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In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell
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Abstract

A modified version of an in-situ CO, removal process was applied during AD of food waste with two
types of walnut shell biochar (WSB) at bench-scale under batch operating mode. Compared to the
coarse WSB, the fine WSB has a higher ash content (43 vs. 36 wt%) and higher concentrations of
calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of
ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96 - 3.83 g biochar (g
VSaaeed)* fine WSB amended digesters produced biogas with 77.5-98.1% CH,4 content by removing
40-96% of the CO, compared to the control digesters at mesophilic and thermophilic temperature
conditions. In a direct comparison at 1.83 g biochar (g VSadded) ™, the fine WSB amended digesters
(85.7% CH, content and 61% CO, removal) outperformed the coarse WSB amended digesters (78.9%
CH. content and 51% CO; removal). Biochar addition also increased alkalinity as CaCOs; from 2,800

mg Lt in the control digesters to 4,800-6,800 mg L* providing process stability for food waste AD.

Keywords Renewable methane, food waste, anaerobic digestion, CO, removal, biochar
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Approximately 13.9% of all US municipal solid waste (MSW) or 31.5 million metric tonnes (MMT)
per year is classified as organic food waste (FW) (USEPA 2012, Linville et al. 2015). Landfilling and
incineration of FW are not sustainable because of limited land availability and rising landfill fees, and
increased energy consumption from the FW’s high moisture content, respectively (Linville et al.
2015, Wang et al. 2013). FW is the largest portion of organic waste sent to landfills (USEPA 2012),
highly biodegradable (Levis and Barlaz 2011), and the dominant contributor to considerable
uncontrolled release of methane (CH.), a greenhouse gas (GHG) (USEPA 2015). In 2013, landfills
were the third largest source of CH4emissions in the US (114.6 MMT of CO; equivalent (MMT
CO2¢)) (USEPA 2015). Less than 5% of discarded FW is being recovered; utilizing anaerobic
digestion (AD) is a positive alternative owing to its energy-rich characteristics and high energy-
recovery from produced biogas (Grimberg et al. 2015, Wang et al. 2013, Zhang et al. 2013). Biogas is
composed of 50-70% CH. and 30-50% carbon dioxide (CO,), with trace amounts of hydrogen sulfide
(H2S) and other impurities (Lombardi and Carnevale 2013, Shen et al. 2015a). Biogas is upgraded to
renewable CH. through costly upgrading processes for removal of CO, and impurities (Lombardi and
Carnevale 2013) increasing production costs by 20-72% (Beil et al. 2013, Murray et al. 2014).
Financial issues with food waste anaerobic digestion (FWAD) may be eliminated or minimized with

cost competitive biogas upgrading and treatment technology (Linville et al. 2015).

The research objective is to enhance FWAD adapted from in-situ CO, removal process developed for
wastewater treatment plants (WWTPs) sludge AD. The process was modified for the increased
biomethane potential of FW (290 - 500 m?® CH, (tonne VS)) compared to sludge (220 - 310 m® CH,4
(tonne VS)™1) (Linville et al. 2015, Shen et al. 2015b, Snyder et al. 2014). FW poses challenges for
AD due to the high solids content, and highly varying composition and volume (Grimberg et al. 2015,
Leiva et al. 2014, Zhang and Jahng 2012), increased biodegradation of carbohydrates and lipids
leading to increased volatile fatty acids (VFASs) production rate and low digester pH (Bozym et al.
2015, Wang et al. 2013). Failure to maintain the balance between acidogenic and methanogenic
microorganisms causes digester instability and upsets due to the differences in physiology, nutritional

needs, growth kinetics, and susceptibility to environmental conditions (Linville et al. 2015).
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Parameters and inhibitory substances have also been reported with FWAD including C/N ratio, and
VFAs, lipids, H.S and NHs, respectively (Wang et al. 2013) which cause lower CH, yields and longer
digestion times (Zhang et al. 2013). However, biochar amendment can potentially stabilize AD (Shen
et al. 2015b, Snyder et al. 2014). In this study, the applicability of the in-situ CO, removal process for
FWAD was determined by optimizing biochar doses to increase CO removal without causing
digester toxicity. The process captures and sequesters the CO; produced during AD by utilizing
biochar from gasification or pyrolysis of lignocellulosic biomass under oxygen-starved conditions
(Brown 2011). Biochar has high cation concentrations including calcium, magnesium, sodium, and
potassium to sequester CO, (Cheah et al. 2014, Gul et al. 2015, Shen et al. 2015b, Tan et al. 2015)
which may have stimulatory benefits for FWAD (Bozym et al. 2015, Chen et al. 2008). This study
uses walnut shell biochar (WSB) (fine or coarse) instead of previously reported corn stover biochar
because there is no economic competition as with the corn stover feedstock for cellulosic biofuels
production (Shen et al. 2015b). Walnut shells are a carbonaceous waste product of orchards (Daoyuan
et al. 2014) and presents a future scenario where local biomass residues are used for bioenergy
production with the biochar available for utilization (Mukome et al. 2013). WSB has been used as a
sorbent to remove contaminants (Tan et al. 2015), as soil amendment to increase water holding
capacity (Daoyuan et al. 2014) and to reduce GHG emissions (Mukome et al. 2013, Suddick and Six

2013). To date no study has attempted to investigate the effect of WSB on FWAD performance.

The aim of this study is to investigate: 1) the effect of WSB doses on FWAD at mesophilic and
thermophilic temperatures, and 2) the effect of particle size and ash content of WSB on digester
performance. This process could enhance the economics of FWAD to supply renewable CH. in a
quality that allows injection into the natural gas pipeline or use as vehicle fuel.. Overall, the process
could provide an economically viable waste-to-energy process, reduce GHG emissions, reduce

demand for fossil fuels, and reduce environmental impacts associated with a major US waste source.

Materials and methods

Characteristics of food waste, sewage sludge and biochar
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The AD experiments were conducted using FW as the substrate and AD sludge from a municipal
WWTP as the inoculum source. The FW was prepared by mixing various fruits, vegetables, bread,
grease, and coffee grounds and filters in a blender, and stored at 4°C (Table S1) (Kovacs et al. 2015).
The inoculum was obtained from the outlet of the methane-phase digester at Woodridge Greene
Valley Wastewater Facility located at Woodridge, Illinois. The facility operates a two-stage AD
system as reported previously (Shen et al. 2015b). Fine WSB (FWSB) and coarse WSB (CWSB)
samples were provided by Dixon Ridge Farms located in California which utilizes a 50 kW BioMax
50 (Community Power Corporation, Littleton, Colorado, USA) downdraft gasifier at 900 °C (Suddick

and Six 2013).

Anaerobic digestion experiment design

The AD experiments were conducted in 650 mL Wheaton serum bottles at either mesophilic (37 °C
1 °C) or thermophilic (55 °C % 1 °C) temperature with a working volume of 550 mL. The first
experiment was conducted with a single replicate and tested the FWSB at two dosages at mesophilic
temperature; 1.91 and 3.83 g biochar (g VSadded)-1 and three dosages at thermophilic temperature;
0.96, 1.91 and 3.83 g biochar (g VSadded)™ (5, 10, and 20 g of FWSB per digester), against a positive
control (PC) digester without FWSB at both temperatures (Table 1). The dose was selected based on
averaged values of other biochar samples tested in the lab (data not shown). The second experiment
was conducted at thermophilic temperature in duplicate for the PC and in triplicate for the FWSB and
CWSB each at a dosage of 1.83 g biochar (g VSadded)™ (10 g WSB per digester) (Table 1). Each
digester contained inoculum (4.7 g dry matter, 3 g VS), food waste (2.3 g dry matter, 2.2 g VS),
varying concentrations of WSB (depends on the experimental condition) and deionized water as the
makeup water, and was sparged with helium gas (99.999% purity) (Airgas, Minooka, Illinois) for 2.5
min before AD experiments began. Each digester was then either placed in an MPA-200 Biomethane
Potential Analyzer system (Challenge Technology, Springdale, Arizona) or in a New Brunswick’s
model 124 benchtop incubating shaker (Eppendorf, Hauppauge, New York) as described previously
(Shen et al. 2015b), otherwise identical continuously stirred digesters. In brief, the MPA-200 system

consists of a respirometry-based unit for gas measurement and automated data recording. Each



104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

digester in the incubating shaker was attached to a multi-layer foil gas sampling bag (Restek,
Bellefonte, Pennsylvania) for gas volume measurement daily. The gas production volume was
adjusted to dry ambient temperature and pressure (20 °C and 101,325 Pa) to account for temperature
and pressure fluctuations in the lab (Walker et al. 2009). All the experiments were operated in batch
mode and at 50 rpm agitation. The batch experiments were terminated when the daily biogas

production volume reached less than 1% of the total biogas volume.

Analyses

Biochar characterization

Particle size distribution of biochar samples was determined using the method as described previously
(Shen et al. 2015b). Brunauer-Emmet-Teller (BET) surface area, total pore volume and pore size were
determined utilizing argon or nitrogen gas adsorption analysis at 77.35 K (Brewer et al. 2009).
Surface morphology was characterized by using scanning electron microscope (SEM) (Shen et al.
2015b). Proximate, ultimate and ash elemental analyses were conducted in triplicate using the

methods as reported in detail in our previous publication (Shen et al. 2015b).

Feedstock and digestate characterization

Total solids (TS) and volatile solids (VS) contents were determined per Standard Methods (APHA et
al. 2012). Total chemical oxygen demand (COD), total organic carbon (TOC), total alkalinity (TA),
total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (NHs-N) were determined using
Hach test kits (Hach, Loveland, CO). Total metal (Al, Ca, Fe, Mg, Mn, K, Si, and Na) concentrations

were analyzed using USEPA Method 200.7 (USEPA 2007a) and 200.8 (USEPA 2007b).

Gas sampling and analysis

Gas samples were taken from the digester headspace periodically as described in (Shen et al. 2015b).
Biogas was analyzed for CH, and CO; by using a Shimadzu GC-2014 gas chromatograph equipped
with a thermal conductivity detector (TCD) and a Supelco 80/100 Porapak Q packed column (5m x

3.175mm x 2.1 mm) (Sigma-Aldrich, St. Louis, MO). Helium (99.999% purity) (Airgas, Minooka,
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IL) was used as the carrier gas. The column temperature was set at 100 °C isothermally and the TCD

temperature was set at 170 °C.
Statistical analysis

All statistical comparisons were conducted using the student’s t-test with a 95% confidence interval.
Time course data was analyzed with a paired t-test and the initial and final averaged digester values
were analyzed with an unpaired t-test. Comparisons were considered statistically different in the p-

value was less than 0.05.

RSM model development for methane production and content
This statistical technique is a useful tool for AD optimization when the response (CH. production
volume and CH4 content) may be influenced by several variables (Ahmad et al. 2014a, Gonzalez-
Fernandez et al. 2011, Jimenez et al. 2014, Linville et al. 2016, Montgomery 2005). The full model
methodology was described by Linville et al. (2016). In brief, the software program Design Expert 9
(Jin et al. 2013) was used to determine the model equation for CH,4 production volume and content
with variables as X; (digestion time, days) and X; (biochar dosage, g biochar (g VSadded)™) (Table S2).
Insignificant terms (p-value > 0.05) were removed from the model except when required to support
the hierarchy (Causton et al. 2001, Jin et al. 2013).

Y = Bo + BiXy + B2 Xy + B2 XXy + BiaXT + BoaXF + Bra2Xi XF
Multi-objective optimization (MO) analysis was performed using the proposed model equations to
maximize the two response variables (CH4 production volume and CH, content) that are dependent on
the same inputs (FWS dosage and digestion time), using Matlab® version 7.4.0 (R2015b)

Optimization Toolbox (Brule et al. 2014).

Results and discussion

Biochar characteristics

The two WSB were produced by pyrolysis at different temperatures and treated with different
activation techniques resulting in varied physical and chemical properties (Tan et al. 2015). The

6
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FWSB has a particle size distribution with approximately 76.9 wt% of the particles below a particle
size 500 um and the largest fraction (31.8 wt%) of particles between 125-177 pum. The CWSB has
23.9 wt% of particles below a particle size of 500 um and most particles (68.6 wt%) above 707 pum
(Figure S1). SEM images of FWSB and CWSB at 200x Magnification (Figure 1A and 1B,
respectively) and 1000x Magnification (Figure 1C and 1D, respectively) show the morphologies of
tested WSB and differences in their hierarchical structures. Surface area of biochar is dependent on
particle size of feedstock pellet, reaction temperature and reactor operational conditions (Manya
2012). Increasing pyrolytic temperature increases the escape of volatile substances and the formation

of channel structures thus improves the specific surface area and pore structure (Tan et al. 2015).

Physical and chemical analyses results are shown in Table 2. The BET surface area of the FWSB was
measured as 86.5 m? gt and the CWSB as 793 m? g’ which are remarkably different than previously
reported WSB (227 m? g1) (Daoyuan et al. 2014, Mukome et al. 2013). It should be noted that direct
comparison of the pore volume and area is difficult due to FWSB sample interaction with Ar/N2gas.
The FWSB and CWSB both have a high ash content like other WSB (ash content 40.4 - 46.6 wt%)
(Daoyuan et al. 2014, Mukome et al. 2013, Suddick and Six 2013). Furthermore, the FWSB and
CWSB have a carbon content like other WSB (55.3%) (Mukome et al. 2013, Suddick and Six 2013),
but less than woody biomass such as oak (65.3%-84.4%) (Brewer et al. 2009, Cheah et al. 2014).
FWSB and CWSB have similar hydrogen content; however, the FWSB has higher oxygen content
compared to the CWSB. The H:C molar ratio represents the degree of carbonization as hydrogen is
primarily associated with the organic matter in the biomass (Tan et al. 2015). The FWSB and CWSB
both have a low molar H:C ratio like other WSB (0.22) (Mukome et al. 2013). The surface
hydrophilicity of biochar, described by molar O:C ratio, is indicative of polar-group content (Tan et
al. 2015). The O:C ratio of the FWSB and CWSB is again low (Ahmed et al. 2016, Keiluweit et al.
2010). The FWSB ash contains 31.0% CaO, 8.4% MgO, 23.4% Na,O, and 0.2% K-O while the
CWSB ash contains 19.2% CaO, 5.6% MgO, 0.3% Na.0, and 40.3% K,O. Based on the ash percent
and cation concentrations, the CWSB requires roughly 1.35 times as much biochar as the FWSB to

remove the same amount of CO,.
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In summary, the FWSB has greater ability to promote in-situ CO, removal due to the smaller particle
size and higher ash content leading to a higher cation concentration compared to the CWSB as

discussed below.

Anaerobic digestion experiments

The WSB’s ability to promote in-situ CO, removal during FWAD was tested at typical design ranges:
mesophilic (35-40 °C) and thermophilic (50-55 °C) temperatures (Linville et al. 2015). Mesophilic
AD is commonly used for organic wastes due to the low capital costs and ease of operation (Linville
et al. 2015). However, thermophilic AD has many inherent advantages over mesophilic AD including
faster reaction rates, higher biogas production rate and volume, less foaming and enhanced pathogen
reduction (De la Rubia et al. 2013, Suryawanshi et al. 2010). The elevated temperature also enhances
the leaching and dissolution of the cations (Ca, Mg, Na, and K) from biochar (Pan et al. 2012, Sanna
et al. 2014) and the endothermic adsorption capacity of the biochar (Tan et al. 2015). The
performance of FWAD is also improved by alkaline condition at thermophilic temperature (VIyssides

and Karlis 2004).
Comparison of fine walnut biochar at mesophilic and thermophilic temperature

The FWSB test lasted 54 days at mesophilic temperature and 26 days at thermophilic temperature.
Figure 2 shows the time course of CH,4 content (% v/v), CH,4 production volume (mL), and CO,

production volume (mL) for the digesters at mesophilic and thermophilic temperature, respectively.

The CH,4 content on day 1 was 100% for the 37FWS10 and 37FWS20 digesters whereas the 37PC
digester had a 45% CH, content (Figure 2A). The CH. content in the 37FWS10 digester and
37FWS20 digester remained statistically higher (p-value < 0.001) than the 37PC digester after day 26.
The 37FWS10 and 37FWS20 digesters have a statistically lower CH4 volume (p-value <0.0095 for
both, Figure 2B) due to lower biogas production volume (Figure S2). Interestingly, the CH, yields
were similar between the 37PC (484 mL CHa (g VSdegraded) ) and the 37FWS10 (492 mL CHs (g

V Seegraded) ) digesters; however, the 37FWS20 CHy, yield was much lower (131 mL CHa (g VSdegraded)”

1y indicating that the FWSB dose was inhibitory at higher concentrations. Furthermore, the CO;
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production volume (mL) was also much lower in the 37FWS10 and 37FW20 digester compared to the

37PC due to a combination of lower biogas production volume and higher CH4 content (Figure 2C).

The CH4 content on day 1 was above 93% for the 55FWS5 digester and at 100% for the 55FWS10
and 55FWS20 digester whereas the 55PC had a 54% CHjs content (Figure 2D). The CH4 content
stabilized by day 7. Compared to the 55PC, the averaged CH,4 content is statistically higher in the
FWSB supplemented digesters(p-value <0.0001 for all). There is no inhibition in the 55FWS5
digester based on the CH4 production volume compared to the 55PC (Figure 2E) (p-value 0.7615).
There is also no statistical difference in the CH4 production volume between the 55FWS10 and
55FWS20 digesters (p-value 0.7843); however, there is a 20.5% reduction in CH4 volume between the
55PC/55FWS5 and 55FWS10/55FWS20 digesters (Figure 2E). Likewise, the CH, yields were similar
between the 55PC and 55FWS5 digesters (633 and 606 mL CH4 (g V Sdegraded) *, respectively), and
between the 55FWS10 and 55FWS20 digesters (478 and 466 mL CHa (g VSdegraded) ™, respectively)
indicating an inhibition at the higher FWSB dosages. Most remarkably, the CO; production volume
(mL) is reduced by 39.2% in the 55FWS5 digester compared to the 55PC without any loss in CH4
volume. Furthermore, the 55FWS10 digester had a 73.1% reduction and the 55FWS20 digester had a
95.8% reduction in CO, volume compared to the 55PC (Figure 2F) due to lower biogas production

volume (Figure S2) and higher CH, content due to addition of higher FWSB concentrations.

The FWAD benefited from the FWSB addition regarding the CO, removal from the biogas for both
temperatures. CO; adsorption increased with increasing FWSB addition attributed to increased
available adsorption surface and more reactive sites (Tan et al. 2015). Adsorption, electrostatic
interactions and/or polarity attraction are some of the possible mechanisms for CO, removal due to
biochar in the digester (Ahmad et al. 2014b). H:C and O:C are indicators of biochar’s stability and
hydrophobicity, and their contribution to the absorption capacity is not quite clear. However, the small
particle size provides a large surface area for CO, adsorption, as discussed before. The high ash
content and high concentration of base cations (Ca, Mg, Na, and K) in FWSB contributes to the
accelerated carbonation reaction (Shen et al. 2015b). Total concentrations of base cations (Ca, Mg, Na

and K) are positively correlated to biochar’s alkalinity (Fidel et al. 2017), and therefore can be used as
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indicator of CO; absorption capacity. Shen et al., reported CO; sorption processes based on a pseudo-
second-order kinetic model for corn stover biochar which indicates physical adsorption, and a weak
bonding between adsorbate and adsorbent (Shen et al. 2015b). Other studies have shown a decrease in

CO; emissions from biochar amended soil (Daoyuan et al. 2014; Mukome et al. 2013).

The FWAD was more efficient at thermophilic temperature with the 55PC having a digestion period
28 days shorter than the 37PC while producing 23% more biogas. AD was inhibited from higher
concentrations of FWSB at both temperatures. The 55FWS10 digester and 37FW10 digester saw a
37% decrease in biogas production volume compared to the PC digester at the respective temperature
(Figure S2). The biogas production volume was less inhibited for the 55FWS20 compared to the
37FWS20 digester. The decrease in inhibition may be due to the faster reaction rate and higher biogas

production volume at thermophilic temperature (De la Rubia et al. 2013, Suryawanshi et al. 2010).
Response surface methodology (RSM) modeling

The dosage of adsorbent has significant influence on the adsorption efficiency; therefore, applying the
optimum dosage of WSB for CO, removal is crucial for its cost-effective application (Tan et al.
2015). The studied parameters (digester operating time and FWSB dosage) was optimized by
response surface methodology (RSM) at each temperature (Figure S3 and Table S2). The interactive
effects of the independent variables on CH4 production volume and CH4 content were illustrated by
three-dimensional plots (Figure 3). The results of the MO determined that near pipeline-quality
methane content (>90% CHya) (Shen et al. 2015b) can be achieved with only a slight reduction in CH.
production volume. The maximum volume of pipeline-quality methane that can be achieved at
mesophilic temperature is 670 mL with a digestion time of 47 days and 1.94 g biochar (g V Sagded)*
FWSB addition, and at thermophilic temperature is 1186 mL with a digestion time of 20 days and
2.46 g biochar (g VSadded) * FWSB addition.

Comparison of fine and coarse walnut biochar performance at thermophilic temperature

The impacts of different biochar addition (FWSB versus CWSB) on AD performance were

investigated at thermophilic temperature for 25 days. Figure 4 shows the time course of CH. content

10
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(% v/v), CH,4 production volume (mL), and CO; production volume (mL) for the digesters with
FWSB and CWSB. The initial CH4 content for the 55FWS10 digester was higher than the 55CWS10
digester and both were greater than the 55PC digester (Figure 4A). The CH, content stabilized in the
55PC digester after day 4. The CH,4 content was statistically higher in the 55CWS10 digester and the
55FWS10 digester compared to the 55PC digester(p-value <0.0001 for both). The CH4 content of the
55FWS10 digester is statistically higher than the 55CWS10 digester (p-value 0.0093). The CH4
production volume (Figure 4B) was statistically different (p-value <0.005 for all conditions) showing
slight inhibition from the WSB concentration in the digester. Furthermore, the CH, yield for the 55PC
digesters (600£29 mL CHy (g VSdegraded) ?) is higher than the 55CWS10 digesters (492+30 mL CH, (g
V Seegraded) *, p-value 0.0275) and the 55FWS10 digesters (510.0£31 mL CH4 (g V Sdegraded) *, p-value
0.0461). The limitation of the CWSB due to its larger particle size, and lower ash content thus lower
cation concentration can be seen in the CO, removal efficiency. The 55CWS10 digesters only had a
51.0% CO- removal and the 55FWS10 digesters had a 61.0% CO- removal compared to the 55PC

(Figure 4C).

To validate the RSM models at thermophilic temperature, the results for the 55FWS10 digesters were
compared. The estimated CH, production volume was 3.3% above the actual value and the estimated
CH, content was the same at 81.1%. This result shows that the RSM models provide an acceptable
model accuracy and high degree of fit to experimental data.

Impact of biochar addition on digester performance

The characteristics of the digester environment were compared before and after AD. Both the TS and
VS increased with increasing FWSB addition (Figure S4), which was expected. The thermophilic
temperature digesters had higher solids destruction compared to the mesophilic temperature digesters.
The pH increased with increasing concentration of FWSB, with the initial pH ranging from 8.6-9.2
(Figure S4). The 55CW10 digester had a higher pH than the 55FW10 digester (Figure S4). FWAD
can be characterized by low pH (Leiva et al. 2014); therefore, FWAD can be facilitated by the
alkaline pH treatment from WSB addition. It was also demonstrated that thermophilic alkaline

pretreatment (pH >8) could maximize VFAs yields during sludge AD because of faster reaction

11
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kinetics and enrichment of VFA producing bacteria (Zhang et al. 2010). Furthermore, the final pH
values of all WSB digesters were still in a slightly alkaline range (pH > 7.4) regardless of digester

temperature or biochar dosage.

The cations in the WSB increased the buffering capacity of the biochar-amended digesters which
enhanced the process stability as compared to the PC digester. All WSB digesters had a final TA
concentration 1.9 — 2.7 times higher than the PC digester at both temperatures (Figure 5A and 5C).
The final TA concentrations were not statistically different in the 55FWS10 and 55CWS10 digesters
(Figure 5C). The final TA concentrations in digesters amended with 10g WSB dose or greater were
above the desirable range (2000-5000 mg L) (Chen et al. 2008). The increase in alkalinity during AD
was the result of metabolic alkalinity from organic nitrogen degradation, hence ammonia formation

(Figure 5) or cation release from WSB (Speece 1996).

The NHs-N concentration increased by approximately 30% in the PC digesters after AD at both
temperatures compared to the FWSB amended digesters which ranged from 29% increase in the
55FWS5 digester to 2.0% increase in the 37FWS20 digester (Figure 5A and 5B). The degradation of
organic nitrogen-compounds caused the increase in ammonia (Speece 1996). There was no significant
difference in the initial or final NH3-N concentrations for the 55CWS10 or 55FWS10 compared to the
PC digesters which averaged 21.5% increase during the experiment (Figure 5C). An increase in pH
typically increases free ammonia (NHs) inhibition (Chen et al. 2008) by shifting the NH3s-NH,4*
equilibrium towards NHs; formations in the digesters. However, the experimental results showed that
the change in ammonia concentration decreased with increasing WSB dose. The biochar’s large
surface area promotes NH3 adsorption thereby mitigating ammonia inhibition (Taghizadeh-Toosi et

al. 2011).

The TP concentration increased with increasing FWSB dose (Figure 5A and 5B) due to the FWSB ash
containing 6.0 wt% P,Os (Table 2). The TP was higher in the 55FWS10 digester compared to the
55CWS10 digester (Figure 5C), despite similar P,0s wt% in the ash due to the smaller particle size or

increased ash content having higher dissolution for the FWSB.
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The initial COD increased with increasing WSB addition (Figure 5A and Figure 5B). The COD did
not decrease for the higher concentrations of WSB addition at either temperature due to inhibition.
The initial TOC also increased with increasing WSB addition which probably resulted from the
volatile matter in the biochar. However, the TOC decreased by similar amounts in all digesters at the
same temperature except for the 55FWS5 which decreased less. It should also be noted that TOC and
COD measurements include harsh conditions including low pH (pH=2) and high temperature (105-
150 °C). Nevertheless, biochar stores the organic carbon in a recalcitrant form which is represented by
the low O:C molar ratio (Table 2); hence, the biochar addition hardly increased bioavailable organic
matter concentration in the digester (Shen et al. 2015b). The COD and TOC concentrations were
higher in the 55FWS10 digester compared to the 55CWS10 digester (Figure 5C) which may be due to

the higher volatile matter and higher ash content in the FWSB (Table 2).
Impact of biochar addition on cation concentrations

Moderate levels of cations (Na, K, Mg, Ca) are essential for microbial growth, affect specific growth
rates in microorganisms, and reduce inhibition; however, excessive levels have serious toxic effects
inhibiting microbial growth (Bozym et al. 2015, Chen et al. 2008). While high WSB dosage increases
CO; removal, it results in digester cation toxicity; therefore, WSB dosage optimization is important.
The optimum cation concentrations have been reported as 200 mg L™ Ca, 100-200 mg L Na and
<400 mg L* K with inhibitory concentrations ranging from 2500-4000 mg L* Ca, >400 mg L™ Mg,

3500 -5500 mg L* Na and >5800 mg L K (Bozym et al. 2015, Chen et al. 2008).

In all experiments, the PC digester had concentrations below the inhibitory levels (Figure 5). Na was
only detected in the PC digesters in the second experiment. However, the detection limit for Na was
50 mg L* at the dilution factor used; therefore, it is likely that the Na concentration in the other
samples is below the detection limit (Figure S5). The decrease in biogas production volume for the
37FWS10, 37FWS20, 55FWS10 and 55FWS20 digesters compared to the PC digester (Figure 2B and
2E) may be due to the inhibitory Ca and Mg concentrations in the FWS10 and FWS20 digesters
(Figure 5A and 5B) (Bozym et al. 2015, Chen et al. 2008). However, the Ca and Mg concentration

was lower in the final 55CWS10 digesters leading to a smaller reduction in biogas production volume
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compared to the 55FWS10 digesters (Figure 5C). Na was below the inhibitory level but detected
inconsistently due to the dilution factor (Figure S5). Although still below the inhibitory level, the K
concentration was higher in the final 55CWS10 digester than the final 55FWS10 digester (Figure 5C)
due to increased K content in the CWSB (Table 2). There is no significant difference in release of
cations from the FWSB at mesophilic versus thermophilic temperature. Although inhibitory levels of
each cation were compared with the literature data, the synergistic impacts of all cations also need to
be considered. However, to the best of authors’ knowledge there is no information on this adverse
effect in the literature. Also, as expected from the biochar characterization results (Table 2), the
concentrations of aluminum, iron, manganese, and silicon increased with increasing concentration of

biochar (Figure S5).
Conclusion

This study resolved challenges surrounding FW, as a highly degradable AD substrate, reducing the
overall digester performance due to reactor instability. The impacts of two WSB’s on digester
performance and in-situ CO; removal during FWAD were compared in this study. The FWSB has
better CO; absorption capacity compared to the CWSB due to the increased surface area and ash
content which leads to a higher cation concentration and alkalinity in the digester. The FWSB could
remove 61.0% of the CO, produced by volume whereas the CWSB could remove 51.0% of the CO;
produced by volume compared to the control digester. A decrease in biogas/methane production was
observed with higher dosages of biochar due to higher concentrations of mono- and divalent cations
released from the biochar into the digester environment. However, impact of high biochar dosages on
methane production in thermophilic digesters (665 mL of methane produced at 55FW20) was less
than that of mesophilic digesters (220 mL of methane produced at 37FW20). This is due to better
hydrolysis efficiency and faster microbial reaction rates, which lead to higher biogas/CH4 production.
The biochar increased process stability by increasing the total alkalinity and pH of the digesters. RSM
modeling showed that near-pipeline quality methane (>90% CH,) can be achieved utilizing a dose of
1.94 g biochar (g VSadded)* at mesophilic temperature and a dose of 2.46 g biochar (g VSadded) ™ at

thermophilic temperature. This hypothesis will be tested by conducting AD experiments under
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continuous operation in the future. This process can provide a new path towards efficient and
economical renewable CH4 production from FWAD, with respect to enhanced CO, removal,
improved process stability at thermophilic temperatures and elimination of energy/cost intensive
biogas cleanup and upgrading process as well as reduction in the amount of FW being sent to

landfills.
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List of Figures

Figure 1. SEM images 200x Magnification for C) FWSB and D) CWSB, and at 1000x Magnification

for E) FWSB and F) CWSB.

Figure 2. Time-course profiles of FWSB amended AD experiment at mesophilic temperature: A) CH.
content of biogas (%); B) cumulative CH. production volume (mL); C) cumulative CO; production
volume (mL) and at thermophilic temperature: D) CH4 content of biogas (%); E) cumulative CH4

production volume (mL); F) cumulative CO; production volume (mL).

Figure 3. Three-dimensional (3D) response surface showing the effects of interactions on AD of FW
for A) CH4 production volume (mL) and B) CH. content (%) at mesophilic temperature; and C) CH4

production volume (mL) and D) CH4 content (%) at thermophilic temperature.

Figure 4. Time-course profiles of FWSB and CWSB amended AD experiment: A) CH4 content of
biogas (%); B) cumulative CH4 production volume (mL); C) cumulative CO, production volume

(mL). Data are means and error bars show standard deviations.

Figure 5. Digestate characteristics before and after AD experiments; A) for FWSB experiment at
mesophilic temperature; B) for FWSB experiment at thermophilic temperature; and C) for FWSB and

CWSB comparison.
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403  Table 1: Experimental Conditions

Condition Temperature Ingredients
37PC? 37°C Inoculum + substrate
37FWS10 37°C Inoculum + substrate + biochar (1.91 g (g V Sadded) )
37FWS20 37°C Inoculum + substrate + biochar (3.83 g (g V Sadded) )
55PCP 55°C Inoculum + substrate
55FWS5 55°C Inoculum + substrate + biochar (0.96 g (g VSadded) )
55FWS10 55°C Inoculum + substrate + biochar (1.91 g (9 VSadded) )
55FWS20 55°C Inoculum + substrate + biochar (3.83 g (g VSadded) )
55FWS10 55°C Inoculum + substrate + biochar (1.83 g (g VSadded) )
55CWS10 55 °C Inoculum + substrate + biochar (1.83 g (g VSadded) ™)
404 2 Positive Control, ® Condition used in both thermophilic experiments
405
406
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407
408

409
410

411

Table 2. Physical and Chemical properties of FWSB and CWSB

FWSB CWSB
Physical BET surface area (m? g?) 86.5 792.7
Properties | Total volume of mesopores (cm3®g?) | 0.16 0.11
Average diameter of mesopores (nm) | 7.06 3.67
Total area of micropores (m? g?) 109.98 899.04
Total volume of micropores (cm®g?) | 0.15 0.40
Proximate Moisture 2.7%0.1 20+0.1
Analysis Ash 432+0.2 |36.3+0.1
(wt %) Volatile Matter 21.2+03 |129+11
Fixed Carbon 328+04 |488+1.1
Ultimate Moisture 27%0.1 20+0.1
Analysis Ash 432+02 |363x0.1
(wt %) S 1.5+0.03 |0.03+0.02
C 47.0+£03 |61.0x04
H 08+0.04 |05%0.1
N 0.8+0.1 0.6 £0.04
O 3.9%0.6 0.03 £ 0.03
Atomic Ratio | H:C molar 0.20+0.01 | 0.09 +0.02
O:C molar 0.06 £ 0.01 | 0.0003 + 0.0004
C:N molar 68.6 +4.9 117.3+£6.6
Elemental SiO; 1.7+£0.1 1.4+0.6
Analysis of | Al,O3 0.7x0.2 11+£0.3
Ash TiO, 0.02+0.00 | 0.1+0.02
(Wt % of ash) | Fe,0, 0.4+001 [0.3+0.01
CaO 31.0+£0.7 19.2+0.7
MgO 8.4+0.1 5.6 £0.03
Na,O 234+04 |03x0.01
K20 0.2+£0.01 40315
P,Os 6.0+0.03 |6.2+0.00
SO3 8.0+0.3 0.1£0.02
Cl 3.2£0.03 1.9+0.06
CO, 148+05 |252+0.3

Data are shown in average values based on triplicate measurements + standard deviations.
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597

598  Table S1: Characteristics of FW substrate
Parameter Value
TS (%) 12.4%
VSas%of TS 95.5%
TOC (gC/L) 22.1
TN (g N/ L) 1.3
TP (gP/L) 0.24
C:N 19.8
599
600  Figure S1. A) Particle size distribution of fine walnut shell biochar (FWSB) and coarse walnut shell
601  biochar(CWSB), and visual comparison of B) FWSB and C) CWSB showing the difference in the
602  particle size distribution.
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604
605
606  Figure S2. Time-course profiles of cumulative biogas production volume (mL) for: A) FWSB
607  amended AD experiment at mesophilic temperature, B) FWSB amended AD experiment at
608  thermophilic temperature, and C) FWSB and CWSB amended AD experiment at thermophilic
609  temperature
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The 37PC has a statistically higher biogas production volume (p-value <0.005) compared to the
37FWS10 and 37FWS20 digesters (Figure 2A). The 55PC has a statistically higher biogas production
volume (p-value <0.025 for all results) compared to the 55FWS5, 55FWS10 and 55FWS20 digesters
(Figure 2B). For the second experiment, 55PC had a statistically higher biogas production volume (p-
value 0.0013) than 55CWS10 digesters, and 55CWS10 digesters had a statistically higher biogas
production volume (p-value 0.0211) than 55FWS10 digesters (Figure 2C).

RSM Modeling

Digestion time (T) and FWSB dosage (BD) had a complex effect on the CH4 production volume and
CHjy content as indicated by the interaction between the terms in the models (Table 3). Per the
coefficient of each factor, T had the greatest influence on CH4 production volume at both
temperatures. The BD had a negative effect on CH4 production volume at thermophilic temperature
like the hypothesis and experimental results showing the inhibition at high biochar doses (> 10g
FWSB). At mesophilic temperature, BD had a positive effect on CH,4 production volume which was
offset by the negative coefficient for the interactive term T*BD. Conversely, BD had the greatest
effect on CH. content followed by T which supports the hypothesis of FWSB addition causing CO;
removal. At both temperatures, the negative coefficients for the interactive term T*BA and BA? in the
CH, content models indicate the consumption of FWSB active sites during the experiment. The
model’s coefficient of determination (R?), adjusted coefficient of determination (R?;), and F-value
are consistent (and higher in some cases) with previously reported RSM models (Gonzalez-Fernandez
etal. 2011, Jimenez et al. 2014, Jin et al. 2013, Linville et al. 2016) indicating an acceptable model
accuracy (Figure S3 and Table S2).

Table S2: Statistical analysis of the two evaluated parameters (Time (days) and FWSB addition
(9/9 VSadded)) With regard to the two responses (CH4 production volume (mL) and CH. content
(%)) at mesophilic and thermophilic temperature.

Mesophilic Temperature Thermophilic Temperature
Y CH. Production CH, Content (%) CH. Production CH, Content (%)
Volume (mL) Volume (mL)
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643

644
645
646

647

648
649
650
651

652

Coefficient (p-value) | Coefficient (p-value) | Coefficient (p-value) | Coefficient (p-value)
Bo -20.81 (<0.0001) +46.45 (<0.0001) +77.85 (<0.0001) +57.40 (<0.0001)
B1 +31.96 (<0.0001) +0.50 (<0.0001) +119.88 (<0.0001) +0.52 (<0.0001)
B2 +9.14 (<0.0001) +42.17 (<0.0001) -60.46 (0.0011) +36.26 (<0.0001)
B12 -5.00 (<0.0001) -0.62 (<0.0001) n.a. -1.27 (0.1512)
Bi1 -0.17 (0.0078) n.a. -2.84 (<0.0001) n.a.
B2z n.a. -7.37 (<0.0001) n.a. -6.62 (0.0020)
Bi22 n.a +0.13 (<0.0001) n.a. +0.29 (<0.0001)
R? 0.9448 0.9832 0.9509 0.9257
RZadj 0.9369 0.9800 0.9448 0.9088
F-value 119.71 315.10 154.91 54.82

n.a.: regression coefficients were not significant based on p-value

Figure S3. Actual vs. predicted values for RSM models of A) CH4 production volume (mL) and B)
CH. content (%) at mesophilic temperature; and C) CH. production volume (mL) and D) CH. content

(%) at thermophilic temperature.
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Figure S4. Digestate characteristics before and after AD experiments; A) total and volatile solids and
B) pH for FWSB experiment at mesophilic temperature; C) total and volatile solids and D) pH for
FWSB experiment at thermophilic temperature; and E) total and volatile solids and F) pH for FWSB
and CWSB comparison.
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