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My Past

 From San Antonio/Boerne

 Went to Texas State in San Marcos for B.S.

 Completing Ph.D. at UNM (Fall)

 Year-round intern at Sandia Labs now

2



My Family
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My Vacation
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Research Interests

 HPC/Scalable Systems, 

 Networks, Communications, 

 Modeling and Simulation, 

 Monitoring Systems
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Past/Present Work

 Wireless Sensor Networks (Xiao Chen @ TX State)

 MRNet Overlay Network (Dorian Arnold @ UNM)
 Performance Modeling of Tree-based Data Aggregation

 Lightweight bootstrapping on clusters (LIBI)

 Scalable Network Monitoring (Yihua He @ Yahoo!)

 RDMA’s Impact on Performance (Ryan Grant @ Sandia)

 MPI benchmarking (Matt Dosanjh and Ryan Grant @ Sandia)

 Network Topology Design & Power/Performance Tradeoffs
 (Ryan Grant, Scott Hemmert, Simon Hammond @ Sandia)
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NiMC: Characterizing and Eliminating 
Network-Induced Memory Contention

Taylor Groves (UNM/SNL), Ryan E. Grant (SNL), Dorian Arnold 
(UNM) IPDPS 2016

Extension with Aaron Gonzales (UNM/TripAdvisor).

Journal in submission



Traditional HPC

 Bursty workloads

 Synchronous communication models

 Contention for shared resources, e.g. memory, networks

 Processes operating in private address space
8
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Future HPC:

 Asynchronous many-task models

 Partitioned Global Address Space

 Efforts to further parallelize memory and communication

 Analytics to improve effective resource management

Most of these techniques want to leverage Remote Direct 
Memory Access (RDMA)
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Background (RDMA)

 Remote Direct Memory Access (RDMA)
 Bypass the CPU and access memory directly

 Facilitates overlap between communication and computation

 However, there’s a downside.



Increased Contention for Memory
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What is NiMC?

Network-induced Memory Contention:

Contention for local memory resources 
due to asynchronous communication 

originating from a remote node
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Primary Goal

Evaluate the impact of RDMA on modern systems

1. Network-induced Memory Contention?

2. Characteristics on range of architectures?

3. Application Impact

4. Solution(s)?
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Preliminary Evaluation

Test the worst case scenario
1. Run memory intensive workload

2. From a separate node, RDMA writes/puts to push as much data as 
possible into the machine to further increase pressure.
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Preliminary Tests

 Experiments on small cluster of 
AMD Piledriver (4 cores)
 Theo. Memory Bandwidth 29.9 GBps

 Theo. Network bandwidth 4GBps

 STREAM benchmark (without RDMA)

 Observed 12.7 GBps sustainable 
memory bandwidth

 17 GBps headroom for RDMA
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STREAM w. RDMA write

 However, performance worsens

 56% penalty to STREAM

 The penalty is greater than the 
total amount of RDMA

 Why is performance so bad? 
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Possible Culprits

 Memory Controllers: how is RDMA traffic distributed across 
different memory controllers?
 Subtle policies like open page row-buffer management

 Memory Channels: ganged vs unganged

 CPU processing from Onload NICs: some portion of packet 
processing is handled by the CPU
 In our experiments this was never more than 2% of a single core

 Other overlooked factors
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Further Evaluation
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 Need more results to draw meaningful conclusions

 7 different CPU architectures
 Ranging from Westmere (4-core) to Xeon Phi (57-core)

 3 variations of Infiniband Networks
 Including onload and offload NICs

 6 different memory frequencies

 7 workloads of varying memory intensity



STREAM results
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 6 out of 8 systems see degradation of STREAM bandwidth

 4-56% reduction in sustainable bandwidth

 Most noticeable for systems with onload NIC’s

 3 offload systems see a reduction proportionate to the 
volume of RDMA writes

Machine Triad no RDMA 
(GB/s)

Triad w. RDMA 
(GB/s)

Diff. (GB/s) Diff. %

Westmere @ 800MHz, 1066MHz (offload) 12.9, 16.8 9.7, 12.8 -3.2, -4.0 -25%, -24%

Lisbon @ 800MHz, 1066MHz, 1333MHz (offload) 14, 17.9, 19.7 10.8, 14.3, 16.5 -3.2, -3.6, -3.2 -23%, -20%, -16%

Piledriver @ 1600MHz (onload) 12.4 7.4 -5 -40%

Piledriver @ 1866MHz (onload) 12.7 5.6 -7.1 -56%

SandyBridge-X2 (offload) 77.8 77.6 -0.2 0%

SandyBridge-X2 (onload) 73.4 36.1 -37.3 -51%

Xeon-Phi (on-chip, offload) 126.4 121.7 -4.7 -4%

Haswell-X2 (offload) 116.6 116.9 +0.3 0%



Further Evaluation

 Similar setup to earlier STREAM experiment

 Applications run on single node

 We don’t want to measure contention on the network

 Injecting maximum possible amount of RDMA writes

 2-6 GBps
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CNS

 Compressible Navier Stokes 
proxy app

 Stencil operations of a 
combustion problem

 Very lightweight (does not 
represent the computation)
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HPCCG

 Calculates conjugate gradient for a 3D chimney domain

 Mini-app, 27 point stencil

 Excellent weak scaling

 Memory intensive
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LAMMPS
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 Molecular Dynamics

 Excellent weak scaling

 Nearest Neighbor Communication

 3D Lennard-Jones melt

 32,000 atoms per core



Lulesh

 Explicit Hydrodynamics code

 Solves simple Sedov blast problem

 Indicative of solvers in ALE3D

 Multiple kernels
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SNAP

 Neutral particle transport 
application

 Update to Sweep3D

 Number of neutral particles in 
multi-dimensional space

 Communication follows a wave 
propagation
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XSBench

 Nuclear reactor core 
Monte-Carlo particle 
transport simulation 

 Memory intensive

 Not designed for scaling 
(not used for multi-node)

 Single communication 
(reduction at the end)

26

https://en.wikipedia.org/wiki/Nuclear_reactor#/media/File:Crocus-p1020491.jpg



Small Scale Results (Sandy-Onload)
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Why is LAMMPS 
more impacted than 

STREAM?

What about CNS?



Finding the Culprit

 Profiled each workload on Sandy-Bridge-X2-Onload

 Ran with and without RDMA

 Collected 6 counters
 L1 miss

 L2 hit & miss

 L3 hit & miss

 Stalled cycles
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Finding the Culprit
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 Huge increase to 
stalled cycles

 Increases to
L1 & L2 Miss

 Increases to
L1, L2 & L3 Hit



Evidence of Cache Pollution
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 In the absence of RDMA writes
 No real correlation between stalled cycles and any of the cache misses

 No real correlation between stalled cycles and runtime

 With RDMA writes
 Strong correlation between Stalled Cycles and misses throughout the 

cache hierarchy

 Correlation between runtime and L1 Misses becomes larger



Impact at Scale

 LAMMPS, scaling up to 8,192 processes

 Ran on the SandyBridge-X2 Onload system.

 Interested in minimum runtime
 Don’t want to capture performance degradation due to nearby jobs
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Impact at Scale

Impact of NiMC given a reasonable amount of traffic?

 Hypothetical example: uncoordinated in-memory checkpoints
 Reduced  duration of RDMA writes (1 second)

 Only writing to a subset of nodes at any point in time:

1. 0.2% of nodes 

2. Daly’s Optimal Coordinated Checkpoint Interval as an estimate (0.2-
0.5%)
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Impact at Scale
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Solutions for Congestion

 Network Bandwidth Throttling

 Offload Network Cards
 (for current-gen CPUs)

 Core Reservation

34
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Offload NIC 
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 Not a solution for 
earlier gen. CPUs 
(Westmere & Lisbon)

 Requires headroom
between effective
and theoretical
memory bandwidth



Core Reservation 
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 Near constant overhead
(approx. 6% increase to runtime)

 Bump caused by
poor mapping with 
15 procs per node

 If cores are “free”
this is a pretty good
solution



Bandwidth Throttling 
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 Evaluated for both 
LLC and DRAM

 Flat lines show 
core reservation

 Interesting opportunities
for dynamically choosing
the best solution



Key Takeaways:

 RDMA isn’t free:
 NiMC degraded performance on 6 out of 8  evaluated systems

 NiMC impact depends on architecture + workload:
 Ranges from no impact to,

 3X slowdown in LAMMPS running on an onload system with 8k 
processes

 We can deal with NiMC, if we are conscious of its impact:
 Offload NICs (for current CPUs)

 Network throttling

 Core reservation
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NiMC Extension: Detect and Predict

 We know NiMC is a problem 
 (primarily for systems with onload NICs)

 3 solutions to mitigate NiMC

 But… We don’t know when to enact a solution
 Must be able to Detect NiMC

 Which solution to enact (bandwidth throttling or core res.)?
 Must predict the impact it has on a wide range of applications
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How can we detect NiMC?

 Limited knowledge of the volume of RDMA traffic on target

 Once memory is registered, the target NIC is largely bypassing 
the CPU to interact with Memory

 Glean some insight from PCI-e/uncore PMU’s?

 Perhaps extract details from the driver in an onload NIC?
 Not always available, requires privileged access
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What about basic PMU’s?

 Use basic PMU’s to detect presence and predict impact?
 L1, L2, L3, TLB, miss, hit, etc

 Readily available

 Evidence of cache pollution on machines with onload NIC’s

41



Random Forests get the job done

Machine Learning: it’s trendy (and useful)

 Statistical method to create a classification/regression model

Take the output of random forests not as absolute truth, but as 
smart computer generated guesses that may be helpful in 

leading to a deeper understanding of the problem.
-- https://www.stat.berkeley.edu/~breiman/RandomForests/cc_philosophy.htm

42



The Decision Tree

 Many runs of a application used to train a tree

 We have a known outcome (supervised learning)
 e.g. a run with added RDMA or without, or a runtime

 We have a vector of features associated with a run
 In our case we use performance counters

 Impurity measure uses features to place splits in the tree
 Different measures of impurity like Entropy or Gini index
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Random Forests

 Many trees instead of a single decision tree

 Classification determined by a vote of all trees

 Trained by N randomly selected (with replacement) samples

 Some subset of randomly selected features (counters) used 
to split trees

44



Measuring prediction error

 Out of bag (OOB) score estimates error
 Built into the algorithm

For each sample in the bag, 
1. Examine all trees not trained on the sample

2. +0 if incorrect prediction +1 if correct

3. Divide by number of trees

 Eliminates the need for separate data sets for validation
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Features Sets

 Limited by the number of hardware counters that we can 
collect simultaneously

 Divided available counters into three sets and evaluated them 
independently

 For each set:
 Can we detect NiMC?

 Can we determine the volume of RDMA traffic?

 Can we predict the application impact?
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Three sets of features (counters)

 Set 1:
 Idle cycles, L1 data cache miss L1 instruction cache miss, TLB data 

miss, TLB instruction miss

 Set 2:
 L2 data cache miss, L2 data cache hit, L2 instruction cache miss, L2 

instruction cache hit, L2 total cache miss, L2 total cache accesses, L2 
DCM/TCA, L2 TCM/TCA

 Set 3:
 L3 total cache miss, L3 total cache accesses, L3 instruction cache 

accesses, L3 data cache accesses
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Feature importance

 Another bonus of Random Forest is the ability to report 
feature importance
 Caveat: if features overlap in importance, one may overshadow a 

similar feature.
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Workloads to evaluate ML

 Evaluated subset of workloads, targeting specific memory 
characteristics:

 CNS – Very low memory requirements, no impact from NiMC

 HPCCG – Memory intensive

 LAMMPS – Real application, with scaling data

 STREAM – synthetic memory benchmark
 (default-DRAM and a variant that fits in L3). 
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Methodology Continued

 Single node runs of the workload 
 (16 procs per run, 16 threads for STREAM)

 Running on SandyBridge Onload

 Continuous RDMA writes

 6,400 samples recorded per feature set for a given workload
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Can we detect NiMC?

 Yes!

 CNS has a bad score, but no impact from NiMC
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OOB scores for forests predicting the presence of NiMC



Feature Importance (classification)

52Example 1: STREAM-DRAM feature importance

• L2 instruction cache miss -- most important
• L2 data cache miss – least important



 STREAM-DRAM is designed to miss cache… alot

Why L2_DCM Doesn’t Help

53Histogram of L2_DCM for STREAM-DRAM



L2_ICM (Important Feature)
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Universal Feature Importance?

 Not really, each workload has a unique set a features that are 
important, this will even change as parameters shift
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RF to Determine amount of RDMA?

 Not with the evaluated combination of counters.
 Many other actors influencing counter behavior

 RDMA Bandwidth fluctuates with nearby jobs

56Histogram of bandwidth for different runs of STREAM-DRAM



Predict runtime impact?

 Surprisingly well
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OOB scores for runtime regression trees.



CPU Times with(out) RDMA
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Outliers



Feature Importance – CPU time
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Feature importance (Set 1) for predicting CPU time

• L1_DCM is easily the most important feature from Set 1



L1_DCM for HPCCG
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• Wait!  Why do some processes have less L1_DCMs?



Conclusions

 Workloads require customized solutions
 Counters are not “one size fits all”.
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Conclusions continued…

 Each feature set evaluated was able to detect NiMC
 Feature sets each focused on a level of cache (L1, L2, L3)

 NiMC on onload NICs have far-reaching impact beyond just 
the local cache, i.e. impact in shared levels

 Furthermore, asynchronous programming models may not 
provide as much relief as desired
 Even if we aren’t waiting for the slowest process at a synchronization 

point, imbalance in the system may create bottlenecks for shared 
resources
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Extension Part 3 (ongoing)

 Onload cards are optimized to run over PSM/PSM2

 Our experiments utilized ibverbs

 What does the full communication stack (e.g. IB + PSM + MPI) 
do to NiMC and RDMA performance?
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Number of Concurrent Writers
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