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» Provide quantitative error estimates to continuum analysts based
upon fundamental measurements and calculations of the EOS.
» Preserve model providence throughout the process.
» Usable system for generation and use of the EOS. sont
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}" Tabular EOS UQ System

] Software Package \ Output

Proposal model
(XML input deck)

EOS model library and data

Bayesian inference using Extensive sampling of
Markov Chain Monte Carlo | Posterior Distribution Function (PDF)
EOS Table building Topologically equivalent tables

for each sample
Mean EOS table
+ most significant table perturbations
Cumulative Distribution Function
for quantities of interest

PCA analysis

Hydrocode + Dakota

» First half of system utilizes analytic EOS models.

» Last half of system utilizes tabulated EOS models.

» Uncertainty information transferred from parametric to
thermodynamic space.

» Focus herein will be on the first steps involving data @ Sandia
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‘ What Does “EOS Model” Mean?

XML input deck is the (meta-)EOS Model:
<EOSModel> Traditional EOS model definition
<EOSData> EOS data and uncertainties used for model calibration
<Inference> Controls for the inference
<Tabulation> Controls for the tabulation

EOS table and interpolation scheme is the real “EOS model”
» Codes actually query it for thermodynamic closure states
» Example: pick on Kerley’s 3700 and Sandia’s codes

>
>
>
>
»

ALEGRA simulation with 3700 and backup linear interpolation
ALEGRA simulation with 3700 and sound speed modifications
CTH simulation with 3700 and bad state clipping

Saying “Aluminum 3700” describes none of these accurately
They are not even the same as Kerley’s model used to build 3700

Can the XML input really be the “EOS model”?
» Tabulation must be representative of original models
» Consistency between EOS build tools and hydrocode interpolation
» System must be automated — no by-hand modifications
» Provide no incentives for fiddling by the hydrocode/analysts
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}‘ Recording the Art of EOS Building

Expert modeler decisions (often visually based):
» Appropriate models to use
» Stability and physicality requirements
> Relative weighting of data sets
» How well models should agree with data

Bayes'’ rule allows inferring parameters’ posterior distribution
function (PDF) using data and prior knowledge:
posterior likelihood prior
— iz
-~ p(DM)p(,\) normalization
POID) = B2

The expert’s art must be encoded in the XML input for

automation of PDF sampling and table building.
> All invalid parameter sets must be rejected in the inference
» Likelihood contains weighting of data
» Prior contains conditions on physicality (rejection criteria)
» Expert still must guide the system to a good starting point, the
Maximum A Posteriori (MAP) value
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posterior 1ike]i]§jmd prior
\ p(D\)\);{J()\)/ normalization
AD) = ————-

Bayesian “objective” is the posterior distribution function (PDF):

» Attempt to find the most likely parameters and their
distribution, allowing UQ practices to be employed

» Often sampled with Monte Carlo methods but can also be
optimized directly with gradient methods

» Typical to work with logarithm of PDF and ignore
normalization

Bayesian Inference
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} Constructing Bayesian Likelihood

Calculate likelinhood:

v

-72
log(p(DN) = —5 28] - Slog o}

Simple Gaussian noise models currently supported

» Noise model hyperparameter op often can be fixed
» op may be specified either as specific values or a relative

weight
Gaussian statistics with fixed hyperparamters gives
least-squares
Every data source is cast into this framework, from cold
curves to shock data to phase boundaries
Using surrogate models for data can make sense when
many and/or scattered point are available
@ ﬁ:?igir?al i
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}' Surrogate Data Example

Principal Hugoniot data for copper:
» Surrogate model is linear or quadratic us-up form
» Points sampled from surrogate for inclusion in likelihood
» op is chosen based upon spread of data from surrogate
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}‘ Constructing Bayesian Prior

Calculate prior:
12
l0g(p(\)) = 3 [23]" + conditions())

AN

» Simple Gaussian priors and bound constraints currently
supported for parameters

» Various uses include constraining parameters to certain
ranges or eliminating unphysical models

Conditions:

» Act as rejection criteria (very small probability)

» Encode physicality requirements on the model

» Requirements ranked in prior contribution to aid in
sampling

» Can still make sampling and optimization difficult

» Moving from discrete to smooth engagement of conditions
would likely improve these difficulties
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}' Physicality Conditions

Thermal and mechanical stability:
» Heat capacity and bulk modulus must be positive
» Applied to pure phase regions (i.e. not transitions)
» Particularly important for regions without calibration data

Smoothness of phase boundary lines:
» Boundaries must not have discontinuities
> They indicate problems with model parameters or solvers
> Prevents later problems with curve approximation and tabulation
» Boundaries should not have multiple curvature changes
> One sign change allowed along boundaries
> Physical for vapor dome, other lines may still be questionable
> With few exceptions more changes are unphysical
» Applies to vaporization, melt, polymorphic transitions
» Derivatives sampled along phase boundaries

Vapor dome example:

P P P
Derivative Curvature Smooth )

. . Sandia
Discontinuity Changes @ National
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Aluminum Example Case

Test multi-phase aluminum model:
» Semi-empirical solid-liquid-gas model
» Cold curve uses polynomial expansion form
» FCC solid phase uses the Debye model
» Fluid phase uses Bushman-Lomonosov-Fortov model

» 37 parameters in total
» Range of interest to 150 kK and 20 g/cm?

Multiple sets of data used for calibration:
» |sobaric enthalpy and density for solid and liquid
» Shock data for solid and liquid
» |sothermal compression data for solid
» QMD calculations of critical point plus melt and vaporization data
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i Optimizing the Posterior

Optimization and Sampling:
» PDF is optimized as in normal EOS development
» Hand tuning of parameters or automated methods used
» Methods: gradient based, genetic algorithms, simulated
annealing
» All suffer curse of dimensionality in finding global optimum
Maximum A Posteriori (MAP) parameters:
» Normal EOS development gives the expert opinion “best” model.
» Sampling the PDF via Markov Chain Monte Carlo (MCMC)
verifies this opinion is represented (the “art” has been recorded)
in the statement of the likelihood
and prior probabilities.
» MCMC burn-in with significant change
in the PDF indicates a “better” model.
» The verified best model is the starting
point for the remaining UQ process.
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Al EOS Model Inference
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Al EOS 25 parameter inference A marginal distribution

» Use adaptive Markov Chain Monte Carlo scheme to reduce number of steps

» Start chain from optimized MAP parameters

» PDF evaluations may be parallelized to enable long chains (~4.5M steps for this
EOS, one serial evaluation is approximately 2 sec.)

» Each posterior evaluation is roughly equivalent to generating an entire EOS table
and having an expert check it for correct behavior. @
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>

Dealing with data uncertainty in creating EOS models:

>

Summary

The data needs to be treated on the same footing as the rest of
the modeling process

Expert opinion on model agreement with data must be recorded
Automated processes must reproduce the expert opinion

Physical constraints on models are an implicit form of data in this
system

Sampling of the PDF provides the foundation for propagating the
data uncertainty to inform uncertainty in engineering outputs.
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