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We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the
index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary
solutions correspond to excited states in the ground state functionals. As shown by various examples,
the first excited states of many chemical systems are given by these index-1 saddle points. Our novel
approach provides an alternative, more robust way to obtain these excited states, compared with the
widely used ∆SCF approach. The method can be easily generalized to target higher index saddle
points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy
landscape. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936411]

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT)1 has
achieved great success in ground state calculations over
the past decades.2 Moreover, its time-dependent variant, the
time-dependent density functional theory (TDDFT), has also
been developed as an efficient method to compute excitation
energies.3–5 Compared with wavefunction based methods for
excited state calculations, such as configuration interaction
(CI),6 multireference CI (MR-CI),7 complete active space
self-consistent field (CASSCF),8 and equation-of-motion
coupled cluster (EOM-CC)9–11 theories, density functional
based methods are known for their tremendously lower
computational cost, and hence their applicability to medium
or large systems.

Besides TDDFT, attempts have also been made to obtain
the excited state energies using the time-independent DFT.12–27

It has been shown that every stationary solution of the ground-
state functional represents an excited state.28 Although the
validity has only been shown for the exact functional, with
implicit assumption of the v-representability of the excited
state densities, it implies some meaning to the stationary
solutions of approximate ground-state functionals whose
energies are above the ground state. The excitation energies
are then approximated by the energy difference between
these stationary solutions (excited states) and the ground
state.

To obtain these excited states, the ∆SCF method has been
developed,29,30 which modifies the standard self-consistent
field iteration by adopting non-Aufbau occupations at each
iteration: molecular orbital higher in energy is occupied,
with orbitals unoccupied below in energy. At convergence,
the method targets the non-Aufbau solutions of the ground
state functional. Compared with TDDFT, the ∆SCF approach

a)jianfeng@math.duke.edu
b)weitao.yang@duke.edu

has much smaller computational cost, because it inherits the
favorable computational scaling of the ground state DFT.
Moreover, it has been recently shown that the ∆SCF approach
can yield reasonable results, with accuracy comparable to the
TDDFT calculations.27,31–33

Despite its advantage of straightforward modification
of existing implementations of SCF, the ∆SCF method is
known to have difficulties in converging to the excited
states of the Kohn-Sham equations. The conventional SCF
procedures are designed to effectively find the energy
minimum, corresponding to the ground state. In the case
of searching for non-Aufbau solutions, the naive modification
of the SCF procedure can lead to a collapse to the ground
state, or simply failure to converge if forcing the non-Aufbau
occupation. To alleviate this problem, the constricted DFT
was proposed previously, which restricts the excited state
orbitals to a unitary transformation of the ground state with
non-vanishing contribution from the virtual space.22 Recently,
there have been techniques developed, including the maximum
overlap method (MOM),34 which prevents collapse to the
ground state, and the metadynamics related method,35 which
avoids reconvergence to the same state.

Although the above mentioned techniques improve upon
the∆SCF method, it is worth noticing that they rely on a proper
initial guess that locates sufficiently close to the targeted state.
Yet it is not always easy to construct such an initial guess,
especially for complicated molecules which do not provide us
with much chemical intuition. It is thus desirable to develop a
more robust method that guarantees convergence to the right
solution without much dependence on the initial guess. In
this work, we will achieve this by taking a quite different
point of view. Instead of trying to modify the conventional
SCF procedure, our starting point is the notion of the energy
landscape of the ground state Kohn-Sham DFT, defined on
the configuration space of single Slater determinant.

The excited states, as the stationary solutions of the
ground state Kohn-Sham density functional, then correspond
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to the critical points of the Kohn-Sham energy landscape. In
particular, as will be shown in this paper, most of the first
excited states correspond to index-1 saddle points (i.e., the
stationary points with one and only one energy descending
direction) of the energy functional. Therefore, finding these
excited states amounts to locate index-1 saddle point of the
energy landscape of the Kohn-Sham density functional.

The understanding of these critical points on the Kohn-
Sham energy landscape, to the best of our knowledge, has not
been explored to design robust algorithms to search for them.
As we will demonstrate in this work, this new perspective
opens a door to applying various methods, developed for
locating transition states for chemical reactions,36–44 for
the search of excited states in ground state Kohn-Sham
functionals. In this work, we will apply the recently developed
gentlest ascent dynamics (GAD)45 to Kohn-Sham DFT for
finding excited states. While other methods of this kind are
also possible, we choose GAD here as it offers a clear set
of dynamical equations that converge to the index-1 saddle
points and it is also connected to the well known steepest
descent approach for Kohn-Sham DFT.46–48

The GAD was proposed to locate the index-1 saddle
points of energy functions in the context of rare events in
molecular dynamics.45,49 Let us briefly summarize the idea of
the GAD with comparison to the standard steepest descent
dynamics (SDD) that targets the energy minimum. Given an
energy function E(x) on Rn, SDD has the following form:

dx
dt
= −∇E(x). (1)

One can show that E(x(t)) is a decreasing function of t if x(t)
is a solution to Eq. (1); and x(t) converges to a local minimum
of the energy function E. In contrast, the gentlest ascent
dynamics involve two coupled equations as the following:45

dx
dt
= −∇E(x) + 2

(∇E, v)
(v, v) v, (2)

dv
dt
= −∇2E(x)v + (v,∇2Ev)

(v, v) v. (3)

Here, Eq. (3) involves an auxiliary vector v , which attempts to
find the direction that corresponds to the smallest eigenvalue
of the Hessian ∇2E(x); and Eq. (2) is similar to Eq. (1), but
with an added term that flips the sign of the v-direction in the
minus energy gradient. This treatment enables the GAD to
converge to the index-1 saddle points of the energy function.

As Kohn-Sham density functional theory is defined for
Slater determinants, we have to modify the GAD formulation
to take into account the orthonormality constraints of the
orbitals, as will be discussed in detail below. This leads to
a robust method for finding index-1 saddle points, which
include first excited states for many systems as shown in this
work. The GAD is not limited to index-1 saddle points; the
generalization to higher index saddle points is straightforward
and can be used for higher excited states.

II. METHODOLOGY

Let the Kohn-Sham energy functional E be an explicit
functional of the Kohn-Sham orbitals, E = E[{ψσi }] with

each orbital function ψσi ∈ L2(R3) (assumed to be real for
simplicity). To apply the gentlest ascent dynamics to KS-DFT
and also for the simplicity of notations, instead of working
with multiple orbital functions, it is helpful to view the energy
functional E evaluated on Ψ in the space L2(R3;RN), namely,
at each spatial point r, Ψ(r) takes value in RN . To be more
specific, Ψ(r) stands for the collection of occupied orbitals,
which are organized as a column vector

Ψ(r) = *
,

Ψα(r)
Ψβ(r)

+
-
, (4)

where Ψσ(r) = �
ψσ1 (r),ψσ2 (r), . . . ,ψσNσ(r)�T for σ = α, β.

Here, Nα and N β indicate the number of the spin-up and
spin-down electrons, where N = Nα + N β is the total number
of electrons. In this work, we only consider excitations that
maintain the spin multiplet, i.e., Nα and N β are fixed.

The auxiliary perturbation direction Φ(r) of the electron
orbitals is treated similarly, Φ(r) = ( Φα(r)

Φβ(r)
)
, with Φσ(r)

=
�
ϕσ1 (r), ϕσ2 (r), . . . , ϕσNσ(r)�T.

We denote ⟨·, ·⟩ as the inner product of Ψ in the space of
L2(R3;RN), while using (·, ·) for the standard inner product in
L2(R3),

⟨Ψ,Φ⟩ ≡

σ

Nσ
i=1

(ψσi , ϕσi ) =

σ

Nσ
i=1


ψσi (r)φσi (r)dr. (5)

The gradients of the Kohn-Sham energy functional with
respect to the orbitals are denoted by ∂E

∂Ψ
and ∂2E

∂Ψ2 . The
first gradient acting on Φ gives a number

∂E
∂Ψ

[Φ] ≡  ∂E
∂Ψ

,Φ

≡

iσ

( δE
δψσi

, ϕσi
)
, (6)

where δE
δψσ

i
is the standard functional derivative of the Kohn-

Sham functional. The second gradient ∂2E
∂Ψ2 acting on Φ gives

a vector in L2(R3;RN), with its component being

� ∂2E
∂Ψ2 [Φ]�σ

i
≡

σ′j

δ2E
δψσi δψ

σ′
j

[ϕσ′j ]. (7)

For the Kohn-Sham energy functional E[Ψ], it is assumed
that the components of Ψ are orthonormal. Thus, we define
W as the admissible class of Ψs,

W ≡ {Ψ | Oσ
i j(Ψ,Ψ) = δi j, ∀σ, i, j}. (8)

Here, Oσ
i j(Ψ,Ψ) = (ψσi ,ψσj ) represents the standard inner

product between the ith and jth element of vector Ψ.
Direct substitution of Eqs. (6) and (7) into Eqs. (2) and

(3) does not give us the right dynamics, since it will violate the
orthonormality constraints of the orbitalsΨ. More specifically,
consider orbitals Ψ ∈ W and a perturbation direction Φ with
∥Φ∥2 = ⟨Φ,Φ⟩ = 1, Ψ + tΦ is not necessarily inW and we
have

Oσ
i j(Ψ + tΦ,Ψ + tΦ) = (ψσi + tϕσi ,ψ

σ
j + tϕσj )

= δi j + tUσ
i j + t2Vσ

i j , (9)

where Uσ
i j = (ψσi , ϕσj ) + (ψσj , ϕσi ) and Vσ

i j = (ϕσi , ϕσj ).
Hence, to guarantee that the perturbed orbitals satisfy the

orthonormality constraints to the first order of t, we restrict
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the choice of Φ such that (ψσi , ϕσj ) = 0,∀ i, j. In other words,
Φ lies in the virtual space with respect to Ψ. Note that this
restriction is stronger than requiring U = 0, while this does not
over-restrict the possible perturbation directions, thanks to the
symmetry of the Kohn-Sham energy functional with respect
to rotations of the orbitals (see the supplementary material50

for details).
Let us now derive the correct gradients of the energy

functional under constraints by considering L[Ψ + tΦ]
= E[F̂(Ψ + tΦ)] as the targeting function and its Taylor
expansion up to t2. Here, F̂ denotes the orthonormalization
operator

F̂(Ψ + tΦ) = A(Ψ + tΦ), (10)

with the (t-dependent) matrix A chosen such that F̂(Ψ + tΦ)
∈ W . To determine A, we calculate

δi j = Oσ
i j

�
F̂(Ψ + tΦ), F̂(Ψ + tΦ)�

= Oσ
i j

�
A(Ψ + tΦ),A(Ψ + tΦ)�

=
�

k

Aσik(ψσk + tϕσk ),

l

Aσjl(ψσl + tϕσl )
�

=

kl

Aσik Aσjl(δkl + t2Vσ
kl ), (11)

where we have used that Uσ
kl
= (ψσ

k
, ϕσ

l
) + (ψσ

l
, ϕσ

k
) = 0. In

matrix form, the above equation reads

Aσ(Iσ + t2Vσ)Aσ,T = Iσ. (12)

Hence, A can be chosen as

Aσ = (Iσ + t2Vσ)−1/2 = (Iσ − 1
2

t2Vσ) + O(t3) (13)

where in the last equality, we have used Taylor expansion and
kept terms up to the second order. It then follows:

F̂(Ψ + tΦ) = (Ψ + tΦ) − 1
2

t2VΨ, (14)

up to the second order in t, where V =


Vα 0
0 Vβ


. The last term

in Eq. (14) arises to satisfy the orthonormality constraint to
the second order, which will lead to extra terms in the Hessian
of the energy functional as discussed below.

Now we write the constrained energy functional L
perturbed at an approachable Ψ (note L[Ψ] = E[Ψ]) in terms
of Taylor expansion up to second order as the following formal
expression:

L[Ψ + tΦ] = E[F̂(Ψ + tΦ)]
= L[Ψ] + t

∂L
∂Ψ

[Φ] + 1
2

t2⟨Φ,Ĥ[Φ]⟩. (15)

Here, ∂L
∂Ψ

is the effective gradient operator and Ĥ ≡ ∂2L
∂Ψ2 is

the Hessian for the Lagrangian, which we will refer to as
the Hessian in the following derivations for simplicity. To
obtain their explicit expressions, we substitute Eq. (14) into
E[F̂(Ψ + tΦ)] and it follows, up to second order of t,

E[F̂(Ψ + tΦ)] = E[Ψ + tΦ − 1
2

t2VΨ]

= E[Ψ] + t
∂E
∂Ψ

[Φ] + 1
2

t2
(
Φ,

∂2E
∂Ψ2Φ


− ∂E
∂Ψ

[VΨ]) . (16)

Comparing Eqs. (15) and (16), we obtain

∂L
∂Ψ
=
∂E
∂Ψ

(17)

and

⟨Φ,Ĥ[Φ]⟩ = Φ, ∂2E
∂Ψ2Φ


− ∂E
∂Ψ

[VΨ]. (18)

The second term on the right hand side of Eq. (18) can be
rewritten as
∂E
∂Ψ

[VΨ] =  ∂E
∂Ψ

,VΨ

=

iσ

(2ĥσs ψσi ,

j

Vσ
i j ψ

σ
j )

= 2

σi j

(ϕσi , ϕσj )(ĥσs ψσi ,ψσj ) = 2⟨Φ, Γ̂Φ⟩, (19)

where (Γ̂Φ)iσ =  j(ĥσs ψσi ,ψσj )ϕσj =


j γ
σ
i jϕ

σ
j . Here, γσi j

≡ (ĥσs ψσi ,ψσj ) and ĥσs is the one-electron effective Hamiltonian
of spin σ. Substituting Eq. (19) into Eq. (18), we have

⟨Φ,Ĥ[Φ]⟩ = Φ, ( ∂2E
∂Ψ2 − 2Γ̂

)
Φ

, (20)

which implies the Hessian is

Ĥ =
∂2E
∂Ψ2 − 2Γ̂. (21)

Based on the constrained gradient and Hessian, the
gentlest ascent dynamics for KS-DFT is given by

dΨ
dt
= − ∂L

∂Ψ
+ 2⟨ ∂L

∂Ψ
,Φ⟩Φ + ΛΨ, (22)

dΦ
dt
= −ĤΦ + µΦ + KΨ. (23)

Here, µ is a Lagrange multiplier for the normalization
constraint ⟨Φ,Φ⟩ = 1, which attributes Φ with the meaning
of a direction; Λ and K are Lagrange multiplier matrices,
for the orthonormality constraint of Ψ and the constraint that
Φ resides on the virtual space, respectively. Here, the last
constraint prevents the components ofΦ to fall onto the space
spanned by the orbitals Ψ.

As a comment, Eqs. (22) and (23) can be easily modified
to target saddle points of higher indices. Taking index-2 saddle
points, for example, instead of having only one auxiliary
perturbation direction, the GAD dynamics would require two
of them, which detect the directions of the smallest two
eigenvalues of the Hessian and flip the force direction in these
two modes. Therefore, the formula is given by

dΨ
dt
= − ∂L

∂Ψ
+ 2⟨ ∂L

∂Ψ
,Φ1⟩Φ1 + 2⟨ ∂L

∂Ψ
,Φ2⟩Φ2 + ΛΨ, (24)

dΦ1

dt
= −ĤΦ1 + µ11Φ1 + K1Ψ, (25)

dΦ2

dt
= −ĤΦ2 + µ22Φ2 + µ12Φ2 + K2Ψ. (26)

Here, Φ1 and Φ2 are the auxiliary perturbation directions; µ11
and µ22 are the Lagrange multipliers for the normalization
constraints of ⟨Φi,Φi⟩ = 1; µ12 is the Lagrange multiplier for
the constraint of ⟨Φ1,Φ2⟩ = 0 so that the two directions are not
parallel; Ki is the Lagrange multiplier matrix for the constraint
that Φi resides on the virtual space.
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The GAD equations for higher index saddle points can
be constructed similarly. As can be seen, the implementation
of these dynamics is essentially the same as the GAD that
targets index-1 saddle points. In this paper, we focus on the
latter (Eqs. (22) and (23)) as a proof of concept of the GAD
in the Kohn-Sham context.

In terms of the orbital functions, after some algebra and
with the right hand side of Eqs. (22) and (23) multiplied by
1
2 for the formal elegancy (this does not affect the dynamics),
they reduce to50

dψσi (r)
dt

= −ĥσs ψσi (r) + 2

jσ′

(ĥσs ψσ′j , ϕσ
′

j )ϕσi (r)

+

j

λσi jψ
σ
j (r), (27)

dϕσi (r)
dt

= −ĥσs ϕσi (r) −

σ′

V̂σσ′[2

j

ψσ
′

j ϕ
σ′
j ]ψσi (r)

+

j

γσi jϕ
σ
j (r) + µϕσi (r) +


j

κσi jψ
σ
j (r). (28)

Here, V̂σσ′ is the derivative of the Kohn-Sham effective
potential with respect to the electron density, given by

V̂σσ′[ f ] =


δvσeff(r)
δρσ

′(r′) f (r′)dr′, (29)

where vσeff(r) is the effective one-electron potential.
A few remarks are in order. Eq. (27) without the second

term on the right hand side, i.e.,

dψσi (r)
dt

= −ĥσs ψσi (r) +

j

λσi jψ
σ
j (r), (30)

is just the well-known steepest descent dynamics for KS-DFT,
which had been designed and applied to find the local minima,
including the ground state.46–48 The gentlest ascent dynamics
swaps the force direction in the softest mode such that the
dynamics converges to the index-1 saddle point instead. This
is potentially a useful way to scan the landscape of the KS
density functionals.

For practical implementation of the GAD for the KS-DFT,
the orbital Ψ and perturbation direction Φ are projected onto
atomic bases, and each orbital is represented by a vector in the
coefficient matrix. Consequently, Eqs. (27) and (28) become
matrix equations. Here, we implement an O(N4) algorithm to
compute the GAD equations (the computational bottleneck is
given by evaluation of V̂σσ′), see the supplementary material
for details.50 Although the implementation can be improved
in various ways, for example, an O(N3) algorithm can be
achieved by using resolution of identity and density fitting
techniques,51,52 it suffices for our purpose of presenting the
idea of GAD and testing on small systems. Starting with
appropriate initial guesses, the equations are evolved using a
projected Euler method: the Lagrange multipliers are dropped
in the ordinary differential equations (ODEs); instead, to
impose the constraints, at each time step, the ψσi ’s and ϕσi ’s
are transformed using the Gram-Schmidt procedure to satisfy
the constraints. The dynamics is evolved till it converges (the
Kohn-Sham energy E[Ψ] is used to track convergence).

The stationary points of the Kohn-Sham density
functional theory satisfy

∂E
∂Ψ
= 0. (31)

The stability of the stationary solutions is determined by the
positiveness of the Hessian, given in Eq. (21). Let ϵ denote
the smallest eigenvalue of the Hessian. The orbitals Ψ is a
local minimum if ϵ is positive; it is a saddle point if ϵ is
negative. If ϵ is zero, it can be viewed as a degenerate local
minimum with a saddle point. To numerically evaluate ϵ and
hence the stability of the Kohn-Sham stationary solutions, we
can evolve the dynamics Eq. (28) while fixing ψσi , until all
the ϕσi ’s converges. This is essentially a power method for
finding the smallest eigenvalue of a matrix.53 As discussed
above, in practice, the Lagrange multipliers are dropped and
replaced by the Gram-Schmidt procedures at each time step.
The Φ consisting of the converged ϕσi ’s is the direction
corresponding to the smallest eigenvalue of the Hessian ϵevol,
and furthermore, 1

2 ϵevol =
1
2 ⟨Φ,Ĥ[Φ]⟩. In the orbital language,

this becomes

1
2
ϵevol =


σi

(ϕσi , ĥσs ϕσi ) +

σσ′i

(ϕσi ,V̂σσ′[2

j

ψσ
′

j ϕ
σ′
j ]ψσi )

−

σi j

γσi j(ϕσi , ϕσj ). (32)

1
2 ϵevol can also be validated by comparing it with a central
finite difference approximation (where t is chosen to be small):

1
2
ϵdiff =

1
2t2

�
E[F̂(Ψ + tΦ)] − E[F̂(Ψ − tΦ)]�. (33)

For saddle points, to determine their indices, i.e., the
number of descending directions, we can also directly
diagonalize the projected Hessian onto the virtual space.
This is similar in spirit to the SCF stability analysis in the
literature.54–57 Alternatively, the dynamics of Eq. (28) can
be extended to calculate more than one eigenvalue, which
is analogous to the subspace iteration method in numerical
linear algebra,53 for which we will not go into details.

To diagonalize the projected Hessian, we define a
projection operator P̂ =


P̂α 0
0 P̂β


, where

P̂σ =



p̂σ 0 · · · 0

0 p̂σ 0
...

... 0
. . . 0

0 · · · 0 p̂σ



, (34)

with p̂σ =


i |ψσi ⟩⟨ψσi |. Then, Î − P̂ is the projection operator
which eliminates the occupied orbital space components.
The eigenvalues of (Î − P̂)Ĥ(Î − P̂) then correspond to the
curvature of ascending or descending directions when the
stationary solution Ψ is perturbed. We note that there exist
multiple eigenvectors with zero eigenvalue, which form a span
of P̂. Nevertheless, the smallest nonzero eigenvalue should
give exactly ϵ .



224110-5 Li, Lu, and Yang J. Chem. Phys. 143, 224110 (2015)

III. RESULTS AND DISCUSSIONS

We select several atoms and small molecules, on which
our gentlest ascent dynamics is tested. The functional used
is LDA with VWN558 as the correlation functional. Other
approximate functionals lead to similar results, since the
GAD algorithm is not functional dependent. The results
on BLYP59,60 and B3LYP60,61 functionals as representative
of generalized gradient approximations (GGAs) and hybrid
functionals can be found in the supplementary material.50

For all the DFT calculations, the Gaussian atomic basis set
6–31++G** is used except for H and He, for which aug-cc-
pVDZ is used. The basis used for the calculation of equation-
of-motion coupled cluster singles and doubles (EOM-CCSD)
is aug-cc-pVTZ. The structures of the molecules are taken
from the G2-97 set62 (except H2 whose bondlength here
is chosen to be 1 Å, which is slightly stretched from its
ground state geometry, but close to its excited state structure),
corresponding to their ground state energy minima. All the
DFT calculations are done with an in–house built quantum
chemistry software package QM4D,63 while the EOM-CCSD
calculation is performed using the GAUSSIAN package.64 In
the following, if not specially noted, the GAD equations are
referred to as Eqs. (22) and (23) that target the index-1 saddle
point.

In Table I, we compare the energies obtained by the
non-Aufbau ∆SCF (for which we will refer to as ∆SCF
for simplicity in the following context) and gentlest ascent
dynamics. Here, we focus on the total energy comparison
between ∆SCF and GAD, rather than the excitation energy
of these two methods compared with other approaches. For
the latter, we refer the reader to the previous literature.27,31–33

We also note that for singlet excitations of closed shell
systems, both GAD and ∆SCF can only capture the spin
broken-symmetry state, which is a mixture of the spin pure
singlet and triplet state. In ∆SCF, usually the spin purification
procedure is needed to obtain the purified singlet excitation
energy.29,32 Yet, this is not the focus of our paper. As can

TABLE I. Comparison of index-1 saddle point energies obtained by non-
Aufbau ∆SCF and gentlest ascent dynamics.

Configuration EGAD (a.u.) Ediff
a (10−8 a.u.)

H 2s −0.127 664 22 0.1
He (1s)1(2s)1 −2.076 104 93 0.2
Li (1s)2(2p)1 −7.279 291 90 122

(1s)1(2s)2 −5.229 653 96 0.5
Be (1s)2(2s)1(2p)1 −14.321 785 75 81
H2 (1σ)1(1σ∗)1 −0.795 607 78 0.0
Li2 (σ1s)2(σ∗1s)2(σ2s)1(σ∗2s)1 −14.673 647 10 0.5
CO 1st −112.167 761 66 48
OH gsb −75.157 207 74 . . . c

4thd −74.844 085 40 149
HF 1st −99.416 976 46 . . . e

H2O 1st −75.598 200 55 0.5

aEdiff = EGAD−E∆SCF, where E∆SCF is the energy by non-Aufbau ∆SCF.
bThe ground state of OH is degenerate; see the analysis in the main text.
c∆SCF cannot converge if forcing the occupation number of (11101) for β electrons.
dAs shown in Table IV, the 4th excited state is an index-1 saddle point.
e∆SCF oscillates in energy and does not converge.

be seen from Table I, our GAD approach gives essentially
the same energies compared to the conventional non-Aufbau
∆SCF for these atoms and molecules. They may slightly differ
since the two approaches are implemented differently, yet
such difference in energy is way below the chemical accuracy.
For some molecules such as HF, the ∆SCF fails to converge.
Shown in Figure 1 is the comparison of the convergence in
the case of HF for both the GAD and the ∆SCF procedure. As
can be seen, while the ∆SCF fails to converge and the energy
oscillates around a certain value, the gentlest ascent dynamics
almost monotonically directs itself to the desired state. The
GAD yields a more robust tool for finding the first excited
state.

We also remark that in the case of Li atom, the GAD is
able to find two excited states, with (1s)2(2p)1 corresponding
to the first excited state and (1s)1(2s)2 corresponding to a core
excitation which is much higher in energy. As will be shown
in Table IV, both of these states are index-1 saddle points.

Let us stress that similar to the steepest descent dynamics,
the GAD only guarantees local convergence, i.e., it is crucial
to construct appropriate initial guess so as to converge to
the desired state. Although using a random guess may still
converge to some state, it might take many iterations to
converge, and furthermore, the converged state might not
be the excited state we aim to find. Therefore, it is more
advantageous to start with an initial guess that is close by the
desired state.

For the systems studied here, we use the occupied and
virtual KS-orbitals of the ground state to form an initial guess.
For example, in the Li case, the ground state configuration is
(1s)2(2s)1, with a pair of electrons occupying the 1s orbitals
and an unpaired α electron occupying the 2s orbital. If we
target the first excited state, the paired 1s orbitals and the

FIG. 1. The iteration process of HF using (a) gentlest ascent dynamics and
(b) non-Aufbau ∆SCF. The plotted function ∆E is the energy difference
between two neighboring iterations.
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lowest unoccupied molecular orbital (LUMO) of α electron
(2p orbital) are used as initial guess, which is close to the true
first excited state (they are different due to orbital relaxation).
If we aim at the core excited state, then the initial guess is
formed by swapping the 1s and 2s orbitals of the β electron.
This enables our gentlest ascent dynamics to converge to the
nearby index-1 saddle point of (1s)1(2s)2. For other atoms and
molecules, initial guesses are formed similarly. Using a fixed
time stepping, it usually takes hundreds of iterations to find
the desired excited state. We remark that the large number
of steps is partially due to the stringent convergence criteria
we take (10−10 a.u. as energy threshold). It is also possible to
accelerate the convergence by using variable time stepping,
which we would leave to future works.

Similar to the Li atom but more interesting is the case
of the OH molecule, where the ground state is degenerate.
By swapping the 4th (highest occupied) and 5th (lowest
unoccupied) orbitals of the beta electrons at its ground state
as initial guess of the molecular orbitals, the GAD converges
to the same state as the ground state (this is verified by
comparing the GAD converged energy and density with the
ground state–they are the same within numerical errors).
Furthermore, once the ground state Hessian is diagonalized,
as shown in Table IV, the smallest nonzero eigenvalue is
given by a tiny positive number, which suggests that it is
likely to be zero within numerical error. Therefore, the energy
landscape around the ground state of OH molecule is rather
flat, and its ground state can be viewed as overlapping with
the first excited state. Note that because of this, the standard
non-Aufbau ∆SCF will not converge to this state, showing
again the robustness of the GAD method. In addition, it is
also worth noticing that the 4th excited state of OH, which
corresponds to the transition of 5th (highest occupied) to 6th
(lowest unoccupied) of the alpha electron from the ground
state, is an index-1 saddle point, which we will make further
comment in the sequel.

Shown in Table II is the comparison between ϵdiff and
ϵevol of some example atoms and molecules, evaluated at their
ground states as well as their excited states. As can be seen,
ϵevol essentially agree with ϵdiff. For the ground states, they
give positive eigenvalues, indicating that these states are local
minima as expected. For excited states, ϵ’s are negative, which
also reasonably suggests that there are descending directions
at these solutions.

We emphasize one unique feature of the energy landscape
of the Kohn-Sham energy functional, in the local density
approximation of exchange-correlation at least, indicated by
our numerical results. For the perhaps more familiar free
energy landscape of chemical systems, it is expected that a
saddle point separates two attraction basins associated with
different local minima. Hence, both local minima have energy
lower than the saddle point, which implies that the first excited
state would correspond to a local minimum, rather than an
index-1 saddle point. However, in the Kohn-Sham case, if we
start at an index-1 saddle point Ψ and follow the descending
mode given by Φ, no matter which direction we follow (in
the sense of perturbing the state as F̂(Ψ + tΦ) or F̂(Ψ − tΦ)),
following the energy descending direction, we end up in the
same ground state. Therefore, the index-1 saddle point and

TABLE II. Comparison of 1
2 ϵdiff of Eq. (33) and 1

2 ϵevol of Eq. (32) at
stationary solutions of some example systems.

Configurationa 1
2 ϵdiff (a.u.) 1

2 ϵevol (a.u.)
H 1s 0.3064 0.306 4

2s −0.4401 −0.440 1
3s −0.3906 −0.390 6

He (1s)2 0.6251 0.625 1
(1s)1(2s)1 −0.8701 −0.870 2

Li (1s)2(2s)1 0.0805 0.080 5
(1s)2(2p)1 −0.0298 −0.029 8
(1s)1(2s)2 −2.401 −2.401

Be (1s)2(2s)2 0.0581 0.058 1
(1s)2(2s)1(2p)1 −0.1078 −0.107 8

H2 (1σ)2 0.2178 0.217 8
(1σ)1(1σ∗)1 −0.3139 −0.313 9

(1σ∗)2 −0.5097 −0.509 7
Li2 (σ1s)2(σ∗1s)2(σ2s)2 0.0230 0.023 0

(σ1s)2(σ∗1s)2(σ2s)1(σ∗2s)1 −0.0292 −0.029 2
CO gs 0.1893 0.189 3

1st −0.2411 −0.241 1
OH gsb 0.0033 0.000 005

2nd −0.1327 −0.132 7
3th −0.3593 −0.359 3
4th −0.3939 −0.393 9

HF gs 0.3073 0.307 3
1st −0.4572 −0.462 1

H2O gs 0.2188 0.218 8
1st −0.3228 −0.322 8

CH2O gs 0.1046 0.106 3
1st −0.1400 −0.139 2

CH3CHO gs 0.1208 0.121 8
1st −0.1559 −0.156 1

aWhen the number of electrons becomes large, the configuration is abbreviated as ground
state (gs), first excited state (1st) or second excited state (2nd), and so on. All the excited
states except CH2O and CH3CHO are obtained by the GAD; the index-1 saddle points
(including but not limited to first excited states) are obtained by Eqs. (22) and (23), while
the index-2 saddle points are obtained by Eqs. (24)–(26). For some larger molecules like
CH2O and CH3CHO, here we compute ϵdiff and ϵevol at their first excited states obtained
by ∆SCF and the numbers show that they are also saddle points.
bFirst excited state is viewed as the same state as the ground state and omitted here.

the ground state, linked by the forward and backward energy
descending directions, form a loop. This is very different from
the usual picture that the index-1 saddle point bridges the
reactant and product states as a transition state in chemical
reactions. This is perhaps caused by the fact that the Kohn-
Sham energy functional is defined on a curved configuration
space (mathematically speaking, a Grassmannian manifold)
rather than a flat one.

Another interesting feature of the Kohn-Sham energy
landscape is that higher excited states may not necessarily
correspond to saddle points of higher indices, although many
of them are.65 This is illustrated by the example of the OH
in Table III, where we present the four lowest-lying excited
states of OH of the doublet symmetry (5 α electrons and 4 β
electrons). As can be seen, the 2nd and 3rd excited states are
index-2 saddle points, whereas there is an index-1 saddle point
lying above them. Similar situation is observed for Li atom
excitations, where the core excitation (1s12s2) is an index-1
saddle point, but definitely not the first excited state (the first
excited state is 1s22p1 since it is lower in energy). All these
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TABLE III. Saddle point indices of the 4 lowest-lying excited states
of OH and comparison of the excited state energies between GAD,
TDDFT(TDLDA), and EOM-CCSD.

Excitation energy (eV)

Configuration Saddle point index GAD TD-DFT EOM-CCSD

1 β : 4→ 5 0a 0 0.005 0.020
2 β : 3→ 5 2 3.80 3.85 4.12
3 β : 4→ 6b 2 8.01 6.61 7.69
4 α : 5→ 6c 1 8.85 7.39 8.45

aThe ground state has degeneracy. The smallest eigenvalue of the Hessian is zero within
numerical error. Here, we denote this state as index-0 saddle point for the ease of
notation. Its excitation energy by the GAD is zero due to the degeneracy. Note that
TDDFT and EOM-CCSD predict a tiny excitation energy. This is an artifact due to the
ansatz of spin unrestriction. It is supposed to be degenerate with the ground state, yet
calculated to be slightly higher in energy due to the fact that the orbitals of different
spins do not share the same spatial function.
bTD-DFT gives a mixed excitation of β : 4→ 6 (97%) and α : 5→ 6 (3%).
cTD-DFT gives a mixed excitation of β : 4→ 6 (3%) and α : 5→ 6 (97%).

examples suggest that the Kohn-Sham energy landscape is
much more complicated than expected, which is worth further
exploration.

In Table IV, we further present the 5 smallest eigenvalues
(including zero without counting its degeneracy) of the
projected Hessian (multiplied by 1

2 for comparison with
1
2 ϵevol) for some of these systems. This is done by directly

TABLE IV. The smallest 5 eigenvalues (including zero without counting its
degeneracy) of the projected Hessian (multiplied by 1

2 for comparison with
1
2 ϵevol) at stationary solutions of some example systems.

Eigenvalue (a.u.)

Configuration 1 2 3 4 5

H 1s 0.0000 0.306 4 0.410 1 0.4101 0.4101
2s −0.4401 0.000 0 0.076 6 0.0766 0.0766
3s −0.3906 −0.056 7 0.000 0 0.0012 0.0014

He (1s)2 0 × 2a 0.625 1 0.742 7 0.8427 0.8427
(1s)1(2s)1 −0.8702 0 × 2a 0.197 6 0.1976 0.1976

Li (1s)2(2s)1 0 × 5a 0.080 5 0.080 5 0.0805 0.1123
(1s)2(2p)1 −0.0298 0 × 5a 0.000 3 0.0009 0.0480
(1s)1(2s)2 −2.401 0 × 5a 0.032 8 0.0328 0.0328

Be (1s)2(2s)2 0 × 8a 0.058 1 0.058 1 0.0581 0.2027
(1s)2(2s)1(2p)1 −0.1078 0 × 8a 0.000 2 0.0004 0.0862

H2 (1σ)2 0 × 2a 0.217 7 0.357 0 0.3682 0.4113
(1σ)1(1σ∗)1 −0.3139 0 × 2a 0.083 2 0.1758 0.4716

(1σ∗)2 −0.5097 −0.148 5 0 × 2a 0.1034 0.1266
Li2 gs 0 × 18a 0.022 9 0.036 8 0.0368 0.0510

1st −0.0292 0 × 18a 0.021 1 0.0211 0.0534
CO gs 0 × 98a 0.189 3 0.189 3 0.2612 0.3149

1st −0.2411 0 × 98a 0.000 005 0.0890 0.0898
OH gs 0 × 41a 0.000 002 0.143 4 0.2383 0.2716

2nd −0.1327 −0.132 7 0 × 41a 0.2339 0.2339
3th −0.3593 −0.359 3 0 × 41a 0.1313 0.1313
4th −0.3939 0 × 41a 0.000 008 0.1237 0.1284

HF gs 0 × 50a 0.307 3 0.307 3 0.3301 0.3301
1st −0.4621 0 × 50a 0.000 003 0.1284 0.1917

H2O gs 0 × 50a 0.218 8 0.240 2 0.2846 0.2892
1st −0.3228 0 × 50a 0.082 2 0.0877 0.1684

aThere are degenerate zero eigenvalues, with the number showing the degeneracy.

diagonalizing 1
2 (Î − P̂)Ĥ(Î − P̂) in the atomic basis. As can

be seen, for each of the first excited states, there is only
one negative eigenvalue, indicating that these solutions are
all index-1 saddle points. Moreover, the smallest nonzero
eigenvalues in Table III have perfect agreement with 1

2 ϵevol’s
in Table II, suggesting that the evolution approach is accurate
in predicting the smallest nonzero eigenvalue of the Hessian.

IV. CONCLUDING REMARKS

In this paper, we have introduced the constrained
gentlest ascent dynamics to obtain the first excited states
of approximate density functionals as index-1 saddle points,
which can be used as a robust alternative to compute the
first excitation energies. It can be easily generalized to
target higher excited states (or higher index saddle points).
Furthermore, at stationary solutions, the underlying dynamics
for the perturbation direction can be used to compute the
smallest eigenvalue of the Hessian. This provides an efficient
tool to explore the energy landscape. Although it may take
hundreds of iterations to find the first excited state, it suffices
for our purpose of proof of concept. Further modifications
with line search and variable time stepping as well as other
related techniques can be made to accelerate the convergence.
Compared with the MOM method which takes less number
of iterations but relies on the initial guess, our GAD method
can be regarded as a more robust alternative that trades off the
computational time in return for a guaranteed convergence.
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