
Approaches for Task Affinity in OpenMP

Christian Terboven1, Jonas Hahnfeld1, Xavier Teruel2, Sergi Mateo2, Alejandro
Duran3, Michael Klemm3, Stephen L. Olivier4, and Bronis R. de Supinski5

1 Chair for High Performance Computing, IT Center, RWTH Aachen University
{terboven,hahnfeld}@itc.rwth-aachen.de

2 Barcelona Supercomputing Center
{xavier.teruel,sergi.mateo}@bsc.es

3 Intel
{alejandro.duran,michael.klemm}@intel.com

4 Center for Computing Research, Sandia National Laboratories
slolivi@sandia.gov

5 Lawrence Livermore National Laboratory (LLNL)
bronis@llnl.gov

Abstract.

OpenMP tasking supports parallelization of irregular algorithms. Recent OpenMP
specifications extended tasking to increase functionality and to support optimizations,
for instance with the taskloop construct. However, task scheduling remains opaque,
which leads to inconsistent performance on NUMA architectures. We assess design is-
sues for task affinity and explore several approaches to enable it. We evaluate these
proposals with implementations in the Nanos++ and LLVM OpenMP runtimes that im-
prove performance up to 40% and significantly reduce execution time variation.

1 Introduction

The OpenMP* API specification first included support for task-based parallelism in
version 3.0 [8]. In contrast to OpenMP worksharing constructs, task constructs support
parallelization of irregular algorithms, e.g., code with recursion or graph traversals.
The flexibility of OpenMP tasks leads to nondeterministic execution including highly
dynamic mapping of tasks to threads.

Modern processor architectures do not provide uniform performance since an in-
ternal fabric connects multiple processor packages with their local memories to form a
single shared memory system. This NUMA (non-uniform memory access) architecture
exposes different memory latencies and bandwidth rates, depending on the memory lo-
cation that is accessed. Two examples are the Intel R© Quick Path Interconnect [13] of
Intel R© Xeon processors and the Bull Coherent Switch [2]. A typical strategy allocates
data on its first touch to a physical page in the local memory of the processor that issues
the instruction. While OpenMP worksharing constructs can explicitly assign work to
individual OpenMP threads, OpenMP tasks do not support this kind of control. Thus,
tasking complicates control of page placement and memory locality.

In this paper, we assess issues that arise in extending OpenMP to support task affin-
ity that would address this question. We propose two fundamental approaches to extend

SAND2016-6488C

2

existing tasking constructs that provide hints to the OpenMP compiler and runtime that
can guide the assignment of tasks to threads in order to improve data placement and
memory locality. First, the novel affinity clause for the task construct suggests a
place or thread on which to execute a task. Second, a taskgroup extension provides
a hint to the runtime system about how to the distribute the tasks of that task group.

The remainder of the paper is organized as follows. Section 2 reviews prior pro-
posals to support task affinity in OpenMP. Section 3 assesses key issues in the design
of task affinity support while Section 4 presents the proposed syntax and semantics of
our two approaches. Section 5 details the prototype implementations of our approaches
while we provide a preliminary assessment of their performance in Section 6.

2 Related Work

Proposed OpenMP extensions for data, thread, and task affinity by Huang et al. predate
offically-adopted OpenMP thread affinity support, but the article only evaluates data and
thread, not task, affinity [5]. Terboven et al. found that the status quo of task schedul-
ing – no mechanism to express affinity among tasks or between tasks and threads –
leads to inconsistent performance across different OpenMP implementations and be-
tween different NUMA architectures [11]. Olivier et al. defined the concept of “work
time inflation”, additional time spent by threads in a multithreaded computation beyond
the time required to perform the same work sequentially [7]. They showed the impact of
such work time inflation in OpenMP task parallel programs and proposed OpenMP ex-
tensions to specify mappings of tasks to NUMA locality domains, enabling exploitation
of first touch placement for tasks. Muddukrishna et al. base task scheduling on available
capacity of the last level cache and working sets of the tasks [6]. Our work incorporates
the preliminary lessons from many of these prior studies to provide a comprehensive
assessment of the issues that arise for task affinity.

Work on task parallelism prior to the OpenMP task model has also examined the
issue of task affinity. Acar et al. derive a theoretical bound on cache misses due to dif-
ferences in the ordering of tasks between sequential and parallel executions [1]. They
propose “locality-guided work stealing” that enqueues tasks with affinity to a particular
thread into a special “mailbox” that is separate from its main queue. Task schedul-
ing techniques based on system topology particular to other task-based programming
models and runtime systems have also been attempted, e.g., for Charm++ [10] and
Habanero [4, 12]. Cilk’s work-first task scheduler exploits task affinity naturally by de-
sign for programs in which significant data sharing occurs between parent and child
tasks [3]. Such data sharing often, but not always, occurs with recursive algorithms; it
frequently does not for general task parallelism. Further, Cilk’s design targets tempo-
ral locality in private caches, while modern systems have much more complex memory
subsystem hierarchies: private and shared caches, multiple memory controllers and gen-
erally more complex memory systems. Our work extends OpenMP to assist OpenMP
compilers and runtimes in using these increasingly complex memory systems.

3

3 Design Choices for Task Affinity

Substantially different issues arise with task affinity compared to thread affinity, which
OpenMP 4.0 incorporated [9]. We explore several of these issues in this section.

How does task affinity limit task stealing? While OpenMP does not mandate a task
scheduling policy, many implementations use task stealing to exploit OpenMP tasking
semantics to improve load balance. Prescriptive task affinity extensions would prevent
the implementation from exploring the trade-off between load balance and work time
inflation. Thus, both of our approaches provide descriptive hints that can guide task
scheduling decisions. While our proposals do not mandate task scheduling policies, the
user may assume that hints bias task stealing to improve affinity.

How should affinity mechanisms interact with the task scheduling constraints? When a
task encounters a task scheduling point it may switch (or not) to begin or resume the ex-
ecution of a different task. These task switching points are subject to an explicit ruleset
described in the OpenMP specification (i.e. the Task Scheduling Constraints). Thus, any
task affinity scheduler implementation may use the information provided by the affinity
clauses to guide task execution but they will always be subject to any constraint explic-
itly expressed in the OpenMP specification (see descriptive vs. prescriptive discussion
in the previous paragraph).

Should tasks have affinity with threads or data? We could specify which OpenMP
thread should execute a given task, which would support the distribution of tasks to
threads to which the programmer has already carefully distributed data. Task-to-thread
affinity also simplifies an initialization phase that must distribute data appropriately
across system resources. Alternatively, we could specify data locations that are used by
a given task to enable the task scheduler to execute each task on a resource that is close
to its data. Task affinity to a data location may be the right level of abstraction for the
programmer as it is independent of the underlying architecture or the data layout. How-
ever, the programmer must be able to specify all data important for affinity when the
task is created (i.e. this data must be accesible at task creation). While straightforward
for simple programs, data access sets of large programs with multiple compilation units
are often not apparent where the tasks are created. Since both choices are useful in some
cases, our proposals support both.

How should we express task-to-thread affinity? We could specify which thread should
execute a task by using OpenMP places or by using OpenMP thread identifiers. Using
OpenMP places would restrict the task to be executed by one of the threads bound to
the given place(s). While this approach has conceptual appeal, the place list is static and
defined through an environment variable before the program starts. Further, the place
list heavily depends on the system architecture, which would require the programmer
to have that architecture in mind when writing the program and, thus, fail to provide
portable semantics. Because of this we decided not to support OpenMP places. Alter-
natively, while OpenMP thread identifiers may be appropriate if the program distributes
data based on them, they also can limit portability and do not capture natural semantics

4

for other data distribution strategies. Thus, our approaches provide this option but also
can exploit another mechanism, which specifies higher level policies that capture task-
to-thread affinity similarly to OpenMP thread affinity policies (i.e., spread or close).
These policies allow the user to specify task-to-thread affinity independently of the ex-
act number of threads or place list.

Which task-to-thread affinity policies should we support? Policies that are similar to
those that already exist for thread affinity provide many advantages. First, many users
are already familiar with the concepts expressed by those policies. Second, they have
proven useful to guide efficient decisions for real applications. It has to be noted that a
task affinity policy cannot directly be expressed in the context of the place list. To illus-
trate this, assume a parallel region with the proc bind(master) clause, which de-
termines all threads to execute within the same place. In this case, the affinity(spread)
clause on a taskgroup construct cannot lead to task affinity outside of this single
place, as task are executed by the threads in the current team. We also allow specifi-
cation of task affinity at different levels of the task hierarchy, similarly thread affinity
policies and nested parallelism.

Which memory accesses determine task-to-data affinity? Two types of memory ac-
cesses could guide task affinity: allocations or recent task (load/store) accesses. Task
affinity could request that a task execute in the same place as the last task that used the
same data, which would imply that the place to which task affinity refers changes when
task stealing occurs. Alternatively, task affinity could refer to the place on which the
data was first touched (allocated), which would fix affinity to the original place. The
right choice is application dependent: compute-bound problems with good cache local-
ity benefit from executing where the data was most recently accessed and likely is still
resident while the data for memory-bound problems usually does not remain resident
except where it was allocated. Thus, we support both patterns.

Should we use the depend clause to express task-to-data affinity? Since tasking con-
structs already support the depend clause to specify a relationship to data locations,
we could use it to express task-to-data affinity since the same data location often cap-
tures data affinity and synchronization. However, the depend clause tying affinity to
synchronization semantics by binding the two concepts would violate the separation of
concerns design principle. Therefore, we provide a new clause although we also support
a short form that expresses the overlap when appropriate.

On which tasking construct should we express task affinity? Specifying task affinity
on the task construct would make programs easier to read since the relationship is
then visible where it applies. This choice easily supports task-to-data affinity. However,
high-level task-to-thread affinity policies affect multiple tasks. Thus, specifying them
on the task construct would be unclear and could lead to cases in which sibling tasks
specify different policies. Thus, we also provide new clauses for thread affinity on the
taskgroup construct, which clearly marks which tasks are affected by the policy.

It would be also desirable to have affinity support for tasks spawned from the
taskloop construct. For task-to-thread affinity this is straightforward as spawned

5

tasks are grouped by an implicit taskgroup. But to support task-to-data OpenMP
currently lacks the language to be able to express the affinity of the different iterations
and how that relates to spawned tasks. We therefore have decided to postpone a decision
on how to handle task-to-data affinity for the taskloop construct.

4 Proposed Syntax and Semantics

As a general concept, this proposal introduces the affinity clause for the task,
taskgroup and taskloop constructs, as discussed below.

Task: Task affinity could be expressed directly to an OpenMP place or thread, de-
pending on the given specifier, as in the following example:

#pragma omp t a s k a f f i n i t y (t h r e a d : <t h r e a d− i d e n t i f i e r >)

Task affinity could be also expresed by means of the data a task produces, modifies
or consumes, indicated by a different specifier:

#pragma omp t a s k a f f i n i t y (d a t a : A[i])

The task shall be executed as close as possible to the location of the specified data
reference. Data location can be determined by the assumption of thread affinity (i.e.
binding OpenMP threads to cores or sockets) and then grouping tasks that use the same
location as close as possible.

A second approach could use system queries to determine where the data is actually
allocated6. However, this option may be hard to implement: Since every task is exe-
cuted by a thread, the runtime must first determine the physical location of the variable
reference in the system and then perform a mapping into the place list to find the list
of threads within that place, which are candidates to execute the task. On current Linux
systems this incurs considerable overhead.

Taskgroup: The affinity to a set of other tasks cannot be expressed directly on a
task construct, as it stands without the context of the other sibling tasks that may be
generated during the execution of the program. In order to define a task distribution
policy, the total number of tasks in the context must be known, as it would be with
the taskgroup construct. Currently the taskgroup construct always includes an
implied taskwait at the end, but in the following it is assumed that this could be omitted,
for example with the introductin of a nowait clause.

The following example illustrates the use of the affinity clause on a taskgroup
construct using the spread policy, analogous to the corresponding thread affinity pol-
icy:

#pragma omp t a s k g r o u p a f f i n i t y (s p r e a d)

Task affinity cannot directly be expressed in the context of the place list, as ex-
plained above. To address this, we defined that task affinity spread such that the gen-
erated tasks shall be spread among the threads in the team, as far and evenly as possible.
In the current implementation, the task distribution is determined based on the OpenMP

6 Future versions of OpenMP may support explicit memory affinity and thereby inhance the
definition of a location.

6

thread ids – another option to implement the task distribution would be to consider the
place list as well, which could be evaluated at a later point in time. Similarly, with the
close policy, the generated tasks shall be executed closely together as far as appropri-
ate in the context of the current thread team. And finally with the master policy, the
generated tasks shall be executed by the master thread.

As will be discussed below, determining the set of tasks to be used for applying the
policy may challenge the implementation, the definition of the policy could be extended
with the specification of a number of tasks to be used together:

#pragma omp t a s k g r o u p a f f i n i t y (s p r e a d :N)

In this scenario, the policy will be applied under the assumption that N tasks will be
created in the construct. If more tasks are created the distribution will be restarted with
task N +1 which may not deliver optimal performance as multiple tasks get scheduled
on the same thread.

Taskloop: In its current form, the number of tasks to be generated is known. Conse-
quently, the same task affinity policies discussed in the previous section are also useful
in this case.

5 Prototype Implementations

As described above, some options were implemented and evaluated. Expression of
task affinity with respect to a place or thread or storage location have been imple-
mented in the Nanos++ runtime, while the task affinity policies on the taskgroup
and taskloop constructs have been implemented in the LLVM runtime.

Nanos++: All changes to the runtime needed for the affinity support were lim-
ited to the scheduler submodule. The baseline is the Nanos++ distributed breadth first
scheduler. This scheduler has a pair of ready queues per thread: local and private. The
only difference in these two set of queues is that local queues allow stealing but pri-
vate queues do not. Stealing can be enabled in all scheduler policies by means of an
environment variable.

Private queues are only used once a tied task has been executed by a thread. At any
task switching point, a tied task is queued in the private queue of the executing thread,
preventing other threads from stealing the task.

Local queues are used when the task may still be executed by any thread. Usually
the encountering task will enqueue newly created tasks in its own local queue. In this
manner we ensure certain affinity guidance for multiple creator scenarios (e.g., task
creation in loop worksharing constructs or nested tasks created in recursive programs).
The only exception to this simple rule is when the runtime encounters a single threaded
execution by an implicit task (i.e., inside a single or a master construct). In this case
the scheduler policy distributes the work following a round-robin or random pattern
(configurable by means of an environment variable) among all the threads of the team.
There are cases in which the runtime fails and determines a single creation scheme
when actually there are more threads creating tasks simultaneously (e.g., multiple single
constructs with the nowait clause).

7

LLVM: We used the LLVM OpenMP runtime7 to create a prototype implemen-
tation of task affinity policies for the taskgroup and taskloop constructs, as de-
scribed in the subsection Taskgroup and Taskloop. In the LLVM runtime, OpenMP task-
ing is implemented with a local task queue for each thread. When a thread encounters a
task construct, it creates a new task and puts it onto its local task queue. If a thread is
idle and its local queue is empty, it will steal a task from another thread’s queue.

5.1 OpenMP Place / Thread Approach

The extended Nanos++ runtime supports the thread-id mapping technique in a very
straightforward way. The scheduler policy uses the set of threads local queues but it
will target the corresponding queue using the thread identifier provided in the affinity
clause.

5.2 Storage Location Approach

The implementation of the data-driven approach may imply different degrees of com-
plexity. In the current discussion we will describe two different Nanos++ implementa-
tions when guiding the task affinity using data. In both cases thread local queues are
still used in order to group these tasks with a certain affinity among them.

The first (default) implementation determines the target thread-id using a hash-map
function. All tasks providing the same memory address will be enqueued onto the same
thread local queue. Our hash-map function relies on the pattern of consecutive mem-
ory blocks with the same size and we compute the thread-id by shifting to the right
log2(size) the memory address and keeping the modulo number of threads.

The main problem with this approach is that information may not be accurate when
stealing occurs. Once a task is enqueued in a thread local queue it should ultimately be
executed by that thread. If stealing occurs then the task is actually executed by another
thread but the rest of the tasks using the same data will still be scheduled to the formerly
assigned thread.

A map can be used to keep track of the actual thread executing a task. The map
can be updated when a task is stolen so that related tasks will also be scheduled on
the thread that has stolen the task. This map is distributed among threads as mentioned
above, so any thread will know in which map a given data can be found.

The latter implementation gets more accurate information for scheduling a task but
has the associated cost of keeping track of where the tasks are distributed at differ-
ent scheduling points: submission, dependence fulfilment and stealing. The evaluation
section will give more information about the impact of this specific technique.

5.3 Taskgroup

In order to implement the task affinity policies, we followed the general approach to put
each task onto the queue of the corresponding thread, which is determined according
to the given policy. To evenly distribute the tasks of a taskgroup or taskloop

7 http://openmp.llvm.org/

8

construct over the available threads, in our approach it is required to know the total
number of tasks to distribute.

Therefore with affinity(spread) all recently created tasks are collected in a
dedicated list and only distributed among the threads when a taskwait is encoun-
tered, either explicitly or implicitly. This means that task execution has to be deferred
until all tasks are created and ready to be distributed which may negatively impact the
performance. With our proposal of affinity(spread:N), the distribution and ex-
ecution of tasks could start immediately with task creation as the thread to put the task
on can be determined a-priori.

Each task maintains a dedicated list of threads to execute its child tasks. This list is
partitioned according to the task affinity policy.

When using task affinity in a single producer pattern, and if the team consists of
more threads than tasks created in a single recursion step or loop iteration, some threads
will not immediately get a task to execute. These threads will try to steal tasks from
other threads’ task queues, which may disturb affinity. It is not desirable for that to
occur too early. To ensure affinity is maintained until all threads are busy, we prevent any
thread from stealing until it has at least executed one local task. This ensures that task
stealing is still allowed, which is desirable as argued above to perform load balancing,
for instance.

5.4 Taskloop

The LLVM OpenMP runtime recently gained support for taskloops, which internally
makes use of taskgroups for synchronisation. Consequently we were able to reuse our
implementation and extend the support for task affinity on the taskloop construct. It
accepts the same task affinity policies as described in the semantics and implementation
above.

6 Evaluation

Again, task affinity with respect to a place or thread or storage location on the one hand
and the task affinity policies on the other hand have been implemented and evaluated
differently, with the Nanos++ and LLVM runtimes, respectively (see table 1 for an
overview).

Approach Implementation Evaluation
Place / Thread Nanos++ (Subsection 5.1) Subsection 6.1 (Fig. 1)
Storage Location Nanos++ (Subsection 5.2) Subsection 6.2 (Fig. 1)
Taskgroup Policy LLVM (Subsection 5.3) Subsection 6.3 (Fig. 2)
Taskloop Policy LLVM (Subsection 5.4) Subsection 6.4 (Fig. 3)

Table 1. Different approaches and their implementations.

9

Measurements with the LLVM and Nanos++ runtimes have been performed on a
two-socket Intel Xeon E5-2699 v4 (Broadwell) system, with 44 cores in total. This
system exhibits a 2-level NUMA architecture with four memory domains, as the two
sockets are each split into two rings and each ring is connected to its local memory
controller.

Nanos++ runtime has also been evaluated in the MareNostrum III cluster. This sys-
tem is based on Intel SandyBridge processors, iDataPlex Compute Racks, a Linux Oper-
ating System (based on a SuSe Distribution) and an Infiniband interconnection network.
Each node has 2x Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz and 8x4
GB DDR3-1600 DIMMS of memory.

In order to obtain the results presented in this section we used the STREAM syn-
thetic benchmark8. The suite is composed by four different kernels described in table 2
and each execution consists of multiple repetitions of these four kernels.

Name Kernel Bytes/Iteration FLOPS/Iteration
COPY a(i) = b(i) 16 0
SCALE a(i) = q*b(i) 16 1
SUM a(i) = b(i) + c(i) 24 1
TRIAD a(i) = b(i) + q*c(i) 24 2

Table 2. The STREAM benchmark suite: description of kernels.

We evaluated our prototype implementation of task affinity for the taskgroup
construct with a task parallel merge sort. This program is representative of the class of
divide and conquer algorithms. The input size for the merge sort was 233 integer values.

6.1 Place/thread

We evaluated our place and thread approach described in subsection 5.1 using the ag-
gregated results of the full STREAM suite. Figure 1 shows the performance results of
executing this benchmark in SandyBridge and Broadwell respectively. Speedups are
computed against the execution time of the very same parallel version without task
affinity annotation and using a per thread (local queue) round-robin scheduler. The first
two bars of each cluster of bars correspond to the thread approach.

SandyBridge results show that we have no penalty / no gain when running on a sin-
gle socket, but we increase the performance up to 20% when mapping tasks to threads
when both sockets are used.

We have used different numbers of threads configurations when running on the
Broadwell system: 11 threads (one ring of a single socket), 22 threads (all the cores
of a single socket), 44 threads (all the cores of the two sockets) and 88 threads (en-
abling hyper-threading). As in the case of SandyBridge there is no penalty / no gain

8 Further information about the STREAM benchmark suite available at:
http://www.cs.virginia.edu/stream/ref.html

10

SandyBridge

sp
ee

d−
up

0.
0

0.
4

0.
8

1.
2

threads
8 16

Broadwell

sp
ee

d−
up

0.
0

0.
4

0.
8

1.
2

threads
11 22 33 44 88*

thread thread−stealing data data−stealing

Fig. 1. Thread and storage (data) affinity approaches: STREAM benchmark performance with
and without stealing, relative to a round-robin scheduler, on two different architectures using
Nanos++.

when running on a single NUMA domain but performance increases as we use a thread
per core / two sockets (30% of speed-up) and increases still more when using all threads
on the two sockets (up to 44%).

The Broadwell results also show that stealing induces unpredictable execution be-
haviour. In some case we observe a performance degradation (e.g., with 44 threads) and
in some other cases we the performance improves (e.g., with 88 threads). In this partic-
ular comparison (44 vs. 88 threads) the use of hyper-threading may also have an impact
on the observed results due the plot also shows how the non-stealing version suffers a
slight degradation in the speed-up gain.

6.2 Storage location

Figure 1 also shows the results for the storage location approach, in the right two bars
of each cluster of bars. In all cases we obtain a performance gain (i.e., the speedups are
always bigger than 1) with respect to the non-affinity version, but comparing with the
thread approach the performance gain is smaller. The gap between 22 and 44 threads in
the Broadwell execution is an anomaly. In this specific case the storage affinity approach
suffers from a small performance degradation while the thread approach is still able to
improve results.

6.3 Taskgroup

The measurements discussed below were done with the Intel C/C++ Compiler in ver-
sion 17.0 beta, employing our modified LLVM OpenMP runtime. 44 threads (one per
physical core) were used, always delivering the best absolute performance.

Figure 2 shows that task affinity resulted in an improvement of approximately 20%
of execution time, and also a significant reduction of the performance variation be-
tween trials. Results for three versions of the program are shown. The default imple-
mentation performs data allocation and initialization in a sequential part, with the result

11

that the whole array is located on only one NUMA domain. In the first touch vari-
ant, the array has been distributed over the NUMA nodes in chunks of equal size. The
affinity variant employs the same data distribution together with a omp taskgroup
affinity(spread) around the task creation points. Note that this currently still
includes an implied taskwait synchronization construct at each recursion level, which
we envision becoming optional in future versions of the OpenMP specification.

The improvement in execution time for the affinity variant stems from the higher
percentage of local data accesses, as tasks are distributed according to the data distri-
bution. The reduction in runtime variation occurs because the tasks’ distribution to the
threads based on the affinity policy is deterministic. In contrast, without task affinity the
distribution is determined by stealing which in itself is nondeterministic. When stealing
is allowed, data locality and therefore performance differs with every run.

0
10

20
30

40

se
co

nd
s

default w/ first touch w/ affinity

Fig. 2. Policy approach with taskgroup
using LLVM: Avg, min and max execu-
tion time of merge sort with 233 integer
values.

taskloop
taskloop affinity(spread)
parallel for

G
B

/s

0
20

60
10

0

COPY SCALE ADD TRIAD

Fig. 3. Policy approach with taskloop us-
ing LLVM: STREAM benchmark perfor-
mance.

6.4 Taskloop Construct

To evaluate affinity on the rather new taskloop construct, we modified the STREAM
benchmark to use a single-producer pattern: the taskloop construct is used to par-
allelize the loops performing the actual operations of the benchmark, and also the data
initialization loops. On all instances the number of tasks to be created is set equal
to the number of threads (num tasks(omp get num threads())): thereby the
same number of explicit tasks is created as a do worksharing construct would create
implicit tasks. As compiler support for this feature was very limited in the Intel compil-
ers, we used a trunk version of the LLVM/Clang compiler. This version required us to
use the builtin nontemporal store intrinsic to enable the generation of non
temporal stores. This was necessary to achieve maximum memory bandwidth with this
code and to allow for a fair comparison. If task affinity is successful, this taskloop
implementation should deliver the same memory bandwidth as the do worksharing
variant.

12

Figure 3 compares three variants: the taskloop implementation as described with
and without affinity enabled, and the same benchmark parallelized with the parallel
for combined worksharing construct serving as the reference. In the version with-
out affinity, the nondeterminism of the task to thread mapping in the task schedul-
ing – as explained above – limits the achievable memory bandwidth. Enabling the
affinity(spread) task affinity policy yields the same bandwidth as using the
worksharing construct from the original STREAM benchmark – the ideal outcome.

7 Conclusion

In this paper we have discussed several language extensions to support task affinity
in OpenMP. We focus on three different aproaches. The first is based on the OpenMP
places concept and complements OpenMP thread affinity. The second approach is based
on data storage. This approach is more programmer-friendly (assuming programmers
understand the data use of the tasks they create) but requires more complexity in the
runtime implementation. The third approach is based on distribution policies of a set of
tasks (e.g. those generated in taskgroup or taskloop constructs).

We have implemented and evaluated a representative prototype for each approach.
The place-based approach is implemented assuming thread to core affinity. The storage
approach uses the memory address as a key value to determine and group tasks using
the same storage location. The distribution policies approach has been implemented by
tracking at each task level the set of valid thread local queues a task can submit work
to.

Results show that using this set of affinity guidelines when scheduling OpenMP
tasks can help the runtime system to improve the application performance. Having dif-
ferent mechanisms to distribute tasks among threads or group their execution over the
same (or a close) physical resource can help programmers to choose the one that fits
best with their application. Regular and repetitive patterns of task creation may use
thread-based task affinity, irregular patterns of memory usage may benefit from the
ease of the storage-based approach, and recursive applications seem to fit with the task
set distribution policies.

As future work we plan to further evaluate the different approaches on a wider set
of kernels. We also plan to perform more in-depth experiments to better understand the
effects of load imbalance and how stealing techniques may impact the performance.
Finally, we plan to execute these kernels on additional system architectures to investi-
gate the behavior of our implemented approaches in more complex system architectures
(with respect to the NUMA layout). Our evaluations so far show significant benefits for
OpenMP task parallel programs using the diverse approaches we investigated.

Acknowledgement

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Depart-
ment of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

13

This work has been developed with the support of the grant SEV-2011-00067 of the Severo
Ochoa Program, awarded by the Spanish Government, by the Spanish Ministry of Science and
Innovation (TIN2015-65316-P, Computacion de Altas Prestaciones VII) and by the Intel-BSC
Exascale Lab collaboration project.

Some of the experiments were performed with computing resources granted by JARA-HPC
from RWTH Aachen University under project jara0001. Parts of this work were funded by the
German Federal Ministry of Research and Education (BMBF) under grant numbers 01IH13008A(ELP).

Intel and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

* Other names and brands are the property of their respective owners.
Software and workloads used in performance tests may have been optimized for performance

only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are mea-
sured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products. For more information go to
http://www.intel.com/performance.

Intel’s compilers may or may not optimize to the same degree for non-Intel microproces-
sors for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufac-
tured by Intel. Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved
for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

References

1. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of work stealing. In: SPAA
’00: Proc. 12th ACM Symposium on Parallel Algorithms and Architectures. pp. 1–12. ACM
(2000)

2. Bull Atos Technologies: Bull Coherent Switch, http://support.bull.com/ols/
product/platforms/hw-extremcomp/hw-bullx-sup-node, retrieved: May
25, 2016.

3. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multithreaded
language. In: PLDI ’98: Proc. 1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 212–223. ACM (1998)

4. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: SLAW: A scalable locality-aware adaptive work-
stealing scheduler for multi-core systems. In: PPoPP ’10: Proc. 15th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. pp. 341–342. ACM (2010)

5. Huang, L., Jin, H., Yi, L., Chapman, B.M.: Enabling locality-aware computations in
OpenMP. Scientific Programming 18(3-4), 169–181 (2010)

6. Muddukrishna, A., Jonsson, P.A., Brorsson, M.: Locality-aware task scheduling and data
distribution for OpenMP programs on NUMA systems and manycore processors. Scientific
Programming 2015, 5:1–5:16 (2015)

7. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and mitigating work
time inflation in task parallel programs. In: SC 12: Proc. 24th Intl. Conference on High
Performance Computing, Networking, Storage and Analysis. pp. 65:1–65:12. IEEE (2012)

14

8. OpenMP Architecture Review Board: OpenMP Application Program Interface, Version 3.0
(May 2008), http://www.openmp.org/

9. OpenMP Architecture Review Board: OpenMP Application Program Interface, Version 4.0
(July 2013), http://www.openmp.org/

10. Pilla, L.L., Ribeiro, C.P., Cordeiro, D., Bhatele, A., Navaux, P.O.A., Méhaut, J.F., Kalé, L.V.:
Improving parallel system performance with a NUMA-aware load balancer. Tech. Rep. TR-
JLPC-11-02., INRIA-Illinois Joint Laboratory on Petascale Computing, Urbana, IL (20011),
http://hdl.handle.net/2142/25911

11. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing OpenMP tasking implemen-
tations on NUMA architectures. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012: Proc. 8th Intl. Workshop on OpenMP. Lecture Notes in Computer Sci-
ence, vol. 7312, pp. 182–195. Springer (2012)

12. Yan, Y., Zhao, J., Guo, Y., Sarkar, V.: Hierarchical place trees: A portable abstraction for
task parallelism and data movement. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.)
LCPC 2009: 22nd Intl. Workshop on Languages and Compilers for Parallel Computing.
Lecture Notes in Computer Science, vol. 5898, pp. 172–187. Springer (2010)

13. Ziakas, D., Baum, A., Maddox, R.A., Safranek, R.J.: Intel QuickPath Interconnect architec-
tural features supporting scalable system architectures. In: 2010 18th IEEE Symposium on
High Performance Interconnects. pp. 1–6 (Aug 2010)

