

1 ***In-situ* biogas upgrading during anaerobic digestion of food waste amended with walnut shell
2 biochar at bench-scale**

3 **Jessica L. Linville, Yanwen Shen, Patricia A. Ignacio-de Leon, Robin P. Schoene, Meltem**

4 **Urgun-Demirtas***

5 Argonne National Laboratory, Energy Systems Division

6 9700 S Cass Avenue, Lemont, IL, 60439, USA

7 * Corresponding author: demirtasmu@anl.gov

8 **Abstract**

9 A modified version of an *in-situ* CO₂ removal process was applied during AD of food waste with two
10 types of walnut shell biochar (WSB) at bench-scale under batch operating mode. Compared to the
11 coarse WSB, the fine WSB has a higher ash content (43 vs. 36 wt%) and higher concentrations of
12 calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of
13 ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96 - 3.83 g biochar (g
14 VS_{added})⁻¹ fine WSB amended digesters produced biogas with 77.5-98.1% CH₄ content by removing
15 40-96% of the CO₂ compared to the control digesters at mesophilic and thermophilic temperature
16 conditions. In a direct comparison at 1.83 g biochar (g VS_{added})⁻¹, the fine WSB amended digesters
17 (85.7% CH₄ content and 61% CO₂ removal) outperformed the coarse WSB amended digesters (78.9%
18 CH₄ content and 51% CO₂ removal). Biochar addition also increased alkalinity as CaCO₃ from 2,800
19 mg L⁻¹ in the control digesters to 4,800-6,800 mg L⁻¹ providing process stability for food waste AD.

20 **Keywords** Renewable methane, food waste, anaerobic digestion, CO₂ removal, biochar

21

22

23 **Introduction**

24 Approximately 13.9% of all US municipal solid waste (MSW) or 31.5 million metric tonnes (MMT)
25 per year is classified as organic food waste (FW) (USEPA 2012, Linville et al. 2015). Landfilling and
26 incineration of FW are not sustainable because of limited land availability and rising landfill fees, and
27 increased energy consumption from the FW's high moisture content, respectively (Linville et al.
28 2015, Wang et al. 2013). FW is the largest portion of organic waste sent to landfills (USEPA 2012),
29 highly biodegradable (Levis and Barlaz 2011), and the dominant contributor to considerable
30 uncontrolled release of methane (CH_4), a greenhouse gas (GHG) (USEPA 2015). In 2013, landfills
31 were the third largest source of CH_4 emissions in the US (114.6 MMT of CO_2 equivalent (MMT
32 CO_2e) (USEPA 2015). Less than 5% of discarded FW is being recovered; utilizing anaerobic
33 digestion (AD) is a positive alternative owing to its energy-rich characteristics and high energy-
34 recovery from produced biogas (Grimberg et al. 2015, Wang et al. 2013, Zhang et al. 2013). Biogas is
35 composed of 50-70% CH_4 and 30-50% carbon dioxide (CO_2), with trace amounts of hydrogen sulfide
36 (H_2S) and other impurities (Lombardi and Carnevale 2013, Shen et al. 2015a). Biogas is upgraded to
37 renewable CH_4 through costly upgrading processes for removal of CO_2 and impurities (Lombardi and
38 Carnevale 2013) increasing production costs by 20-72% (Beil et al. 2013, Murray et al. 2014).
39 Financial issues with food waste anaerobic digestion (FWAD) may be eliminated or minimized with
40 cost competitive biogas upgrading and treatment technology (Linville et al. 2015).

41 The research objective is to enhance FWAD adapted from *in-situ* CO_2 removal process developed for
42 wastewater treatment plants (WWTPs) sludge AD. The process was modified for the increased
43 biomethane potential of FW ($290 - 500 \text{ m}^3 \text{ CH}_4 (\text{tonne VS})^{-1}$) compared to sludge ($220 - 310 \text{ m}^3 \text{ CH}_4$
44 ($\text{tonne VS})^{-1}$) (Linville et al. 2015, Shen et al. 2015b, Snyder et al. 2014). FW poses challenges for
45 AD due to the high solids content, and highly varying composition and volume (Grimberg et al. 2015,
46 Leiva et al. 2014, Zhang and Jahng 2012), increased biodegradation of carbohydrates and lipids
47 leading to increased volatile fatty acids (VFAs) production rate and low digester pH (Bozym et al.
48 2015, Wang et al. 2013). Failure to maintain the balance between acidogenic and methanogenic
49 microorganisms causes digester instability and upsets due to the differences in physiology, nutritional
50 needs, growth kinetics, and susceptibility to environmental conditions (Linville et al. 2015).

51 Parameters and inhibitory substances have also been reported with FWAD including C/N ratio, and
52 VFAs, lipids, H₂S and NH₃, respectively (Wang et al. 2013) which cause lower CH₄ yields and longer
53 digestion times (Zhang et al. 2013). However, biochar amendment can potentially stabilize AD (Shen
54 et al. 2015b, Snyder et al. 2014). In this study, the applicability of the *in-situ* CO₂ removal process for
55 FWAD was determined by optimizing biochar doses to increase CO₂ removal without causing
56 digester toxicity. The process captures and sequesters the CO₂ produced during AD by utilizing
57 biochar from gasification or pyrolysis of lignocellulosic biomass under oxygen-starved conditions
58 (Brown 2011). Biochar has high cation concentrations including calcium, magnesium, sodium, and
59 potassium to sequester CO₂ (Cheah et al. 2014, Gul et al. 2015, Shen et al. 2015b, Tan et al. 2015)
60 which may have stimulatory benefits for FWAD (Bozym et al. 2015, Chen et al. 2008). This study
61 uses walnut shell biochar (WSB) (fine or coarse) instead of previously reported corn stover biochar
62 because there is no economic competition as with the corn stover feedstock for cellulosic biofuels
63 production (Shen et al. 2015b). Walnut shells are a carbonaceous waste product of orchards (Daoyuan
64 et al. 2014) and presents a future scenario where local biomass residues are used for bioenergy
65 production with the biochar available for utilization (Mukome et al. 2013). WSB has been used as a
66 sorbent to remove contaminants (Tan et al. 2015), as soil amendment to increase water holding
67 capacity (Daoyuan et al. 2014) and to reduce GHG emissions (Mukome et al. 2013, Suddick and Six
68 2013). To date no study has attempted to investigate the effect of WSB on FWAD performance.
69 The aim of this study is to investigate: 1) the effect of WSB doses on FWAD at mesophilic and
70 thermophilic temperatures, and 2) the effect of particle size and ash content of WSB on digester
71 performance. This process could enhance the economics of FWAD to supply renewable CH₄ in a
72 quality that allows injection into the natural gas pipeline or use as vehicle fuel.. Overall, the process
73 could provide an economically viable waste-to-energy process, reduce GHG emissions, reduce
74 demand for fossil fuels, and reduce environmental impacts associated with a major US waste source.

75 **Materials and methods**

76 Characteristics of food waste, sewage sludge and biochar

77 The AD experiments were conducted using FW as the substrate and AD sludge from a municipal
78 WWTP as the inoculum source. The FW was prepared by mixing various fruits, vegetables, bread,
79 grease, and coffee grounds and filters in a blender, and stored at 4°C (Table S1) (Kovacs et al. 2015).
80 The inoculum was obtained from the outlet of the methane-phase digester at Woodridge Greene
81 Valley Wastewater Facility located at Woodridge, Illinois. The facility operates a two-stage AD
82 system as reported previously (Shen et al. 2015b). Fine WSB (FWSB) and coarse WSB (CWSB)
83 samples were provided by Dixon Ridge Farms located in California which utilizes a 50 kW BioMax
84 50 (Community Power Corporation, Littleton, Colorado, USA) downdraft gasifier at 900 °C (Suddick
85 and Six 2013).

86 Anaerobic digestion experiment design

87 The AD experiments were conducted in 650 mL Wheaton serum bottles at either mesophilic (37 °C ±
88 1 °C) or thermophilic (55 °C ± 1 °C) temperature with a working volume of 550 mL. The first
89 experiment was conducted with a single replicate and tested the FWSB at two dosages at mesophilic
90 temperature; 1.91 and 3.83 g biochar (g VS_{added})⁻¹ and three dosages at thermophilic temperature;
91 0.96, 1.91 and 3.83 g biochar (g VS_{added})⁻¹ (5, 10, and 20 g of FWSB per digester), against a positive
92 control (PC) digester without FWSB at both temperatures (Table 1). The dose was selected based on
93 averaged values of other biochar samples tested in the lab (data not shown). The second experiment
94 was conducted at thermophilic temperature in duplicate for the PC and in triplicate for the FWSB and
95 CWSB each at a dosage of 1.83 g biochar (g VS_{added})⁻¹ (10 g WSB per digester) (Table 1). Each
96 digester contained inoculum (4.7 g dry matter, 3 g VS), food waste (2.3 g dry matter, 2.2 g VS),
97 varying concentrations of WSB (depends on the experimental condition) and deionized water as the
98 makeup water, and was sparged with helium gas (99.999% purity) (Airgas, Minooka, Illinois) for 2.5
99 min before AD experiments began. Each digester was then either placed in an MPA-200 Biomethane
100 Potential Analyzer system (Challenge Technology, Springdale, Arizona) or in a New Brunswick's
101 model I24 benchtop incubating shaker (Eppendorf, Hauppauge, New York) as described previously
102 (Shen et al. 2015b), otherwise identical continuously stirred digesters. In brief, the MPA-200 system
103 consists of a respirometry-based unit for gas measurement and automated data recording. Each

104 digester in the incubating shaker was attached to a multi-layer foil gas sampling bag (Restek,
105 Bellefonte, Pennsylvania) for gas volume measurement daily. The gas production volume was
106 adjusted to dry ambient temperature and pressure (20 °C and 101,325 Pa) to account for temperature
107 and pressure fluctuations in the lab (Walker et al. 2009). All the experiments were operated in batch
108 mode and at 50 rpm agitation. The batch experiments were terminated when the daily biogas
109 production volume reached less than 1% of the total biogas volume.

110 Analyses

111 *Biochar characterization*

112 Particle size distribution of biochar samples was determined using the method as described previously
113 (Shen et al. 2015b). Brunauer-Emmet-Teller (BET) surface area, total pore volume and pore size were
114 determined utilizing argon or nitrogen gas adsorption analysis at 77.35 K (Brewer et al. 2009).
115 Surface morphology was characterized by using scanning electron microscope (SEM) (Shen et al.
116 2015b). Proximate, ultimate and ash elemental analyses were conducted in triplicate using the
117 methods as reported in detail in our previous publication (Shen et al. 2015b).

118 *Feedstock and digestate characterization*

119 Total solids (TS) and volatile solids (VS) contents were determined per Standard Methods (APHA et
120 al. 2012). Total chemical oxygen demand (COD), total organic carbon (TOC), total alkalinity (TA),
121 total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (NH₃-N) were determined using
122 Hach test kits (Hach, Loveland, CO). Total metal (Al, Ca, Fe, Mg, Mn, K, Si, and Na) concentrations
123 were analyzed using USEPA Method 200.7 (USEPA 2007a) and 200.8 (USEPA 2007b).

124 *Gas sampling and analysis*

125 Gas samples were taken from the digester headspace periodically as described in (Shen et al. 2015b).
126 Biogas was analyzed for CH₄ and CO₂ by using a Shimadzu GC-2014 gas chromatograph equipped
127 with a thermal conductivity detector (TCD) and a Supelco 80/100 Porapak Q packed column (5m x
128 3.175mm x 2.1 mm) (Sigma-Aldrich, St. Louis, MO). Helium (99.999% purity) (Airgas, Minooka,

129 IL) was used as the carrier gas. The column temperature was set at 100 °C isothermally and the TCD
130 temperature was set at 170 °C.

131 *Statistical analysis*

132 All statistical comparisons were conducted using the student's t-test with a 95% confidence interval.
133 Time course data was analyzed with a paired t-test and the initial and final averaged digester values
134 were analyzed with an unpaired t-test. Comparisons were considered statistically different in the p-
135 value was less than 0.05.

136 *RSM model development for methane production and content*

137 This statistical technique is a useful tool for AD optimization when the response (CH₄ production
138 volume and CH₄ content) may be influenced by several variables (Ahmad et al. 2014a, Gonzalez-
139 Fernandez et al. 2011, Jimenez et al. 2014, Linville et al. 2016, Montgomery 2005). The full model
140 methodology was described by Linville et al. (2016). In brief, the software program Design Expert 9
141 (Jin et al. 2013) was used to determine the model equation for CH₄ production volume and content
142 with variables as X₁ (digestion time, days) and X₂ (biochar dosage, g biochar (g VS_{added})⁻¹) (Table S2).
143 Insignificant terms (p-value > 0.05) were removed from the model except when required to support
144 the hierarchy (Causton et al. 2001, Jin et al. 2013).

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{122} X_1 X_2^2$$

145 Multi-objective optimization (MO) analysis was performed using the proposed model equations to
146 maximize the two response variables (CH₄ production volume and CH₄ content) that are dependent on
147 the same inputs (FWS dosage and digestion time), using Matlab® version 7.4.0 (R2015b)
148 Optimization Toolbox (Brule et al. 2014).

149

151 **Results and discussion**

152 *Biochar characteristics*

153 The two WSB were produced by pyrolysis at different temperatures and treated with different
154 activation techniques resulting in varied physical and chemical properties (Tan et al. 2015). The

155 FWSB has a particle size distribution with approximately 76.9 wt% of the particles below a particle
156 size 500 μm and the largest fraction (31.8 wt%) of particles between 125-177 μm . The CWSB has
157 23.9 wt% of particles below a particle size of 500 μm and most particles (68.6 wt%) above 707 μm
158 (Figure S1). SEM images of FWSB and CWSB at 200x Magnification (Figure 1A and 1B,
159 respectively) and 1000x Magnification (Figure 1C and 1D, respectively) show the morphologies of
160 tested WSB and differences in their hierarchical structures. Surface area of biochar is dependent on
161 particle size of feedstock pellet, reaction temperature and reactor operational conditions (Manya
162 2012). Increasing pyrolytic temperature increases the escape of volatile substances and the formation
163 of channel structures thus improves the specific surface area and pore structure (Tan et al. 2015).

164 Physical and chemical analyses results are shown in Table 2. The BET surface area of the FWSB was
165 measured as $86.5 \text{ m}^2 \text{ g}^{-1}$ and the CWSB as $793 \text{ m}^2 \text{ g}^{-1}$ which are remarkably different than previously
166 reported WSB ($227 \text{ m}^2 \text{ g}^{-1}$) (Daoyuan et al. 2014, Mukome et al. 2013). It should be noted that direct
167 comparison of the pore volume and area is difficult due to FWSB sample interaction with Ar/N₂ gas.
168 The FWSB and CWSB both have a high ash content like other WSB (ash content 40.4 - 46.6 wt%)
169 (Daoyuan et al. 2014, Mukome et al. 2013, Suddick and Six 2013). Furthermore, the FWSB and
170 CWSB have a carbon content like other WSB (55.3%) (Mukome et al. 2013, Suddick and Six 2013),
171 but less than woody biomass such as oak (65.3%-84.4%) (Brewer et al. 2009, Cheah et al. 2014).
172 FWSB and CWSB have similar hydrogen content; however, the FWSB has higher oxygen content
173 compared to the CWSB. The H:C molar ratio represents the degree of carbonization as hydrogen is
174 primarily associated with the organic matter in the biomass (Tan et al. 2015). The FWSB and CWSB
175 both have a low molar H:C ratio like other WSB (0.22) (Mukome et al. 2013). The surface
176 hydrophilicity of biochar, described by molar O:C ratio, is indicative of polar-group content (Tan et
177 al. 2015). The O:C ratio of the FWSB and CWSB is again low (Ahmed et al. 2016, Keiluweit et al.
178 2010). The FWSB ash contains 31.0% CaO, 8.4% MgO, 23.4% Na₂O, and 0.2% K₂O while the
179 CWSB ash contains 19.2% CaO, 5.6% MgO, 0.3% Na₂O, and 40.3% K₂O. Based on the ash percent
180 and cation concentrations, the CWSB requires roughly 1.35 times as much biochar as the FWSB to
181 remove the same amount of CO₂.

182 In summary, the FWSB has greater ability to promote *in-situ* CO₂ removal due to the smaller particle
183 size and higher ash content leading to a higher cation concentration compared to the CWSB as
184 discussed below.

185 *Anaerobic digestion experiments*

186 The WSB's ability to promote *in-situ* CO₂ removal during FWAD was tested at typical design ranges:
187 mesophilic (35-40 °C) and thermophilic (50-55 °C) temperatures (Linville et al. 2015). Mesophilic
188 AD is commonly used for organic wastes due to the low capital costs and ease of operation (Linville
189 et al. 2015). However, thermophilic AD has many inherent advantages over mesophilic AD including
190 faster reaction rates, higher biogas production rate and volume, less foaming and enhanced pathogen
191 reduction (De la Rubia et al. 2013, Suryawanshi et al. 2010). The elevated temperature also enhances
192 the leaching and dissolution of the cations (Ca, Mg, Na, and K) from biochar (Pan et al. 2012, Sanna
193 et al. 2014) and the endothermic adsorption capacity of the biochar (Tan et al. 2015). The
194 performance of FWAD is also improved by alkaline condition at thermophilic temperature (Vlyssides
195 and Karlis 2004).

196 *Comparison of fine walnut biochar at mesophilic and thermophilic temperature*

197 The FWSB test lasted 54 days at mesophilic temperature and 26 days at thermophilic temperature.
198 Figure 2 shows the time course of CH₄ content (% v/v), CH₄ production volume (mL), and CO₂
199 production volume (mL) for the digesters at mesophilic and thermophilic temperature, respectively.
200 The CH₄ content on day 1 was 100% for the 37FWS10 and 37FWS20 digesters whereas the 37PC
201 digester had a 45% CH₄ content (Figure 2A). The CH₄ content in the 37FWS10 digester and
202 37FWS20 digester remained statistically higher (p-value < 0.001) than the 37PC digester after day 26.
203 The 37FWS10 and 37FWS20 digesters have a statistically lower CH₄ volume (p-value <0.0095 for
204 both, Figure 2B) due to lower biogas production volume (Figure S2). Interestingly, the CH₄ yields
205 were similar between the 37PC (484 mL CH₄ (g VS_{degraded})⁻¹) and the 37FWS10 (492 mL CH₄ (g
206 VS_{degraded})⁻¹) digesters; however, the 37FWS20 CH₄ yield was much lower (131 mL CH₄ (g VS_{degraded})⁻¹
207) indicating that the FWSB dose was inhibitory at higher concentrations. Furthermore, the CO₂

208 production volume (mL) was also much lower in the 37FWS10 and 37FW20 digester compared to the
209 37PC due to a combination of lower biogas production volume and higher CH₄ content (Figure 2C).

210 The CH₄ content on day 1 was above 93% for the 55FWS5 digester and at 100% for the 55FWS10
211 and 55FWS20 digester whereas the 55PC had a 54% CH₄ content (Figure 2D). The CH₄ content
212 stabilized by day 7. Compared to the 55PC, the averaged CH₄ content is statistically higher in the
213 FWSB supplemented digesters(p-value <0.0001 for all). There is no inhibition in the 55FWS5
214 digester based on the CH₄ production volume compared to the 55PC (Figure 2E) (p-value 0.7615).
215 There is also no statistical difference in the CH₄ production volume between the 55FWS10 and
216 55FWS20 digesters (p-value 0.7843); however, there is a 20.5% reduction in CH₄ volume between the
217 55PC/55FWS5 and 55FWS10/55FWS20 digesters (Figure 2E). Likewise, the CH₄ yields were similar
218 between the 55PC and 55FWS5 digesters (633 and 606 mL CH₄ (g VS_{degraded})⁻¹, respectively), and
219 between the 55FWS10 and 55FWS20 digesters (478 and 466 mL CH₄ (g VS_{degraded})⁻¹, respectively)
220 indicating an inhibition at the higher FWSB dosages. Most remarkably, the CO₂ production volume
221 (mL) is reduced by 39.2% in the 55FWS5 digester compared to the 55PC without any loss in CH₄
222 volume. Furthermore, the 55FWS10 digester had a 73.1% reduction and the 55FWS20 digester had a
223 95.8% reduction in CO₂ volume compared to the 55PC (Figure 2F) due to lower biogas production
224 volume (Figure S2) and higher CH₄ content due to addition of higher FWSB concentrations.

225 The FWAD benefited from the FWSB addition regarding the CO₂ removal from the biogas for both
226 temperatures. CO₂ adsorption increased with increasing FWSB addition attributed to increased
227 available adsorption surface and more reactive sites (Tan et al. 2015). Adsorption, electrostatic
228 interactions and/or polarity attraction are some of the possible mechanisms for CO₂ removal due to
229 biochar in the digester (Ahmad et al. 2014b). H:C and O:C are indicators of biochar's stability and
230 hydrophobicity, and their contribution to the absorption capacity is not quite clear. However, the small
231 particle size provides a large surface area for CO₂ adsorption, as discussed before. The high ash
232 content and high concentration of base cations (Ca, Mg, Na, and K) in FWSB contributes to the
233 accelerated carbonation reaction (Shen et al. 2015b). Total concentrations of base cations (Ca, Mg, Na
234 and K) are positively correlated to biochar's alkalinity (Fidel et al. 2017), and therefore can be used as

235 indicator of CO₂ absorption capacity. Shen et al., reported CO₂ sorption processes based on a pseudo-
236 second-order kinetic model for corn stover biochar which indicates physical adsorption, and a weak
237 bonding between adsorbate and adsorbent (Shen et al. 2015b). Other studies have shown a decrease in
238 CO₂ emissions from biochar amended soil (Daoyuan et al. 2014; Mukome et al. 2013).

239 The FWAD was more efficient at thermophilic temperature with the 55PC having a digestion period
240 28 days shorter than the 37PC while producing 23% more biogas. AD was inhibited from higher
241 concentrations of FWSB at both temperatures. The 55FWS10 digester and 37FW10 digester saw a
242 37% decrease in biogas production volume compared to the PC digester at the respective temperature
243 (Figure S2). The biogas production volume was less inhibited for the 55FWS20 compared to the
244 37FWS20 digester. The decrease in inhibition may be due to the faster reaction rate and higher biogas
245 production volume at thermophilic temperature (De la Rubia et al. 2013, Suryawanshi et al. 2010).

246 *Response surface methodology (RSM) modeling*

247 The dosage of adsorbent has significant influence on the adsorption efficiency; therefore, applying the
248 optimum dosage of WSB for CO₂ removal is crucial for its cost-effective application (Tan et al.
249 2015). The studied parameters (digester operating time and FWSB dosage) was optimized by
250 response surface methodology (RSM) at each temperature (Figure S3 and Table S2). The interactive
251 effects of the independent variables on CH₄ production volume and CH₄ content were illustrated by
252 three-dimensional plots (Figure 3). The results of the MO determined that near pipeline-quality
253 methane content (>90% CH₄) (Shen et al. 2015b) can be achieved with only a slight reduction in CH₄
254 production volume. The maximum volume of pipeline-quality methane that can be achieved at
255 mesophilic temperature is 670 mL with a digestion time of 47 days and 1.94 g biochar (g VS_{added})⁻¹
256 FWSB addition, and at thermophilic temperature is 1186 mL with a digestion time of 20 days and
257 2.46 g biochar (g VS_{added})⁻¹ FWSB addition.

258 *Comparison of fine and coarse walnut biochar performance at thermophilic temperature*

259 The impacts of different biochar addition (FWSB versus CWSB) on AD performance were
260 investigated at thermophilic temperature for 25 days. Figure 4 shows the time course of CH₄ content

261 (% v/v), CH₄ production volume (mL), and CO₂ production volume (mL) for the digesters with
262 FWSB and CWSB. The initial CH₄ content for the 55FWS10 digester was higher than the 55CWS10
263 digester and both were greater than the 55PC digester (Figure 4A). The CH₄ content stabilized in the
264 55PC digester after day 4. The CH₄ content was statistically higher in the 55CWS10 digester and the
265 55FWS10 digester compared to the 55PC digester (p-value <0.0001 for both). The CH₄ content of the
266 55FWS10 digester is statistically higher than the 55CWS10 digester (p-value 0.0093). The CH₄
267 production volume (Figure 4B) was statistically different (p-value <0.005 for all conditions) showing
268 slight inhibition from the WSB concentration in the digester. Furthermore, the CH₄ yield for the 55PC
269 digesters (600 ± 29 mL CH₄ (g VS_{degraded})⁻¹) is higher than the 55CWS10 digesters (492 ± 30 mL CH₄ (g
270 VS_{degraded})⁻¹, p-value 0.0275) and the 55FWS10 digesters (510.0 ± 31 mL CH₄ (g VS_{degraded})⁻¹, p-value
271 0.0461). The limitation of the CWSB due to its larger particle size, and lower ash content thus lower
272 cation concentration can be seen in the CO₂ removal efficiency. The 55CWS10 digesters only had a
273 51.0% CO₂ removal and the 55FWS10 digesters had a 61.0% CO₂ removal compared to the 55PC
274 (Figure 4C).

275 To validate the RSM models at thermophilic temperature, the results for the 55FWS10 digesters were
276 compared. The estimated CH₄ production volume was 3.3% above the actual value and the estimated
277 CH₄ content was the same at 81.1%. This result shows that the RSM models provide an acceptable
278 model accuracy and high degree of fit to experimental data.

279 *Impact of biochar addition on digester performance*

280 The characteristics of the digester environment were compared before and after AD. Both the TS and
281 VS increased with increasing FWSB addition (Figure S4), which was expected. The thermophilic
282 temperature digesters had higher solids destruction compared to the mesophilic temperature digesters.
283 The pH increased with increasing concentration of FWSB, with the initial pH ranging from 8.6-9.2
284 (Figure S4). The 55CW10 digester had a higher pH than the 55FW10 digester (Figure S4). FWAD
285 can be characterized by low pH (Leiva et al. 2014); therefore, FWAD can be facilitated by the
286 alkaline pH treatment from WSB addition. It was also demonstrated that thermophilic alkaline
287 pretreatment (pH >8) could maximize VFAs yields during sludge AD because of faster reaction

288 kinetics and enrichment of VFA producing bacteria (Zhang et al. 2010). Furthermore, the final pH
289 values of all WSB digesters were still in a slightly alkaline range ($\text{pH} > 7.4$) regardless of digester
290 temperature or biochar dosage.

291 The cations in the WSB increased the buffering capacity of the biochar-amended digesters which
292 enhanced the process stability as compared to the PC digester. All WSB digesters had a final TA
293 concentration 1.9 – 2.7 times higher than the PC digester at both temperatures (Figure 5A and 5C).
294 The final TA concentrations were not statistically different in the 55FWS10 and 55CWS10 digesters
295 (Figure 5C). The final TA concentrations in digesters amended with 10g WSB dose or greater were
296 above the desirable range (2000-5000 mg L⁻¹) (Chen et al. 2008). The increase in alkalinity during AD
297 was the result of metabolic alkalinity from organic nitrogen degradation, hence ammonia formation
298 (Figure 5) or cation release from WSB (Speece 1996).

299 The $\text{NH}_3\text{-N}$ concentration increased by approximately 30% in the PC digesters after AD at both
300 temperatures compared to the FWSB amended digesters which ranged from 29% increase in the
301 55FWS5 digester to 2.0% increase in the 37FWS20 digester (Figure 5A and 5B). The degradation of
302 organic nitrogen-compounds caused the increase in ammonia (Speece 1996). There was no significant
303 difference in the initial or final $\text{NH}_3\text{-N}$ concentrations for the 55CWS10 or 55FWS10 compared to the
304 PC digesters which averaged 21.5% increase during the experiment (Figure 5C). An increase in pH
305 typically increases free ammonia (NH_3) inhibition (Chen et al. 2008) by shifting the $\text{NH}_3\text{-NH}_4^+$
306 equilibrium towards NH_3 formations in the digesters. However, the experimental results showed that
307 the change in ammonia concentration decreased with increasing WSB dose. The biochar's large
308 surface area promotes NH_3 adsorption thereby mitigating ammonia inhibition (Taghizadeh-Toosi et
309 al. 2011).

310 The TP concentration increased with increasing FWSB dose (Figure 5A and 5B) due to the FWSB ash
311 containing 6.0 wt% P_2O_5 (Table 2). The TP was higher in the 55FWS10 digester compared to the
312 55CWS10 digester (Figure 5C), despite similar P_2O_5 wt% in the ash due to the smaller particle size or
313 increased ash content having higher dissolution for the FWSB.

314 The initial COD increased with increasing WSB addition (Figure 5A and Figure 5B). The COD did
315 not decrease for the higher concentrations of WSB addition at either temperature due to inhibition.
316 The initial TOC also increased with increasing WSB addition which probably resulted from the
317 volatile matter in the biochar. However, the TOC decreased by similar amounts in all digesters at the
318 same temperature except for the 55FWS5 which decreased less. It should also be noted that TOC and
319 COD measurements include harsh conditions including low pH (pH=2) and high temperature (105-
320 150 °C). Nevertheless, biochar stores the organic carbon in a recalcitrant form which is represented by
321 the low O:C molar ratio (Table 2); hence, the biochar addition hardly increased bioavailable organic
322 matter concentration in the digester (Shen et al. 2015b). The COD and TOC concentrations were
323 higher in the 55FWS10 digester compared to the 55CWS10 digester (Figure 5C) which may be due to
324 the higher volatile matter and higher ash content in the FWSB (Table 2).

325 *Impact of biochar addition on cation concentrations*

326 Moderate levels of cations (Na, K, Mg, Ca) are essential for microbial growth, affect specific growth
327 rates in microorganisms, and reduce inhibition; however, excessive levels have serious toxic effects
328 inhibiting microbial growth (Bozym et al. 2015, Chen et al. 2008). While high WSB dosage increases
329 CO₂ removal, it results in digester cation toxicity; therefore, WSB dosage optimization is important.
330 The optimum cation concentrations have been reported as 200 mg L⁻¹ Ca, 100-200 mg L⁻¹ Na and
331 <400 mg L⁻¹ K with inhibitory concentrations ranging from 2500-4000 mg L⁻¹ Ca, >400 mg L⁻¹ Mg,
332 3500 -5500 mg L⁻¹ Na and >5800 mg L⁻¹ K (Bozym et al. 2015, Chen et al. 2008).

333 In all experiments, the PC digester had concentrations below the inhibitory levels (Figure 5). Na was
334 only detected in the PC digesters in the second experiment. However, the detection limit for Na was
335 50 mg L⁻¹ at the dilution factor used; therefore, it is likely that the Na concentration in the other
336 samples is below the detection limit (Figure S5). The decrease in biogas production volume for the
337 37FWS10, 37FWS20, 55FWS10 and 55FWS20 digesters compared to the PC digester (Figure 2B and
338 2E) may be due to the inhibitory Ca and Mg concentrations in the FWS10 and FWS20 digesters
339 (Figure 5A and 5B) (Bozym et al. 2015, Chen et al. 2008). However, the Ca and Mg concentration
340 was lower in the final 55CWS10 digesters leading to a smaller reduction in biogas production volume

341 compared to the 55FWS10 digesters (Figure 5C). Na was below the inhibitory level but detected
342 inconsistently due to the dilution factor (Figure S5). Although still below the inhibitory level, the K
343 concentration was higher in the final 55CWS10 digester than the final 55FWS10 digester (Figure 5C)
344 due to increased K content in the CWSB (Table 2). There is no significant difference in release of
345 cations from the FWSB at mesophilic versus thermophilic temperature. Although inhibitory levels of
346 each cation were compared with the literature data, the synergistic impacts of all cations also need to
347 be considered. However, to the best of authors' knowledge there is no information on this adverse
348 effect in the literature. Also, as expected from the biochar characterization results (Table 2), the
349 concentrations of aluminum, iron, manganese, and silicon increased with increasing concentration of
350 biochar (Figure S5).

351 **Conclusion**

352 This study resolved challenges surrounding FW, as a highly degradable AD substrate, reducing the
353 overall digester performance due to reactor instability. The impacts of two WSB's on digester
354 performance and *in-situ* CO₂ removal during FWAD were compared in this study. The FWSB has
355 better CO₂ absorption capacity compared to the CWSB due to the increased surface area and ash
356 content which leads to a higher cation concentration and alkalinity in the digester. The FWSB could
357 remove 61.0% of the CO₂ produced by volume whereas the CWSB could remove 51.0% of the CO₂
358 produced by volume compared to the control digester. A decrease in biogas/methane production was
359 observed with higher dosages of biochar due to higher concentrations of mono- and divalent cations
360 released from the biochar into the digester environment. However, impact of high biochar dosages on
361 methane production in thermophilic digesters (665 mL of methane produced at 55FW20) was less
362 than that of mesophilic digesters (220 mL of methane produced at 37FW20). This is due to better
363 hydrolysis efficiency and faster microbial reaction rates, which lead to higher biogas/CH₄ production.
364 The biochar increased process stability by increasing the total alkalinity and pH of the digesters. RSM
365 modeling showed that near-pipeline quality methane (>90% CH₄) can be achieved utilizing a dose of
366 1.94 g biochar (g VS_{added})⁻¹ at mesophilic temperature and a dose of 2.46 g biochar (g VS_{added})⁻¹ at
367 thermophilic temperature. This hypothesis will be tested by conducting AD experiments under

368 continuous operation in the future. This process can provide a new path towards efficient and
369 economical renewable CH₄ production from FWAD, with respect to enhanced CO₂ removal,
370 improved process stability at thermophilic temperatures and elimination of energy/cost intensive
371 biogas cleanup and upgrading process as well as reduction in the amount of FW being sent to
372 landfills.

373 **Acknowledgements**

374 This work was sponsored by via Sacramento Municipal Utilities (SMUD) by the California Energy
375 Commission of California Government (ARV-10-003-01). The submitted manuscript has been created
376 by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a US
377 Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-
378 06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up
379 nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works,
380 distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
381 government. The funding source for the work reported here did not have a role in study design, data
382 collection, analysis, data interpretation, writing, or in the decision to publish.

383 The authors also would like to thank Woodridge Greene Valley Wastewater Facility of DuPage
384 Country, Illinois for their support and assistance, and Valentino Tiangco from SMUD and Josh
385 Rapport from CleanWord for providing valuable insight on anaerobic digestion operations.

386 **List of Figures**

387 **Figure 1.** SEM images 200x Magnification for C) FWSB and D) CWSB, and at 1000x Magnification
388 for E) FWSB and F) CWSB.

389 **Figure 2.** Time-course profiles of FWSB amended AD experiment at mesophilic temperature: A) CH₄
390 content of biogas (%); B) cumulative CH₄ production volume (mL); C) cumulative CO₂ production
391 volume (mL) and at thermophilic temperature: D) CH₄ content of biogas (%); E) cumulative CH₄
392 production volume (mL); F) cumulative CO₂ production volume (mL).

393 **Figure 3.** Three-dimensional (3D) response surface showing the effects of interactions on AD of FW
394 for A) CH₄ production volume (mL) and B) CH₄ content (%) at mesophilic temperature; and C) CH₄
395 production volume (mL) and D) CH₄ content (%) at thermophilic temperature.

396 **Figure 4.** Time-course profiles of FWSB and CWSB amended AD experiment: A) CH₄ content of
397 biogas (%); B) cumulative CH₄ production volume (mL); C) cumulative CO₂ production volume
398 (mL). Data are means and error bars show standard deviations.

399 **Figure 5.** Digestate characteristics before and after AD experiments; A) for FWSB experiment at
400 mesophilic temperature; B) for FWSB experiment at thermophilic temperature; and C) for FWSB and
401 CWSB comparison.

402

403 **Table 1: Experimental Conditions**

Condition	Temperature	Ingredients
37PC ^a	37 °C	Inoculum + substrate
37FWS10	37 °C	Inoculum + substrate + biochar (1.91 g (g VS _{added}) ⁻¹)
37FWS20	37 °C	Inoculum + substrate + biochar (3.83 g (g VS _{added}) ⁻¹)
55PC ^b	55 °C	Inoculum + substrate
55FWS5	55 °C	Inoculum + substrate + biochar (0.96 g (g VS _{added}) ⁻¹)
55FWS10	55 °C	Inoculum + substrate + biochar (1.91 g (g VS _{added}) ⁻¹)
55FWS20	55 °C	Inoculum + substrate + biochar (3.83 g (g VS _{added}) ⁻¹)
55FWS10	55 °C	Inoculum + substrate + biochar (1.83 g (g VS _{added}) ⁻¹)
55CWS10	55 °C	Inoculum + substrate + biochar (1.83 g (g VS _{added}) ⁻¹)

404 ^a Positive Control, ^b Condition used in both thermophilic experiments

405

406

407 **Table 2. Physical and Chemical properties of FWSB and CWSB**

408

		FWSB	CWSB
Physical Properties	BET surface area (m ² g ⁻¹)	86.5	792.7
	Total volume of mesopores (cm ³ g ⁻¹)	0.16	0.11
	Average diameter of mesopores (nm)	7.06	3.67
	Total area of micropores (m ² g ⁻¹)	109.98	899.04
	Total volume of micropores (cm ³ g ⁻¹)	0.15	0.40
Proximate Analysis (wt %)	Moisture	2.7 ± 0.1	2.0 ± 0.1
	Ash	43.2 ± 0.2	36.3 ± 0.1
	Volatile Matter	21.2 ± 0.3	12.9 ± 1.1
	Fixed Carbon	32.8 ± 0.4	48.8 ± 1.1
Ultimate Analysis (wt %)	Moisture	2.7 ± 0.1	2.0 ± 0.1
	Ash	43.2 ± 0.2	36.3 ± 0.1
	S	1.5 ± 0.03	0.03 ± 0.02
	C	47.0 ± 0.3	61.0 ± 0.4
	H	0.8 ± 0.04	0.5 ± 0.1
	N	0.8 ± 0.1	0.6 ± 0.04
Atomic Ratio	O	3.9 ± 0.6	0.03 ± 0.03
	H:C molar	0.20 ± 0.01	0.09 ± 0.02
	O:C molar	0.06 ± 0.01	0.0003 ± 0.0004
Elemental Analysis of Ash (wt % of ash)	C:N molar	68.6 ± 4.9	117.3 ± 6.6
	SiO ₂	1.7 ± 0.1	1.4 ± 0.6
	Al ₂ O ₃	0.7 ± 0.2	1.1 ± 0.3
	TiO ₂	0.02 ± 0.00	0.1 ± 0.02
	Fe ₂ O ₃	0.4 ± 0.01	0.3 ± 0.01
	CaO	31.0 ± 0.7	19.2 ± 0.7
	MgO	8.4 ± 0.1	5.6 ± 0.03
	Na ₂ O	23.4 ± 0.4	0.3 ± 0.01
	K ₂ O	0.2 ± 0.01	40.3 ± 1.5
	P ₂ O ₅	6.0 ± 0.03	6.2 ± 0.00
	SO ₃	8.0 ± 0.3	0.1 ± 0.02
	Cl	3.2 ± 0.03	1.9 ± 0.06
	CO ₂	14.8 ± 0.5	25.2 ± 0.3

409 Data are shown in average values based on triplicate measurements ± standard deviations.

410

411

412 **Reference**

413 Ahmad A, Shah SMU, Buang A, Othman MF, Abdullah MA, (2014a) Evaluation of aerobic
414 and anaerobic co-digestion of *Tetraselmis suecica* and Oil Palm Empty Fruit Bunches by
415 Response Surface Methodology. *Micro/Nano Scientific Engineering* 925: 243-247.

416 Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, et al. (2014b) Biochar as
417 a sorbent for contaminant management in soil and water: a review. *Chemosphere* 99:19-33.

418 Ahmed MB, Zhou JL, Ngo HH, Guo WS (2016) Insight into biochar properties and its cost
419 analysis. *Biomass Bioenergy* 84: 76-86.

420 APHA, AWWA, WEF (2012) Standard Methods for the Examination of Water and
421 Wastewater, 22nd ed. American Public Health Association; American Water Works
422 Association; Water Environment Federation.

423 Beil M, Beyrich W, Holzhammer U, Krause T (2013) *Biomethane*, Gulzow-Pruzen,
424 Germany: Agency for Renewable Resources.

425 Bozym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M (2015) An analysis of
426 metal concentrations in food wastes for biogas production. *Renewable Energy* 77: 467-472.

427 Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of Biochar from
428 Fast Pyrolysis and Gasification Systems. *Environmental Progam and Sustainable Energy* 28:
429 386-396.

430 Brown RC (2011) *Thermochemical processing of biomass: Conversion into fuels, chemicals
431 and power* Wiley, Great Britain: Wiley Series in Renewable Resource.

432 Brule M, Oechsner H, Jungbluth T (2014) Exponential model describing methane production
433 kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential
434 assays. *Bioprocess and Biosystems Engineering* 37: 1759-1770.

435 Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander
436 ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental
437 changes. *Molecular Biology of the Cell* 12: 323-337.

438 Cheah S, Malone SC, Feik CJ (2014) Speciation of sulfur in biochar produced from pyrolysis
439 and gasification of oak and corn stover. *Environmental Science and Technology* 48: 8474-
440 8480.

441 Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: A review.
442 *Bioresoure Technology* 99: 4044-4064.

443 Daoyuan W, Van D, Song X, Wang H (2014) Impact of Biochar on Water Holding Capacity
444 of Two Chinese Agricultural Soil. *Advanced Materials Research* 941-944, 952-955.

445 De la Rubia MA, Riau V, Raposo F, Borja R (2013) Thermophilic anaerobic digestion of
446 sewage sludge: focus on the influence of the start-up: A review. *Critical Review of
447 Biotechnology* 33: 448-460.

448 Fidel RB, Laird DA, Thompson ML, Lawrinenko M (2017) Characterization and
449 quantification of biochar alkalinity. *Chemosphere* 167, 367-373.

450

451 Gonzalez-Fernandez C, Molinuevo-Salces B, Cruz Garcia-Gonzalez M (2011) Evaluation of
452 anaerobic codigestion of microalgal biomass and swine manure via response surface
453 methodology. *Applied Energy* 88: 3448-3453.

454 Grimberg SJ, Hilderbrandt D, Kinnunen M, Rogers S (2015) Anaerobic digestion of food
455 waste through the operation of a mesophilic two-phase pilot scale digester - Assessment of
456 variable loadings on system performance. *Bioresoure Technology* 178: 226-229.

457 Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties
458 and microbial responses in biochar-amended soils: Mechanisms and future directions.
459 *Agriculture, Ecosystems and Environment* 206: 46-59.

460 Jimenez J, Guardia-Puebla Y, Romero-Romero O, Cisneros-Ortiz ME, Guerra G, Morgan-
461 Sagastume JM, Noyola A (2014) Methanogenic activity optimization using the response
462 surface methodology, during the anaerobic co-digestion of agriculture and industrial wastes.
463 *Biomass Bioenergy* 71: 84-97.

464 Jin RC, Xing BS, Ni WM (2013) Optimization of partial nitritation in a continuous flow
465 internal loop airlift reactor. *Bioresoure Technology* 147: 516-524.

466 Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic Molecular Structure of Plant
467 Biomass-Derived Black Carbon (Biochar). *Environmental Science and Technology* 44: 1247-
468 1253.

469 Kovacs E, Wirth R, Maroti G, Bagi Z, Nagy K, Minarovits J, Rakhely G, Kovacs KL (2015)
470 Augmented biogas production from protein-rich substrates and associated metagenomic
471 changes. *Bioresoure Technology* 178: 254-261.

472 Leiva MB, Koupiae EH, Eskicioglu C (2014) Anaerobic co-digestion of wine/fruit-juice
473 production waste with landfill leachate diluted municipal sludge cake under semi-continuous
474 flow operation. *Waste Management* 34: 1860-1870.

475 Levis JW, Barlaz MA (2011) Is Biodegradability a Desirable Attribute for Discarded Solid
476 Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model.
477 *Environmental Science and Technology* 45: 5470-5476.

478 Linville JL, Shen Y, Urgun-Demirtas M, Snyder SW (2016) Effect of particle size and doses
479 of olivine addition on CO₂ sequestration during anaerobic digestion of sewage sludge at
480 ambient and mesophilic temperatures. *Process Biochemistry* 51: 59-72.

481 Linville JL, Shen Y, Wu MM, Urgin-Demirtas M (2015) Current State of Anaerobic
482 Digestion of Organic Wastes in North America. *Current Sustainable/Renewable Energy*
483 Reports 2:136-144.

484 Lombardi L, Carnevale E (2013) Economic evaluations of an innovative biogas upgrading
485 method with CO₂ storage. *Energy* 62: 88-94.

486 Manya JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge
487 gaps and research needs. *Environmental Science and Technology* 46: 7939-7954.

488 Montgomery D (2005) *Design and analysis of experiments* New York, USA: John Wiley

489 Mukome FND, Six J, Parikh SJ (2013) The effects of walnut shell and wood feedstock
490 biochar amendments on greenhouse gas emissions from a fertile soil. *Geoderma* 200: 90-98.

491 Murray B, Galik C, Vegh T (2014) Biogas in the United States: An Assessment of Market
492 Potential in a Carbon-Constrained Future. Nicholas Institute for Environmental Policy
493 Solutions, Duke University.

494 Pan SY, E CE, Chiang PC (2012) CO₂ capture by accelerated carbonation of alkaline wastes:
495 A review on its principles and applications. *Aerosol Air Quality Research* 12: 770-791.

496 Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM (2014) A review of mineral
497 carbonation technologies to sequester CO₂. *Chemical Society Review* 43: 8049-8080.

498 Shen Y, Linville JL, Urgun-Demirtas M, Mintz MM, Snyder SW (2015a) An overview of
499 biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the
500 United States: Challenges and opportunities towards energy-neutral WWTPs. *Renewable and*
501 *Sustainable Energy Review* 50: 346-362

502 Shen Y, Linville JL, Urgun-Demirtas M, Schoene RP, Snyder SW (2015b) Producing
503 pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover
504 biochar with in-situ CO₂ removal. *Applied Energy* 158: 300-309.

505 Snyder SW, Urgun-Demirtas M, Shen Y (2014) Method for generating methane from a
506 carbonaceous feedstock. U.S. Patent Serial No. 14/540,393, Argonne National Laboratory.
507 USA.

508 Speece R (1996) *Anaerobic Biotechnology for Industrial Wastewater*. Nashville, USA:
509 Archæe Press.

510 Suddick EC, Six J, (2013) An estimation of annual nitrous oxide emissions and soil quality
511 following the amendment of high temperature walnut shell biochar and compost to a small
512 scale vegetable crop rotation. *Science of the Total Environment* 465: 298-307.

513 Suryawanshi PC, Chaudhari AB, Kothari RM (2010) Thermophilic anaerobic digestion: the
514 best option for waste treatment. *Critical Review of Biotechnology* 30: 31-40.

515 Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condon LM (2011) Biochar adsorbed
516 ammonia is bioavailable. *Plant Soil* 350: 57-69.

517 Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the
518 removal of pollutants from aqueous solutions. *Chemosphere* 125: 70-85.

519 USEPA (2012) *Municipal Solid Waste Generation, Recycling and Disposal in the United*
520 *States: Facts and Figures for 2012*. Washington DC, USA: US EPA.

521 USEPA (2015) *National Greenhouse Gas Emissions Data Draft Inventory of U.S.*
522 *Greenhouse Gas Emissions and Sinks: 1990-2013*. Washington DC, USA: US EPA.

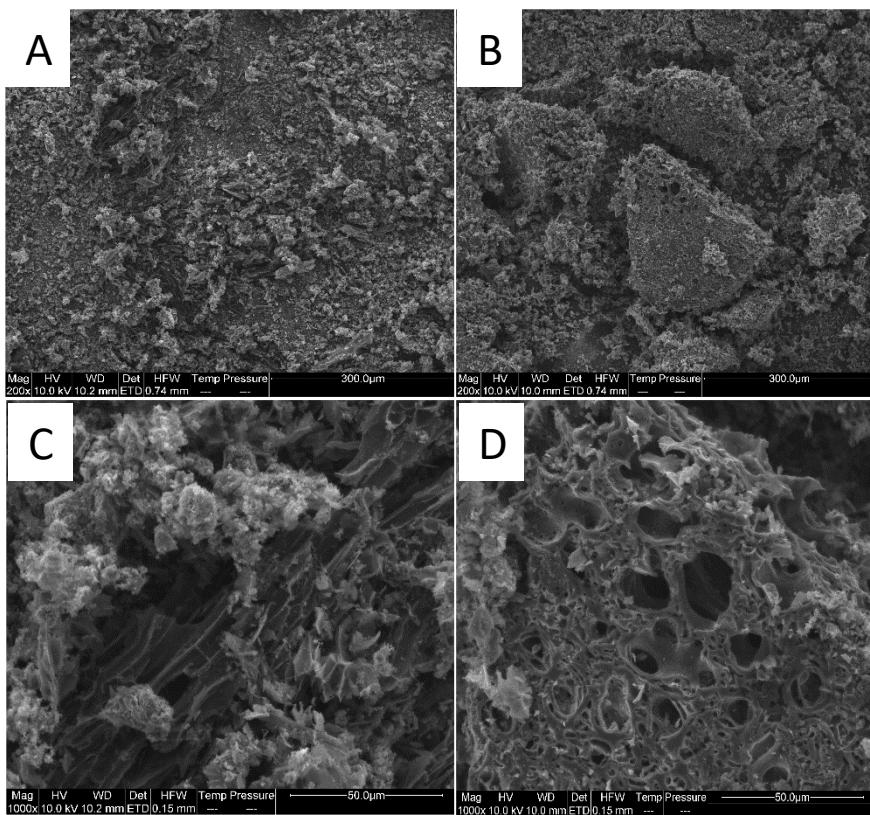
523 USEPA (2007a) *Method 200.7, Determination of Metals and Trace Elements in Water and*
524 *Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry (Revision 4.4 EMMC*
525 *Version)*, Cincinnati, USA: US EPA.

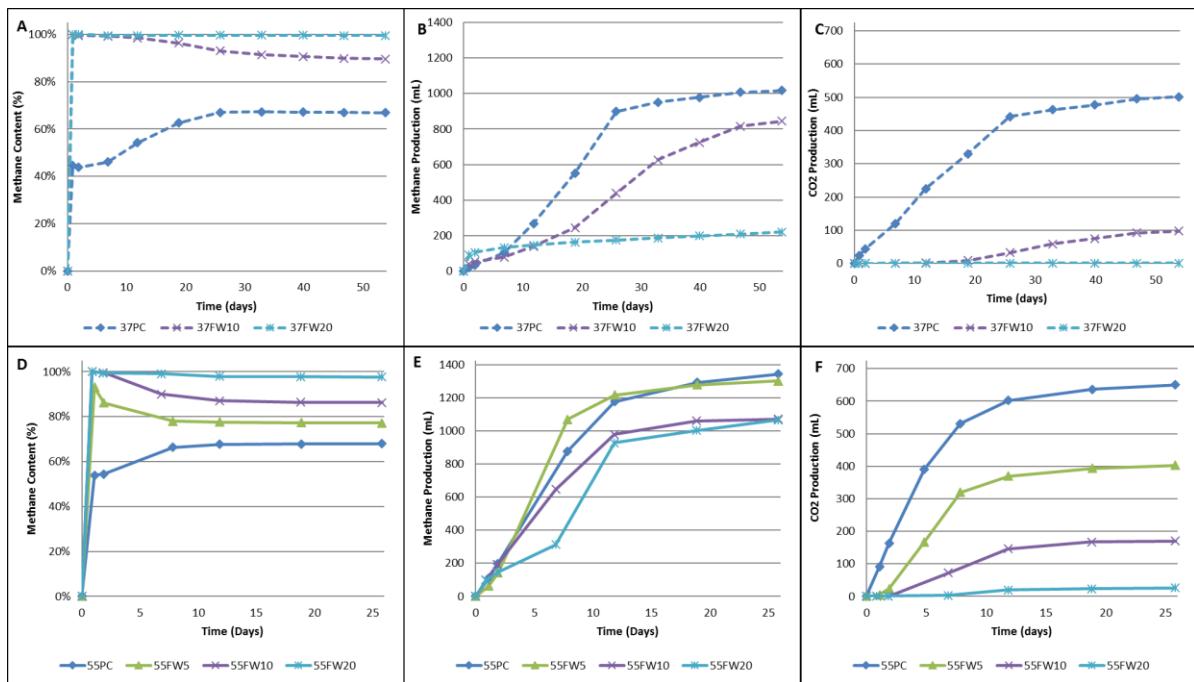
526 USEPA (2007b) *Method 200.8, Determination of Trace Elements in Waters and Wastes by*
527 *Inductively Coupled Plasma - Mass Spectrometry (Revision 5.4 EMMC Version)*, Cincinnati,
528 USA: US EPA.

529 Vlyssides A, Karlis PK (2004) Thermal-alkaline solubilization of waste activated sludge as a
530 pre-treatment stage for anaerobic digestion. *Bioresoure Technology* 91: 201-206.

531 Walker M, Zhang Y, Heaven S, Banks C (2009) Potential errors in the quantitative evaluation
532 of biogas production in anaerobic digestion processes. *Bioresoure Technology* 100: 6339-
533 6346.

534 Wang Q, Peng L, Su H (2013) The effect of a buffer function on the semi-continuous
535 anaerobic digestion. *Bioresoure Technology* 139: 43-49.

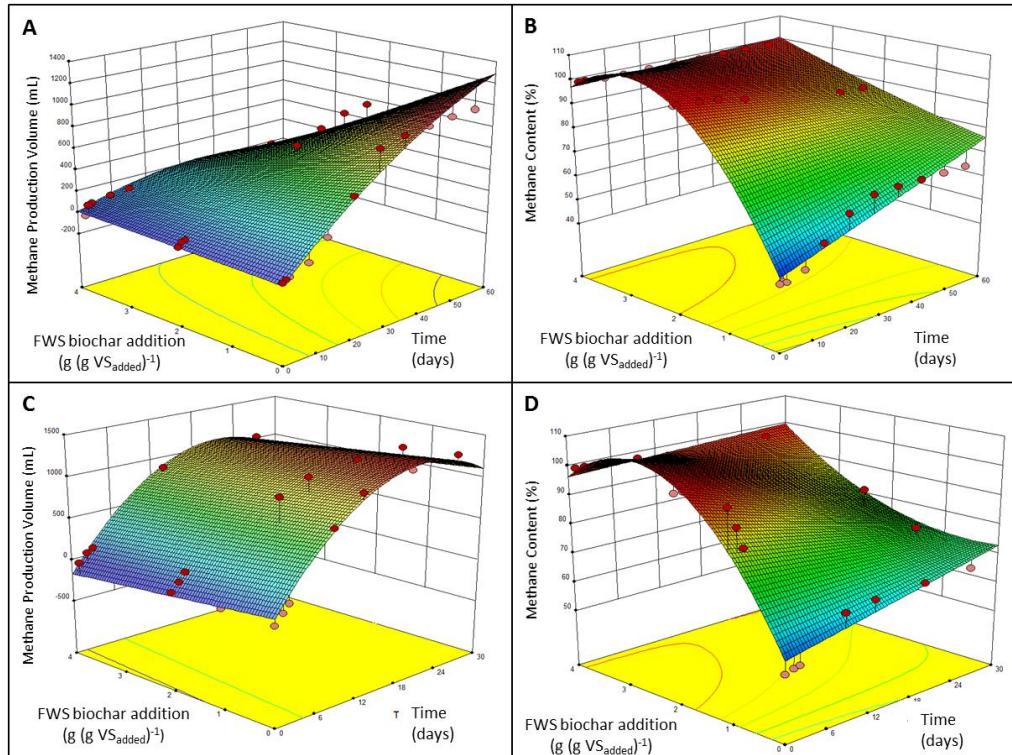

536 Zhang CS, Su HJ, Tan TW (2013) Batch and semi-continuous anaerobic digestion of food
537 waste in a dual solid-liquid system. *Bioresoure Technology* 145: 10-16.


538 Zhang L, Jahng D (2012) Long-term anaerobic digestion of food waste stabilized by trace
539 elements. *Waste Management* 32: 1509-1515.

540 Zhang,P, Chen Y, Zhou Q, Zheng X, Zhu X, Zhao Y (2010) Understanding short-chain fatty
541 acids accumulation enhanced in waste activated sludge alkaline fermentation: Kinetics and
542 microbiology. *Environmental Science and Technology* 44: 9343-9348.

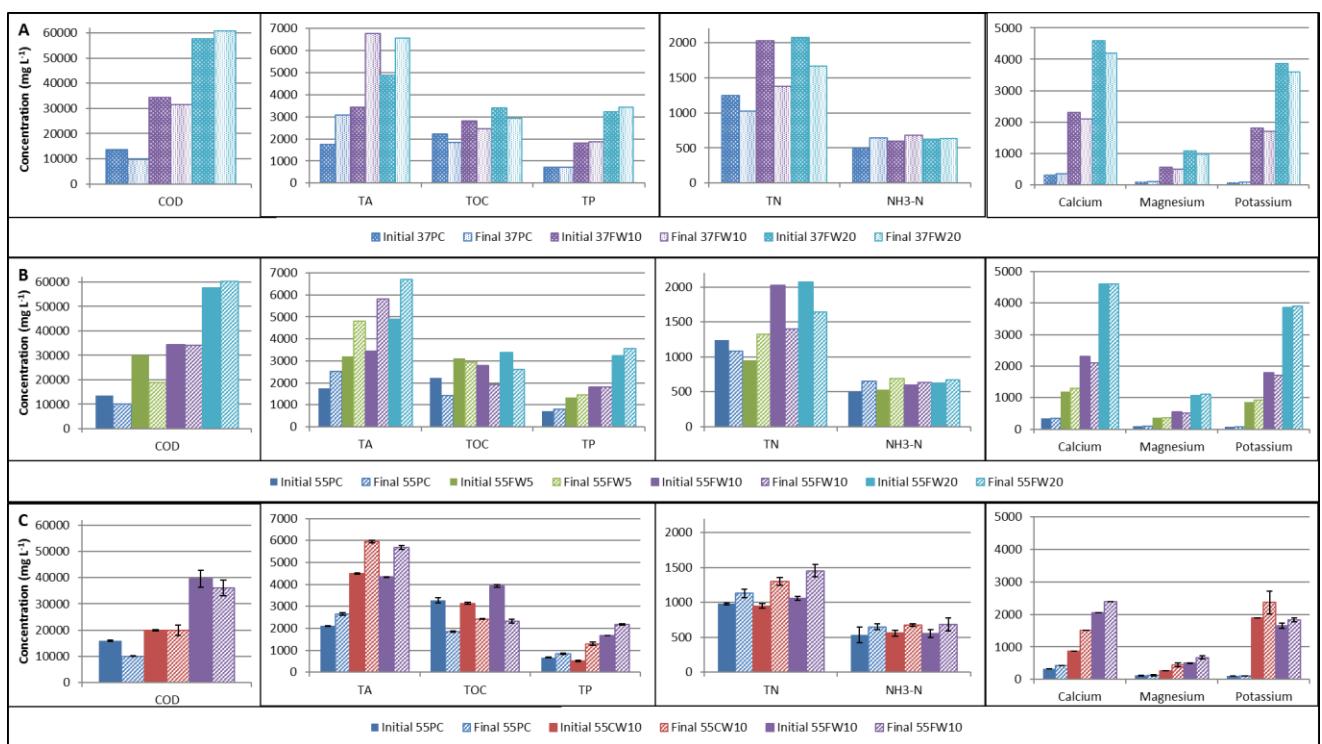
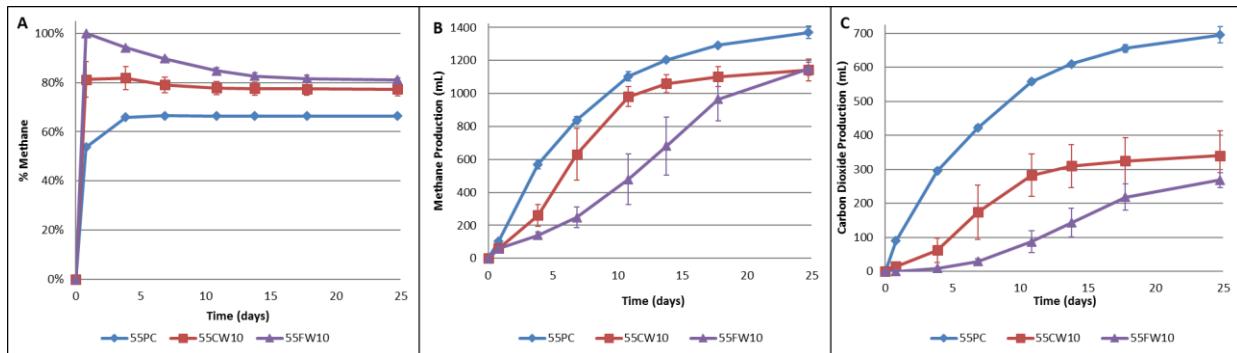
543

544



576

577



578

579

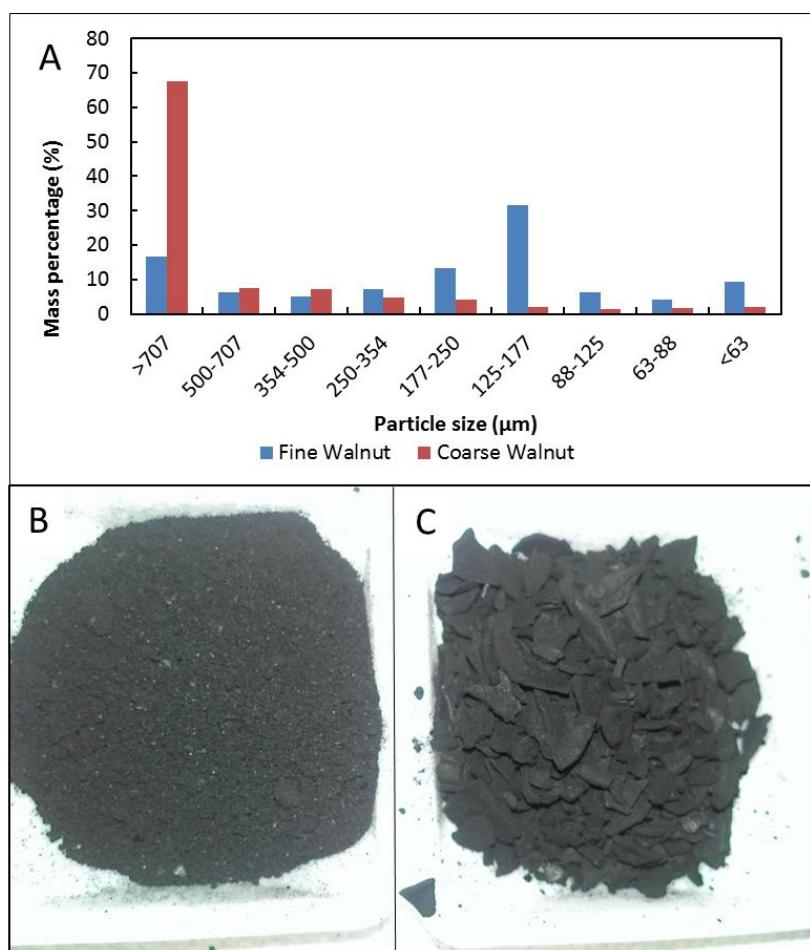
580

581

594 9700 S Cass Avenue, Lemont, IL, 60439, USA

595 * Corresponding author: demirtasmu@anl.gov

596

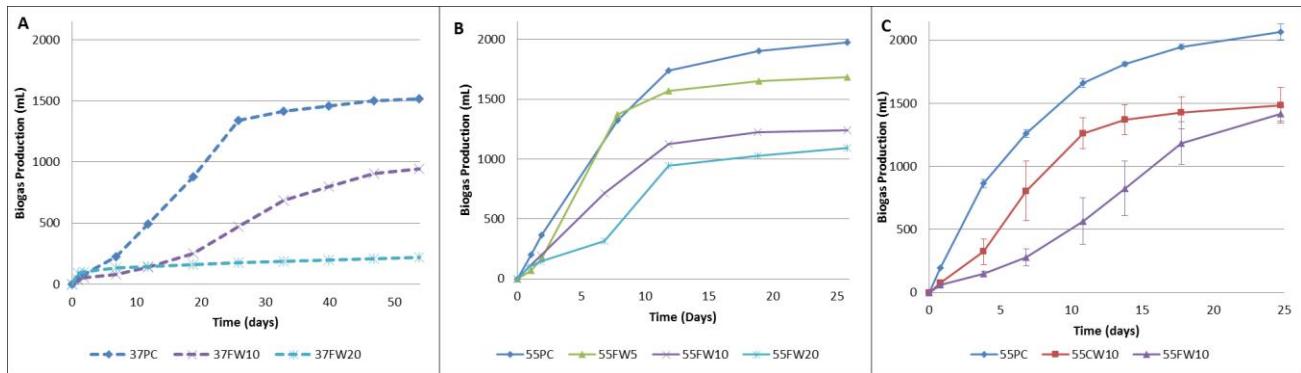

597

598 **Table S1: Characteristics of FW substrate**

Parameter	Value
TS (%)	12.4%
VS as % of TS	95.5%
TOC (g C/ L)	22.1
TN (g N/ L)	1.3
TP (g P/ L)	0.24
C:N	19.8

599

600 **Figure S1.** A) Particle size distribution of fine walnut shell biochar (FWSB) and coarse walnut shell
 601 biochar(CWSB), and visual comparison of B) FWSB and C) CWSB showing the difference in the
 602 particle size distribution.



603

604

605

606 **Figure S2.** Time-course profiles of cumulative biogas production volume (mL) for: A) FWSB
 607 amended AD experiment at mesophilic temperature, B) FWSB amended AD experiment at
 608 thermophilic temperature, and C) FWSB and CWSB amended AD experiment at thermophilic
 609 temperature

610

611

612 The 37PC has a statistically higher biogas production volume (p-value <0.005) compared to the
 613 37FWS10 and 37FWS20 digesters (Figure 2A). The 55PC has a statistically higher biogas production
 614 volume (p-value <0.025 for all results) compared to the 55FWS5, 55FWS10 and 55FWS20 digesters
 615 (Figure 2B). For the second experiment, 55PC had a statistically higher biogas production volume (p-
 616 value 0.0013) than 55CWS10 digesters, and 55CWS10 digesters had a statistically higher biogas
 617 production volume (p-value 0.0211) than 55FWS10 digesters (Figure 2C).

618

619 RSM Modeling

620 Digestion time (T) and FWSB dosage (BD) had a complex effect on the CH₄ production volume and
 621 CH₄ content as indicated by the interaction between the terms in the models (Table 3). Per the
 622 coefficient of each factor, T had the greatest influence on CH₄ production volume at both
 623 temperatures. The BD had a negative effect on CH₄ production volume at thermophilic temperature
 624 like the hypothesis and experimental results showing the inhibition at high biochar doses (≥ 10 g
 625 FWSB). At mesophilic temperature, BD had a positive effect on CH₄ production volume which was
 626 offset by the negative coefficient for the interactive term T*BD. Conversely, BD had the greatest
 627 effect on CH₄ content followed by T which supports the hypothesis of FWSB addition causing CO₂
 628 removal. At both temperatures, the negative coefficients for the interactive term T*BA and BA² in the
 629 CH₄ content models indicate the consumption of FWSB active sites during the experiment. The
 630 model's coefficient of determination (R²), adjusted coefficient of determination (R²_{adj}), and F-value
 631 are consistent (and higher in some cases) with previously reported RSM models (Gonzalez-Fernandez
 632 et al. 2011, Jimenez et al. 2014, Jin et al. 2013, Linville et al. 2016) indicating an acceptable model
 633 accuracy (Figure S3 and Table S2).

634

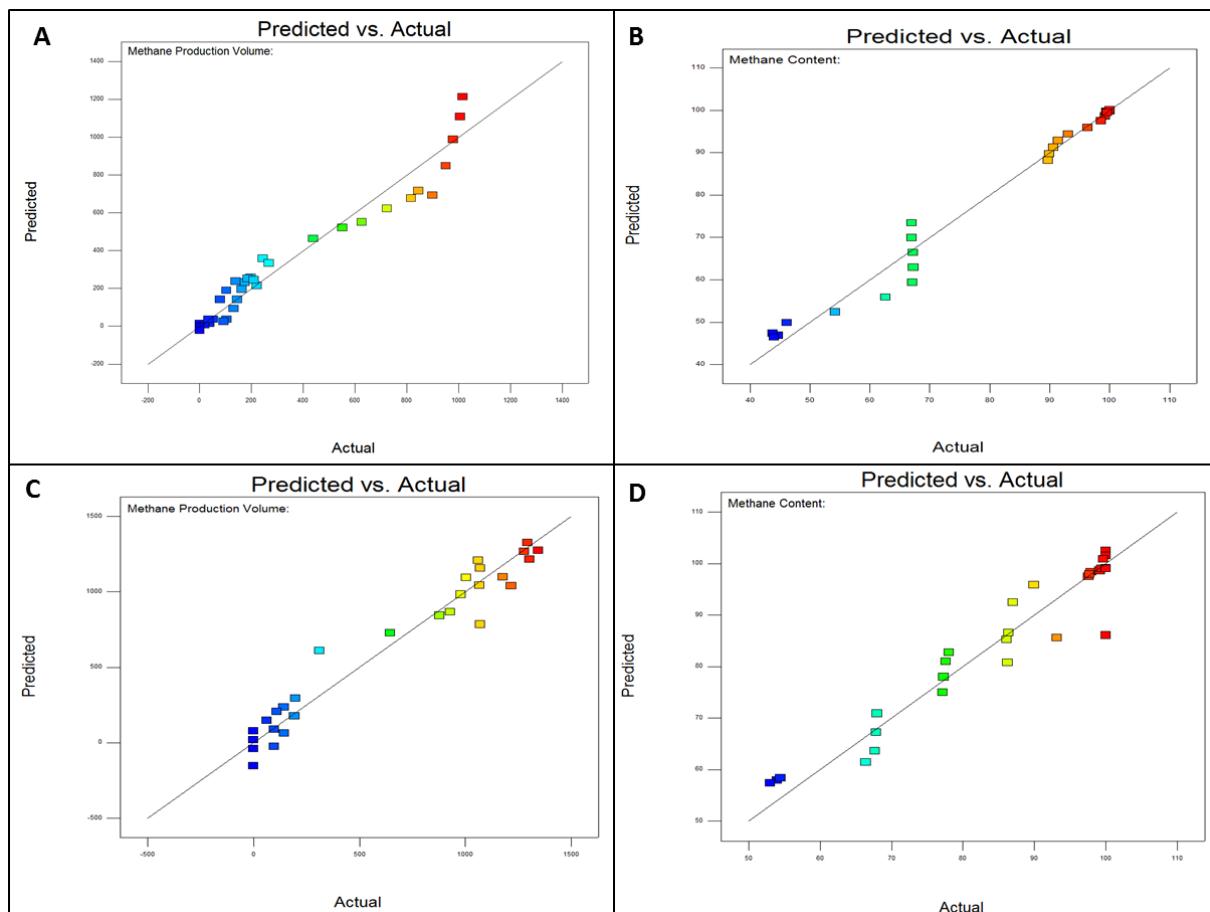
635

636

637

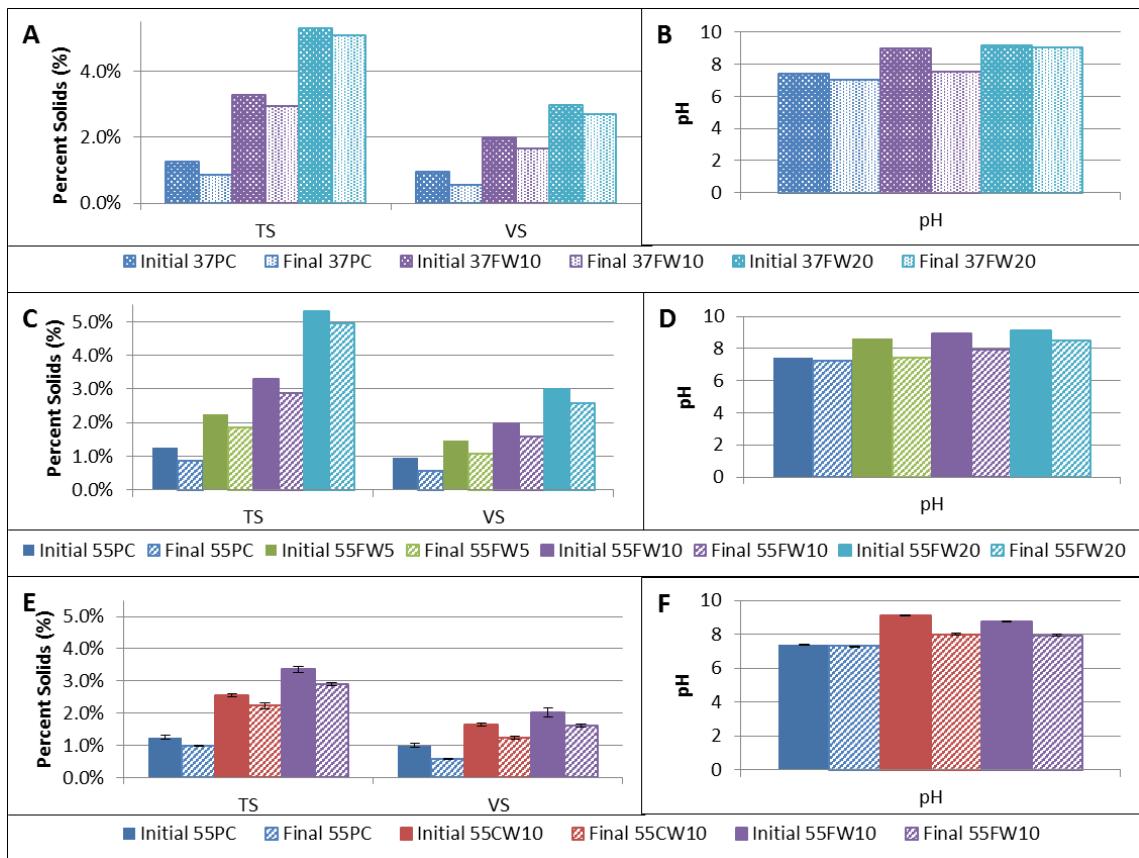
638

639


640 **Table S2: Statistical analysis of the two evaluated parameters (Time (days) and FWSB addition**
 641 **(g/g VS_{added}) with regard to the two responses (CH₄ production volume (mL) and CH₄ content**
 642 **(%) at mesophilic and thermophilic temperature.**

Y	Mesophilic Temperature		Thermophilic Temperature	
	CH ₄ Production Volume (mL)	CH ₄ Content (%)	CH ₄ Production Volume (mL)	CH ₄ Content (%)

	Coefficient (p-value)	Coefficient (p-value)	Coefficient (p-value)	Coefficient (p-value)
β_0	-20.81 (<0.0001)	+46.45 (<0.0001)	+77.85 (<0.0001)	+57.40 (<0.0001)
β_1	+31.96 (<0.0001)	+0.50 (<0.0001)	+119.88 (<0.0001)	+0.52 (<0.0001)
β_2	+9.14 (<0.0001)	+42.17 (<0.0001)	-60.46 (0.0011)	+36.26 (<0.0001)
β_{12}	-5.00 (<0.0001)	-0.62 (<0.0001)	n.a.	-1.27 (0.1512)
β_{11}	-0.17 (0.0078)	n.a.	-2.84 (<0.0001)	n.a.
β_{22}	n.a.	-7.37 (<0.0001)	n.a.	-6.62 (0.0020)
β_{122}	n.a.	+0.13 (<0.0001)	n.a.	+0.29 (<0.0001)
R^2	0.9448	0.9832	0.9509	0.9257
R^2_{adj}	0.9369	0.9800	0.9448	0.9088
F-value	119.71	315.10	154.91	54.82


643 n.a.: regression coefficients were not significant based on p-value

644 **Figure S3.** Actual vs. predicted values for RSM models of A) CH₄ production volume (mL) and B)
645 CH₄ content (%) at mesophilic temperature; and C) CH₄ production volume (mL) and D) CH₄ content
646 (%) at thermophilic temperature.

647 **Figure S4.** Digestate characteristics before and after AD experiments; A) total and volatile solids and
648 B) pH for FWSB experiment at mesophilic temperature; C) total and volatile solids and D) pH for
649 FWSB experiment at thermophilic temperature; and E) total and volatile solids and F) pH for FWSB
650 and CWSB comparison.

652

653

654

655

656

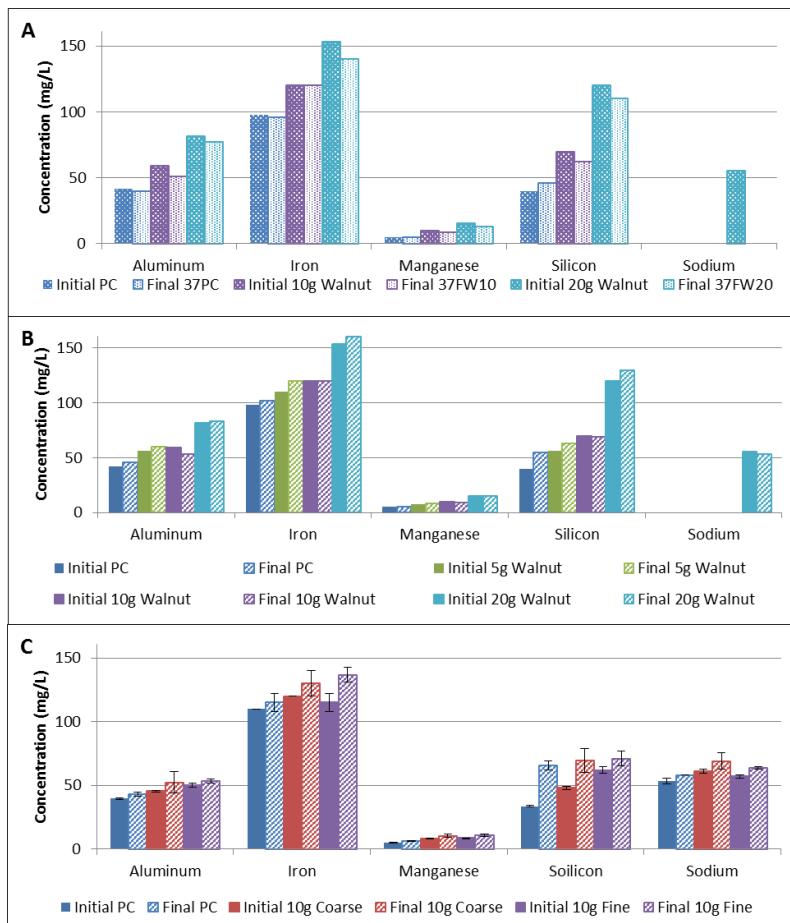
657

658

659

660

661


662

663

664

665

Figure S5. Metal Concentrations before and after AD experiments for; A) FWSB experiment at mesophilic temperature; B) FWSB experiment at thermophilic temperature; and C) for FWSB and CWSB comparison.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

