= Many trees instead of a single decision tree
= (Classification determined by a vote of all trees

* Trained by N randomly selected (with replacement) samples

= Some subset of randomly selected features (counters) used
to split trees




Measuring prediction error .

= Qut of bag (OOB) score estimates error
= Built into the algorithm

For each sample in the bag,
1. Examine all trees not trained on the sample
2. +0ifincorrect prediction +1 if correct
3. Divide by number of trees

= Eliminates the need for separate data sets for validation




Features Sets rh) pes

= Limited by the number of hardware counters that we can
collect simultaneously

= Divided available counters into three sets and evaluated them
independently

= For each set:
= Can we detect NiMC?
= Can we determine the volume of RDMA traffic?

= Can we predict the application impact?




Three sets of features (counters) @

= Setl:

= |dle cycles, L1 data cache miss L1 instruction cache miss, TLB data
miss, TLB instruction miss

= Set 2:

= |2 data cache miss, L2 data cache hit, L2 instruction cache miss, L2
instruction cache hit, L2 total cache miss, L2 total cache accesses, L2
DCM/TCA, L2 TCM/TCA

= Set 3:

= |3 total cache miss, L3 total cache accesses, L3 instruction cache
accesses, L3 data cache accesses

47



Feature importance ) .

= Another bonus of Random Forest is the ability to report
feature importance

= Caveat: if features overlap in importance, one may overshadow a
similar feature.

Feature Importance LAMMPS
(rNiMCI-Binarry Set|2)

O
o

Importance
o
(=]

o
»

o
N

0 ) O ll—l_lll
d(\ 66(0 n;“(,‘a ‘(ﬂ(\ (_(.0

. d(\ . cd\ 'ch
\"LP OB\ ot s ol
ac® Mo
\fL - \’L -~

\
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Workloads to evaluate ML ) i

= Evaluated subset of workloads, targeting specific memory
characteristics:

= CNS - Very low memory requirements, no impact from NiMC
= HPCCG - Memory intensive

= LAMMPS — Real application, with scaling data

= STREAM —synthetic memory benchmark

= (default-DRAM and a variant that fits in L3).

49




Methodology Continued ) .

= Single node runs of the workload
= (16 procs per run, 16 threads for STREAM)

= Running on SandyBridge Onload

" Continuous RDMA writes

6,400 samples recorded per feature set for a given workload




Can we detect NiMC?

= Yesl!

Sandia
r.h National

Laboratories

= CNS has a bad score, but no impact from NiMC

App/Benchmark | Set1 Score | Set2 Score | Set3 Score
STREAM-DRAM | 1.000 1.000 0.995
STREAM-cache 1.000 1.000 0.990
HPCCG 0.998 0.999 0.999
CNS 0.741 0.747 0.742
LAMMPS 1.000 1.000 1.000

OOB scores for forests predicting the presence of NIMC

51




Feature Importance (classification) @&

. L2 instruction cache miss -- most important
° data cache miss — least important

Feature Importance STREAM-DRAM
(NiMC-Binary Set 2)

o \6\ '\(.(0 '(..(-:a ‘.(,(0
P ) \L - 1l 02 - 0L -
\ G dc\\ \ \ .{_c(o‘\

Example 1: STREAM-DRAM feature importance 52




Why L2_DCM Doesn’t Help ).

= STREAM-DRAM is designed to miss cache... alot

stream-dram

"1 RDMA
80.0 = No RDMA
70.0
60.0
£50.0
(@]
Q
i:% 40.0
30.0
20.0
10.0
.\9 .»0 ,»0 .\9 ,\’0
%ex Na <o°x N <o‘?'x
N N N N N
Feature Count
Histogram of L2 DCM for STREAM-DRAM 53




L2_ICM (Important Feature) 1)

stream-dram

160.0 12_icm
1 RDMA
120.0
100.0
)
c
-
S 80.0
= ]
o
60.0
40.0
40
0 A A A A A A
RN RN O RN S 9 N
N N N o Ng o o
B Q ) Q 2 [\ ©
2 1 o 2% % % %

Feature Count
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Universal Feature Importance? )i

= Not really, each workload has a unique set a features that are
important, this will even change as parameters shift

Feature Importance STREAM-DRAM Featur.e Imp-ortance HPCCG
1o (NiMC-Binary Set 2) 1.0 — . (NIMC-Binary Set 2)
0.8 0.8
g 0.6 S 0.6
© (1]
£ £
g a
£0.4f £04}
0.2t l I . 1 0.2+ I l . 1
0.0 0.0

<& o K IO NTE AN e o xC® o) ox) o) O @ o [
\"Lxd 1 ,éécd\\\'l—/ Q2 Qs - \'L} gﬁ‘\\?” \1_,6 \19 «\\\’L} Q2 12 \’L} \’L} (0\\1,}
X C C
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RF to Determine amount of RDMA? @&,

Not with the evaluated combination of counters.
= Many other actors influencing counter behavior
= RDMA Bandwidth fluctuates with nearby jobs

stream-dram-combined
Average |1B Bandwidth

=71 RDMA
[ No RDMA

Bin Count

| 1

S
S o
v v’ »

o Qefx& e"fx& o% 0@"65 -:a"'x&
¥ ° A0 N Q )

Bandwidth (MBps)

Histogram of bandwidth for different runs of STREAM-DRAM 56




Predict runtime impact?

= Surprisingly well
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App/Benchmark | Set1 Score | Set2 Score | Set3 Score
STREAM-DRAM | 0.984 0.997 0.991
STREAM-cache 0.992 0.994 0.984
HPCCG 0.966 0.975 0.966
CNS 0.981 0.978 0.966
LAMMPS 0.990 0.995 0.967

OOB scores for runtime regression trees.
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CPU Times with(out) RDMA ).

stream-dram-combined stream-cache-combined cns-combined
CPU time 600, CPU time S000. CPU time

600.0,
[ RDMA EZZ1 RDMA =2 RDMA
I No RDMA I No RDMA I No RDMA
S00.10 S00.
4000.0f
400.
300.
J 200.
1000.0f
N ) M
o .—t_l 0 _E_|

g
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Bin Count

Bin Count
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CPU time {sl CPU time (s) CPU time (s)
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Fig. 5: Per-process CPU time (in seconds) recorded for each run of the benchmarks and applications. cg
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Feature Importance — CPU time ) .

L1 _DCM is easily the most important feature from Set 1

Feature Importance HPCCG

10 \ _ (CPU time Set 1)

©
o

Importance
O
B

o
N

00 © ©

Feature importance (Set 1) for predicting CPU time e



L1 DCM for HPCCG ) i,

Wait! Why do some processes have less L1_DCMs?

hpccg
I1_dcm

"7 RDMA
[0 No RDMA

1500.0

. I 1
1000.0 —

Bin Count

500.0

Feature Count




Conclusions i

Importance

Workloads require customized solutions

III
.

= Counters are not “one size fits al

Feature Importance LAMMPS Feature\mportance HPCCG

(NiMC-Binary Set 3) (NiM§-Binary Set 3)

Importance

(93 o e o
o9 > e Ps X9

Sandia
National
Laboratories




Conclusions continued... ) i

= Each feature set evaluated was able to detect NiMC

= Feature sets each focused on a level of cache (L1, L2, L3)

= NiMC on onload NICs have far-reaching impact beyond just
the local cache, i.e. impact in shared levels

= Furthermore, asynchronous programming models may not
provide as much relief as desired

= Even if we aren’t waiting for the slowest process at a synchronization
point, imbalance in the system may create bottlenecks for shared
resources

62
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Extension Part 3 (ongoing) 1) .

= Onload cards are optimized to run over PSM/PSM2

= Qur experiments utilized ibverbs

= What does the full communication stack (e.g. IB + PSM + MPI)
do to NiMC and RDMA performance?
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Architectures

TABLE I: Evaluated Architectures

| machine | nodes | kemel | CPU | cores | channels | DRAM | DRAM GB/s | Network |
Westmere®@ (800 MHz, 1066 MHz) 1 3.2.0 (Ubuntul2) Intel E5620 4 2 16GB 12.8, 17.1 QDR IB off
Lishon@(800 MHz, 1066 MHz, 1333 MHz) | 1 3136 (UN12) AMD 4170 HE | 6 3 6GB | 128,171,213 | QDR IB off
Piledriver-1600 70 2.6.32 (RHEL®) AMD AT0-5800K 4 2 16GB 25.6 QDR IB on
Piledriver-1866 2 2632 (RHELB) AMD A10-5800K 4 2 64GB 299 QDR 1B on
Sandy Bridge-X2-FDR-offload 6400 2.6.32 (Cent6.3) 23 Intel E5S-2680 8 b 64GB B5.3 FDR IB off
Sandy Bridge-X2-onload 1196 2.6.32 (RHEL6.2) 2w Intel ES-2670 8 4 64GB 102.4 QDR IB on
Xeon-Phi (on-chip bandwidth) | 49 2.6.38.8+mpss3.1.2 Xeon Phi 3120P 5 1 6GH 240 QDR IB off
Haswell-X2 33 3.14.23 (RHELG.5) Intel E5-2698 1 4 128GEB 136 FDR IB off




Number of Concurrent Writers

TABLE V: Number of concurrent RDMA writes

Sandia
m National
Laboratories

Application Writes/s (Daly) Writes/s (Daly) Writes/s (0.2%)
node (rank) count QDE-onload FDR-offload
64 0 0 0
512 1 1 1
1024 2 2 2
2048 5 6 4
4096 15 17 8
8192 42 47 16




