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Introduction Results Interpretation
In combustion environments, O(3P) and OH radical are generated from the H+O> elementary 120 4 Torr, 298 K, 8.2 - V Automatic exploration of PES by Kin.Bot“’ in conjunction with CBS-QBS3 electronic structure
reaction. Reaction of O(°P) with unsaturated hydrocarbons is dominated by the addition of - calculations within Gaussian09 provided stationary point and transition state energies of
O atom to the unsaturated bond, yielding a triplet biradical and leading to a competition between possible pathways to product formation on triplet and singlet PES.
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