

Task Parallel Approach to the Linear Algebra-Based Implementation of miniTri

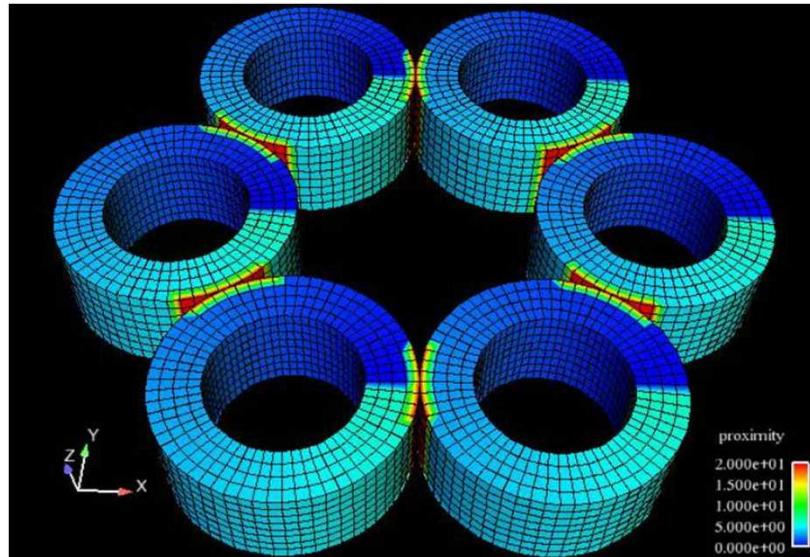
Michael Wolf

SIAM Annual Meeting
11 July, 2016

*Exceptional
service
in the
national
interest*

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-7696C

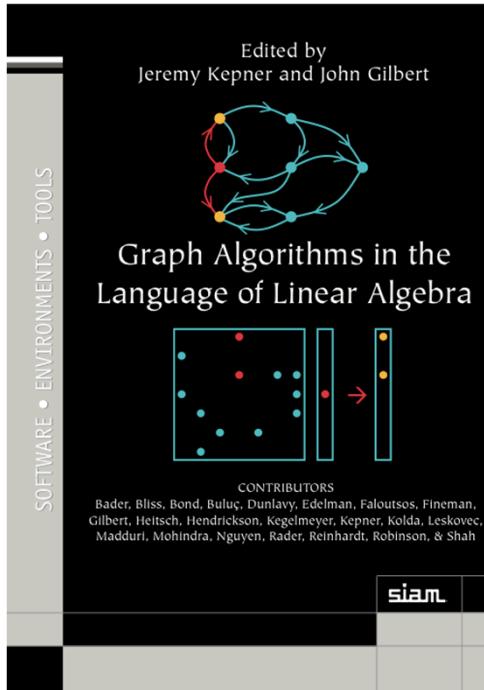
Miniapps



phdMesh
(Mantevo)

- Small, self contained applications
- Proxy for important characteristics of full applications
- Important co-design tool: performance analysis
 - Target 1: existing applications on new and future architectures
 - Target 2: new applications on existing architectures
 - Strong partnership with industry
- Mantevo MiniApp Suite (Sandia): mantevo.org

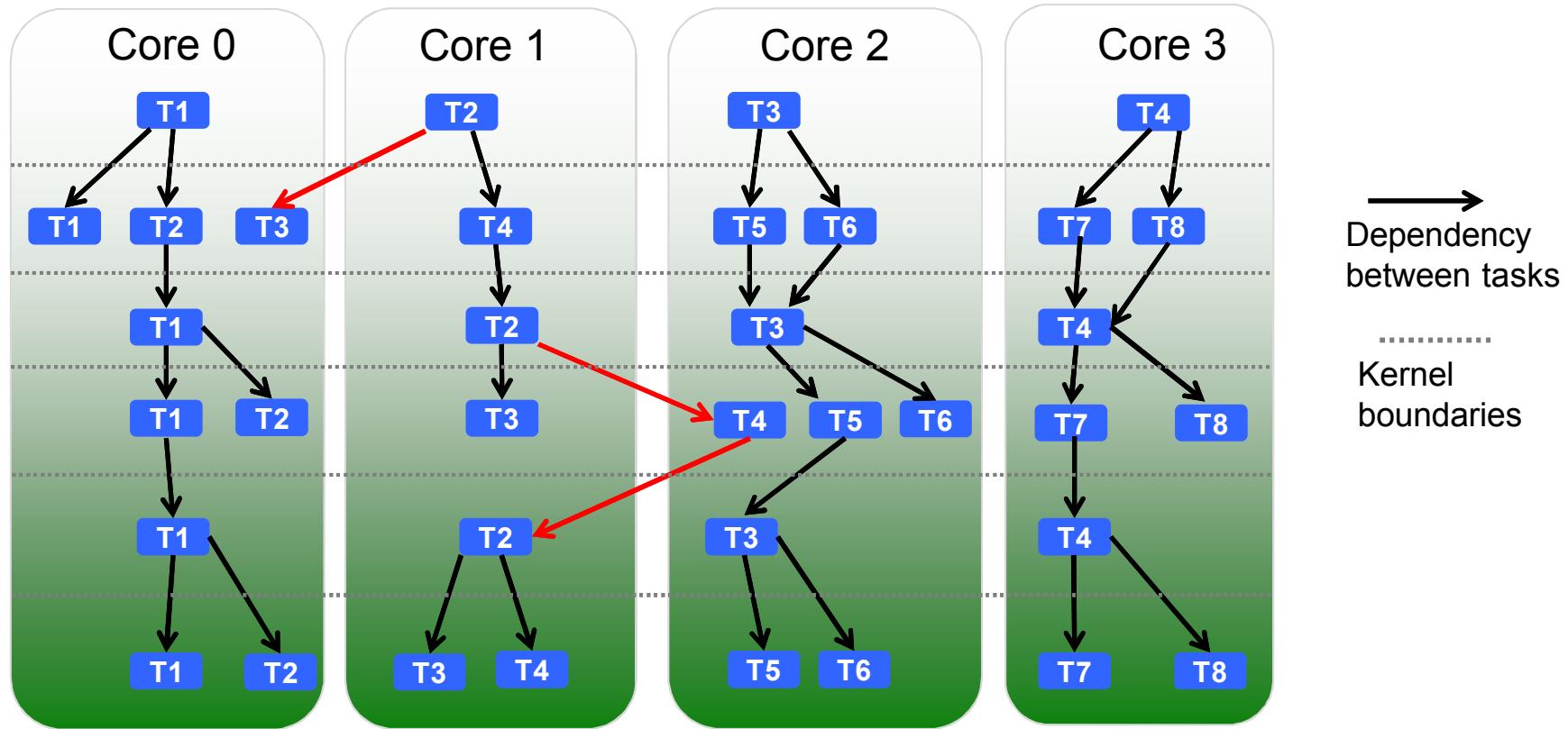
Graph BLAS



Eds. Kepner, Gilbert

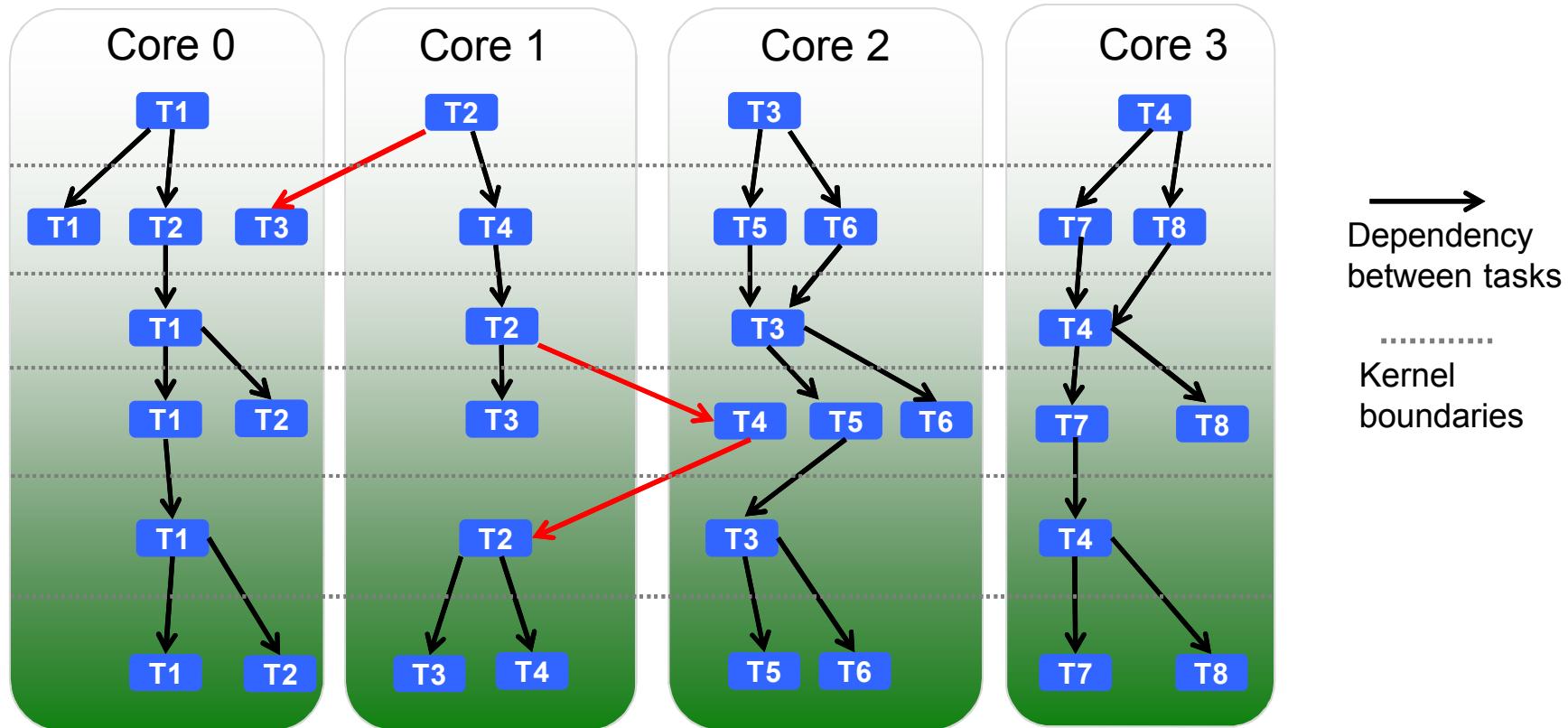
- Effort to standardize building blocks for graph algorithms in language of linear algebra
 - Overloaded linear algebra kernels express most graph computations
 - Matrix-graph duality – highly impactful in CS&E (partitioning, solvers,...)
 - Promising for data sciences but many challenges

Task Parallelism



- Dataflow of application expressed through tasks/dependencies (Avoid explicit barriers between kernels)
- Overdecomposition of problem into tasks (# tasks > #cores)
- Tasks scheduled and moved to appropriate compute resources

Task Parallelism

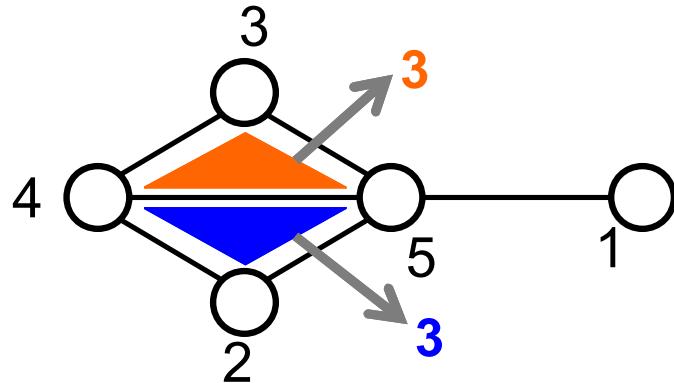


- Natural for data analytics (model intrinsically data-centric)
- Several task parallel models/libraries: **HPX**, **Kokkos/Qthreads**, **Uintah**, **Legion**, **OCR**, ...

Outline

- Background
- ■ miniTri
- Linear Algebra-Based miniTri (miniTriLA)
- Task Parallel Approach to miniTriLA
 - HPX
 - Kokkos/Qthreads
- Memory-Constrained Task Parallelism
- Summary

miniTri: Data Analytics Miniapp



k:

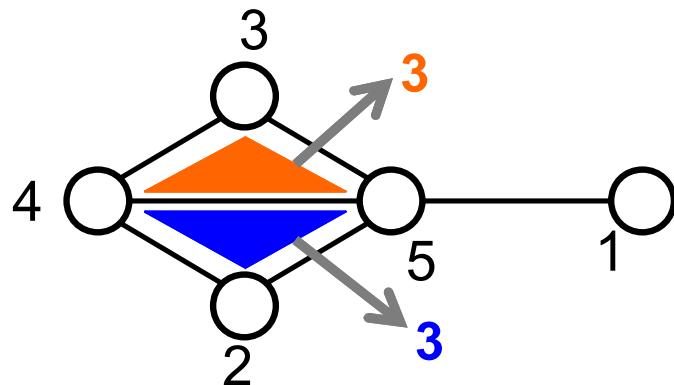
$$\arg \max_k \left\{ \left(\min_{v \in t} t_v \geq \binom{k-1}{2} \right) \cap \left(\min_{e \in t} t_e \geq k-2 \right) \right\}$$

Max clique size of given triangle

- Proxy for triangle based data analytics (Manteko)
- Uses **triangle enumeration** + vertex/edge properties
- Key uses: **dense subgraph detection**, characterizing graphs, improving community detection, generating graphs
- Related applications in **cyber security, intelligence, functional biology**

miniTri is more application relevant than standard data analytics benchmarks such as Graph 500

miniTri: Overview



k:

$$\arg \max_k \left\{ \left(\min_{v \in t} t_v \geq \binom{k-1}{2} \right) \cap \left(\min_{e \in t} t_e \geq k-2 \right) \right\}$$

- miniTri Steps:
 - For each triangle, calculate triangle degrees for vertices and edges
 - For each triangle, calculate integer **k** given triangle degree info
- Developed 20+ variants
 - Different methods: buckets data structure, set intersection, linear algebra
 - Different programming models: OpenMP, MPI, HPX, Kokkos/Qthreads
- **Focus of talk:** linear algebra-based miniTri, task parallel models

Challenge: Can miniTri be implemented efficiently using
Graph BLAS-like building blocks?

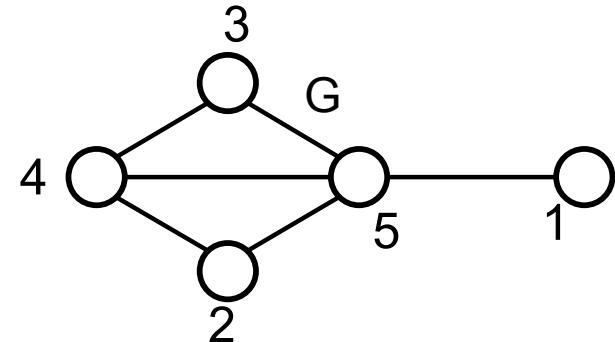
Outline

- Background
- miniTri
- ➡■ Linear Algebra-Based miniTri (miniTriLA)
- Task Parallel Approach to miniTriLA
 - HPX
 - Kokkos/Qthreads
- Memory-Constrained Task Parallelism
- Summary

Linear Algebra Based miniTri (miniTriLA)

```

miniTri
1  C = A * B
2  tv = C * 1
3  te = CT * 1
4  kcount(C, tv, te)
  
```



$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} \quad \text{Adjacency matrix of } G$$

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \quad \text{Incidence matrix of } G$$

- Developed Graph BLAS-like formulation of miniTri
- Important stressor of Graph BLAS

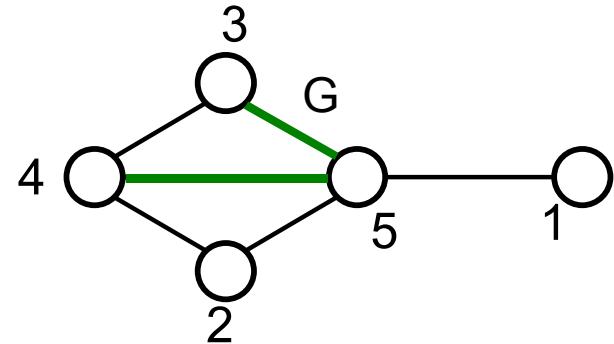
miniTriLA: Triangle Enumeration

miniTri

```

1  C = A * B
2  t_v = C * 1
3  t_e = C^T * 1
4  kcount(C, t_v, t_e)
  
```

Enumerates each triangle 3 times
(once: $C=L^*B$, where L is lower triangle part of A)



$$C = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{2,4,5\} \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{3,4,5\} \\ \emptyset & \{4,2,5\} & \{4,3,5\} & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \{5,3,4\} & \{5,2,4\} & \emptyset \end{pmatrix}$$

Adjacency matrix of G Incidence matrix of G Matrix of Triangles

- Wedges implicitly stored in rows of A
 - Adj matrix: wedges = pairwise combinations of nonzero column ids + row #
 - E.g., row 5 wedges: $\{1,5,2\}, \{1,5,3\}, \{1,5,4\}, \{2,5,3\}, \{2,5,4\}, \{3,5,4\}$

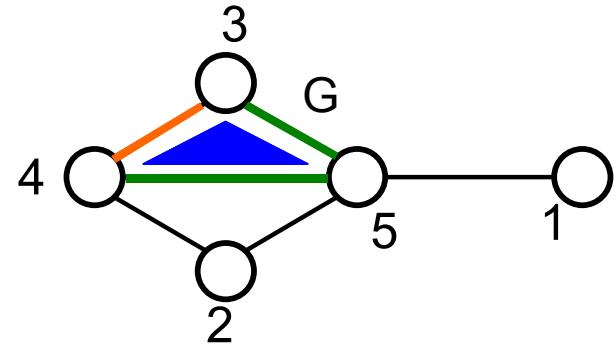
miniTriLA: Triangle Enumeration

miniTri

```

1  C = A * B
2  t_v = C * 1
3  t_e = C^T * 1
4  kcount(C, t_v, t_e)
  
```

Enumerates each triangle 3 times
(once: $C=L*B$, where L is lower triangle part of A)



$$C = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{2,4,5\} \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{3,4,5\} \\ \emptyset & \{4,2,5\} & \{4,3,5\} & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \{5,3,4\} & \{5,2,4\} & \emptyset \end{pmatrix}$$

Adjacency matrix of G
Incidence matrix of G
Matrix of Triangles

- Columns of B tell us whether wedge is “closed” to form triangle
- Overloaded SpGEMM yields triangle enumeration:
 - If $A_{i,x}=A_{i,y}=1$ and $B_{x,j}=B_{y,j}=1$ (or equivalently $A_{i,*}B_{*,j}=2$), $C_{i,j} = \text{triangle } \{i,x,y\}$
 - Else, no triangle

miniTriLA: Triangle Degree Calculation

```

  miniTri
1  C = A * B
2  tv = C * 1
3  te = CT * 1
4  kcount(C, tv, te)

```

$$C = \begin{pmatrix} \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{2, 4, 5\} \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{3, 4, 5\} \\ \emptyset & \{4, 2, 5\} & \{4, 3, 5\} & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \{5, 3, 4\} & \{5, 2, 4\} & \emptyset \end{pmatrix}$$

$$t_v = \begin{pmatrix} \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{2, 4, 5\} \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{3, 4, 5\} \\ \emptyset & \{4, 2, 5\} & \{4, 3, 5\} & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \{5, 3, 4\} & \{5, 2, 4\} & \emptyset \end{pmatrix} * \mathbf{1} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}$$

Triangles with v_4

$$t_e = \begin{pmatrix} \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{2, 4, 5\} \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{3, 4, 5\} \\ \emptyset & \{4, 2, 5\} & \{4, 3, 5\} & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \{5, 3, 4\} & \{5, 2, 4\} & \emptyset \end{pmatrix}^T * \mathbf{1} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}$$

Triangles with $e_{4,5}$

Overloaded
SpMV to count
triangles in
rows

Triangle degree calculation

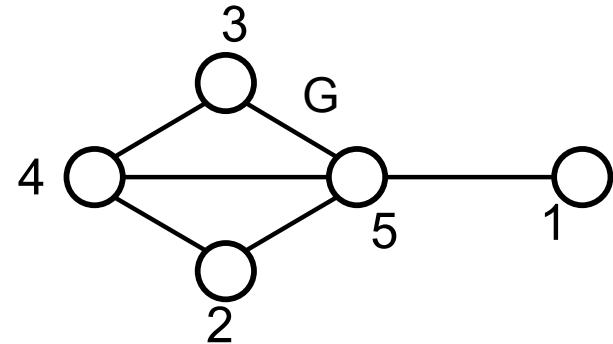
- Each triangle represented once in C for each of its edges and vertices
- Triangle vertex and edge degrees are number of nz in rows and columns

miniTriLA: Kcounts

```

miniTri
1  C = A * B
2  te = C * 1
3  tv = CT * 1
4  kcount(C, te, tv)

```



k:

$$\arg \max_k \left\{ \left(\min_{v \in t} t_v \geq \binom{k-1}{2} \right) \cap \left(\min_{e \in t} t_e \geq k-2 \right) \right\}$$

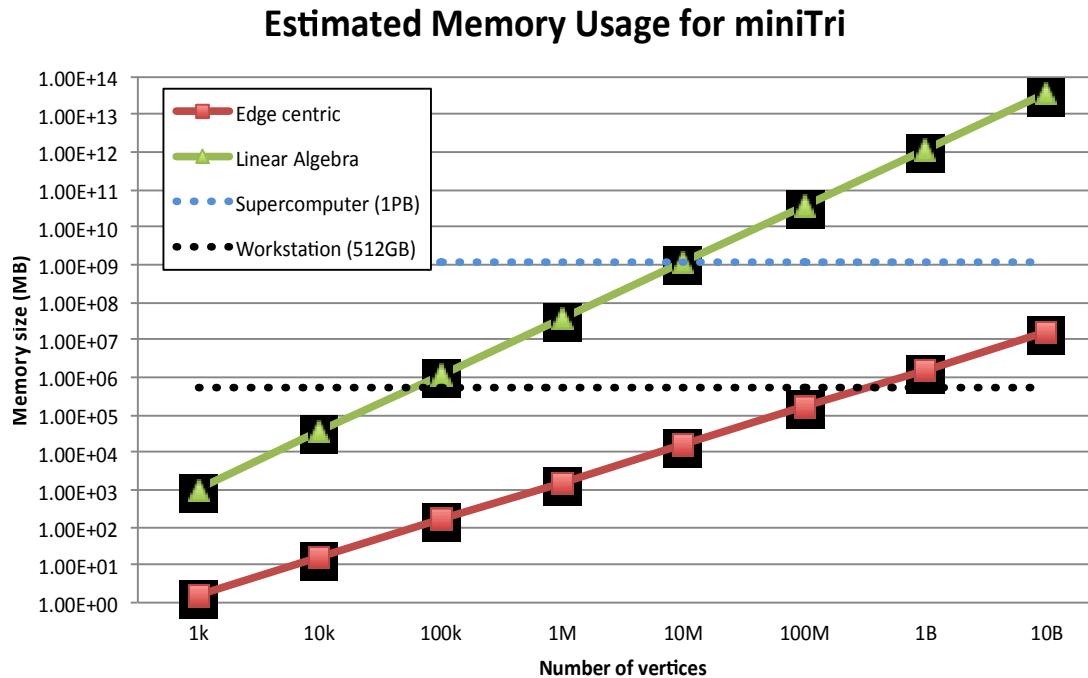
K	1	2	3
triangle count	0	0	2

- Compute **k** for each triangle (summarize in table)
- **k**-count table gives us upper bound on largest clique in graph
 - Largest c such that $\text{Comb}(c,3)$ triangles have k -counts at least c

miniTriLA: Challenges

```

miniTri
1   C = A * B
2   te = C * 1
3   tv = CT * 1
4   kcount(C, te, tv)
  
```

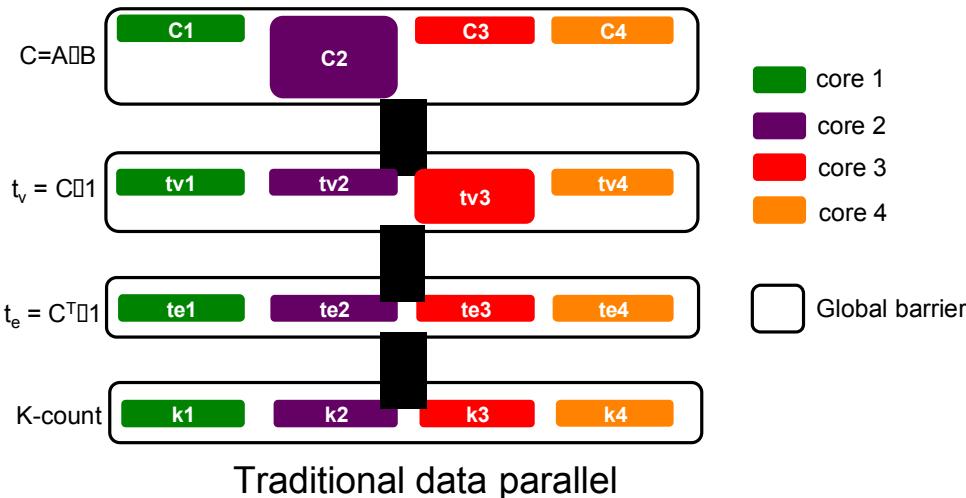
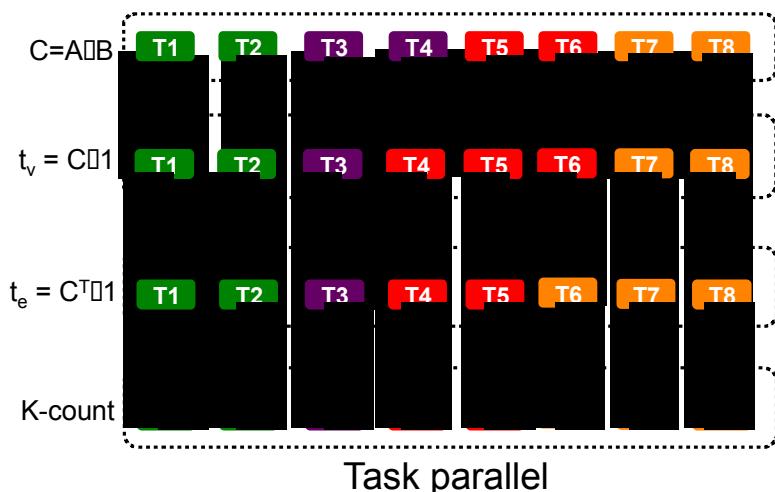


- Challenge 1: Computation difficult to load-balance
- Challenge 2: Typical Graph BLAS approach forms C, which means storing all triangles in graph
 - Worst case: $O(|E|^{3/2})$ triangles in graph, typical: 100-1000 triangles/edge
 - Severely limits size of graph

Outline

- Background
- miniTri
- Linear Algebra-Based miniTri (miniTriLA)
- ■ Task Parallel Approach to miniTriLA
 - HPX
 - Kokkos/Qthreads
- Memory-Constrained Task Parallelism
- Summary

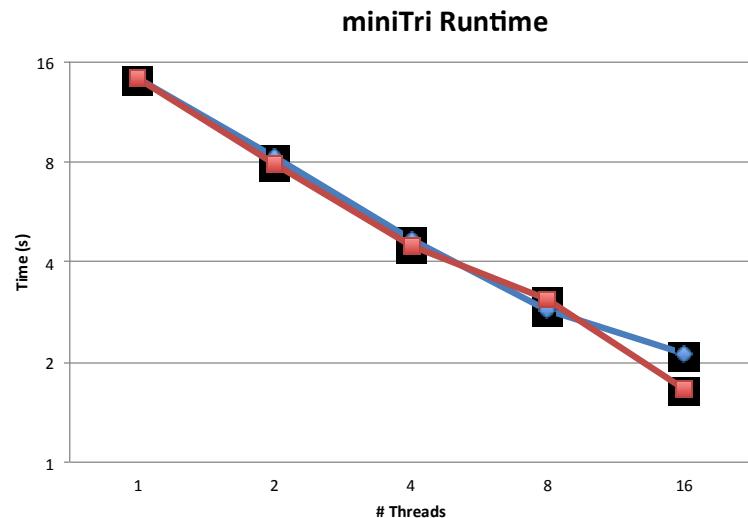
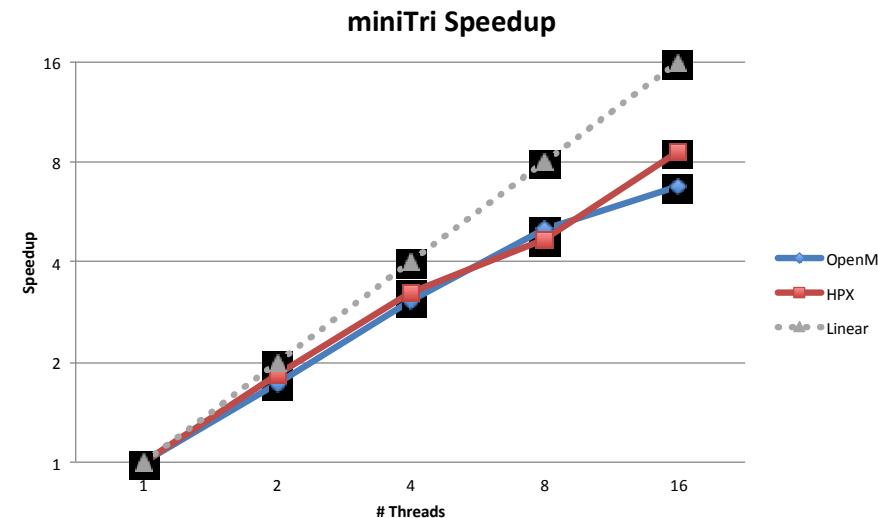
Task Parallel Approach



Illustrative Example of GraphBLAS Approaches

- Each block of linear algebra operations assigned to a task
 - Block of rows, 2D block of elements
- Global barriers between kernels removed
 - Replaced by dependencies between tasks
 - Tasks in subsequent kernels can start/finish before first kernel finishes

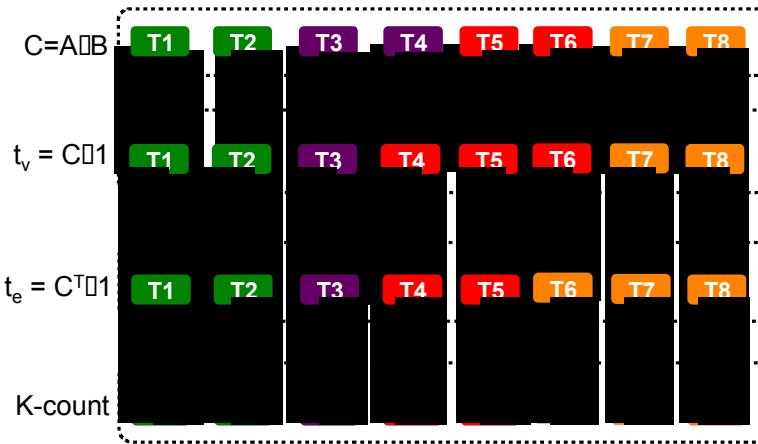
HPX-3 Implementation



- HPX-3 (LSU)
 - General purpose C++ runtime system
 - Supports both on-node and inter-node tasks parallelism
 - Active global address space (AGAS)
 - Lightweight control objects instead of global barriers

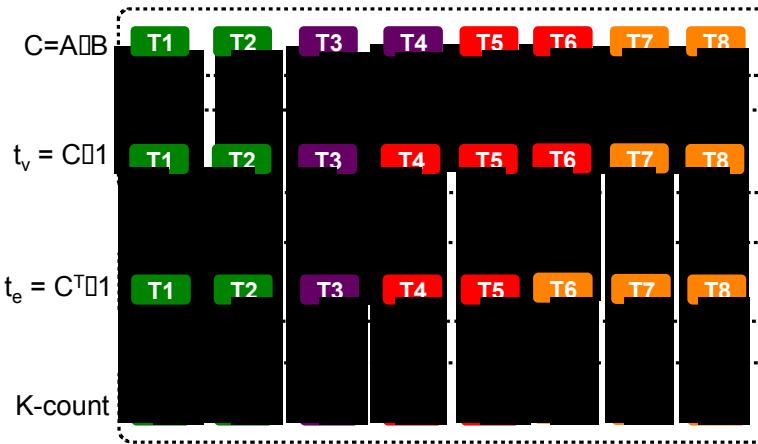
Preliminary results show similar performance of task parallel and data parallel approaches

Kokkos/Qthreads Implementation



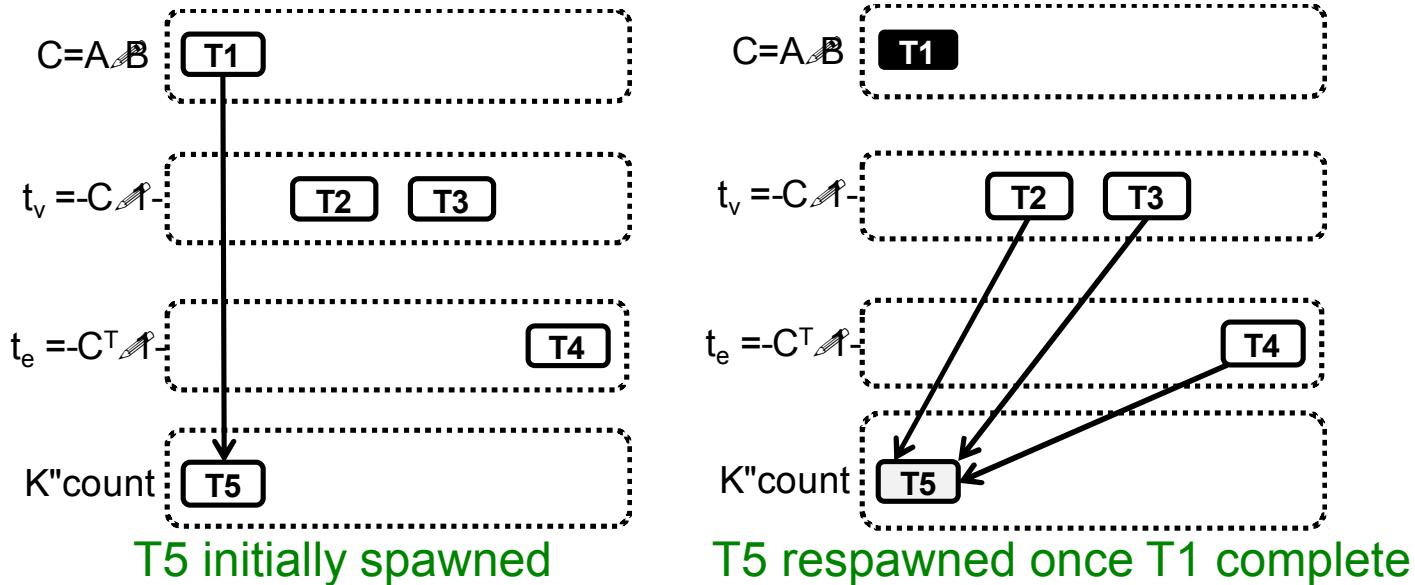
- Kokkos
 - Performance portable programming model and C++ library implementation for intra-node (shared memory) parallelism
 - Supports diverse manycore architectures (GPUs, CPUs, Intel MIC, ...)
 - **policy** manages how tasks are scheduled using task-DAG pattern
- Qthreads
 - C-based multithreading library inspired by MTA/XMT architectures
 - Runtime system to execute Kokkos API's task-DAG pattern

Kokkos Task Parallel API



- Task Creation
 - `f = policy.create(func);`
 - `f` – future; `func` – functor that creates/executes tasks
- Setting Dependencies
 - `policy.add_dependence(f1, f2);`
 - `f1, f2` – futures such that task corresponding to `f1` depends on task corresponding to `f2`
- Launch Tasks
 - `policy.spawn(f); // f is future`

Dynamic Task Dependencies of miniTri

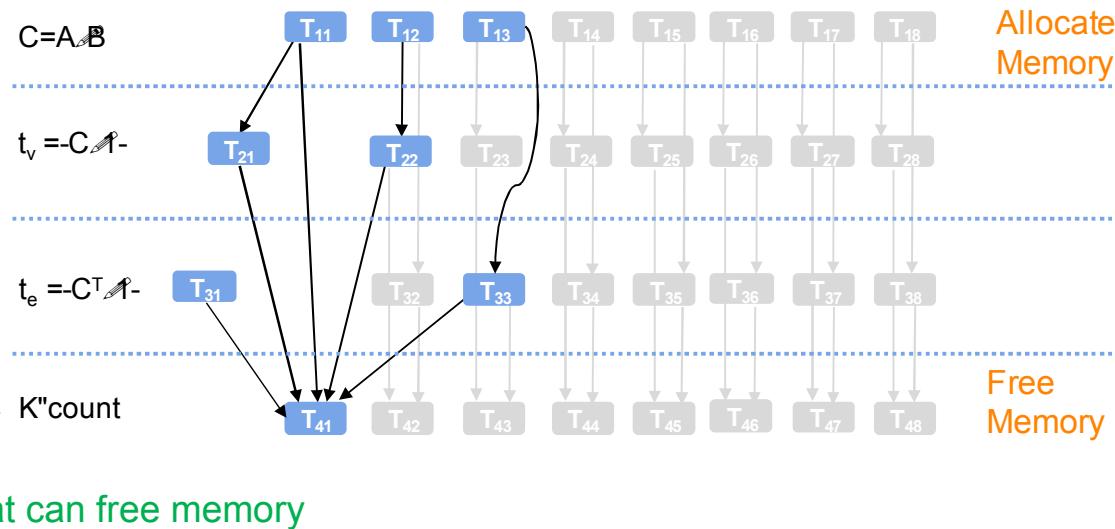


- Complication with asynchronous task parallel miniTri
 - kcount task (e.g., T5) dependencies not known until after corresponding triangle enumeration task (e.g., T1) is complete
- Kokkos provides respawn functionality
 - Relaunches task
 - Necessary for portability to GPUs (tasks can't yield to other tasks)
 - miniTri exploits this feature to handle dynamic dependencies

Outline

- Background
- miniTri
- Linear Algebra-Based miniTri (miniTriLA)
- Task Parallel Approach to miniTriLA
 - HPX
 - Kokkos/Qthreads
- ➡■ Memory-Constrained Task Parallelism
- Summary

Addressing Challenge #2 with Memory-Constrained Task Parallelism

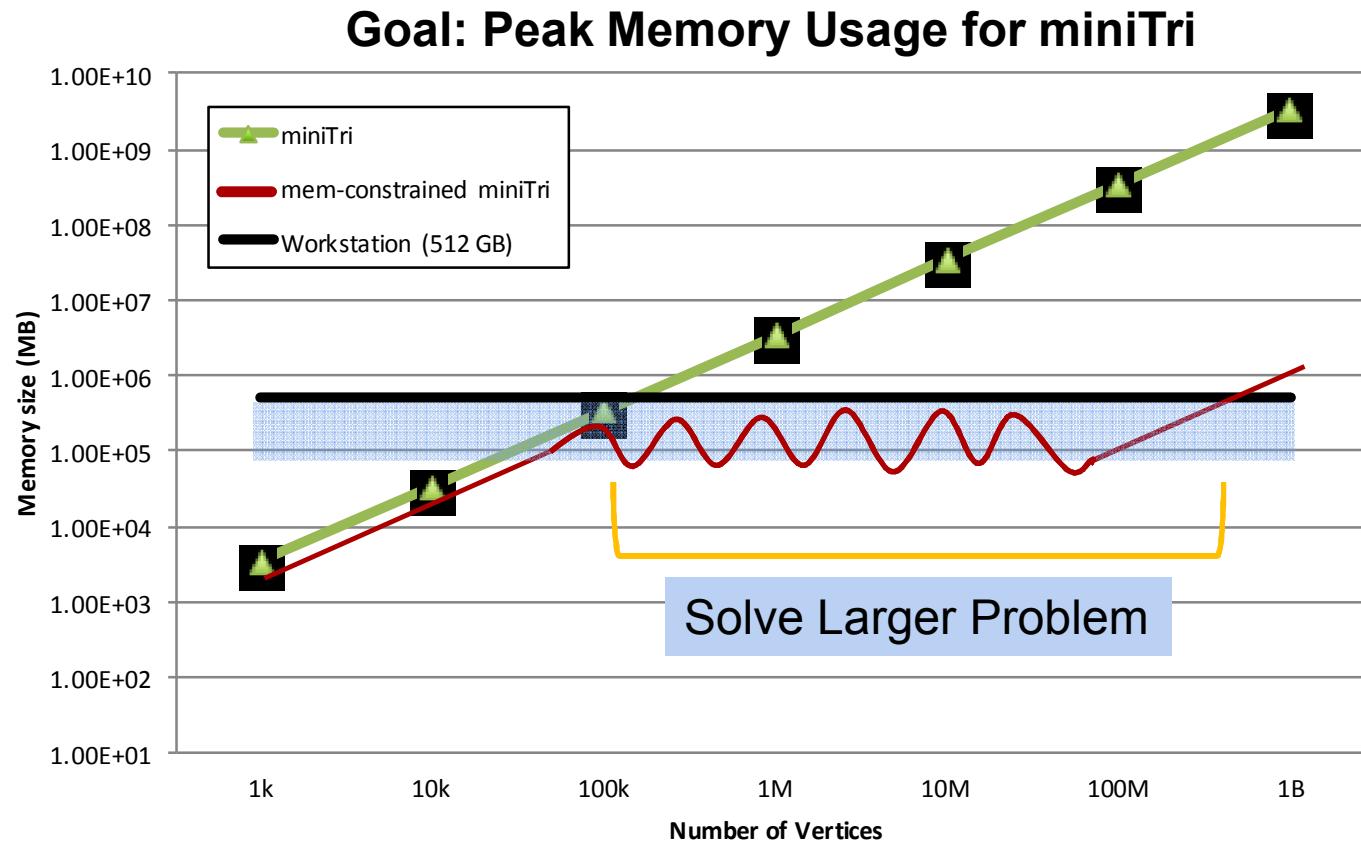


Prioritize tasks that can free memory

- Key insight: Tasks can be scheduled asynchronously to free temporary memory early
 - Prioritize k-count tasks to free blocks of triangles from memory
 - **Need runtime system to support advanced resource management/priorities (on-going effort: Kokkos/Qthreads and HPX)**

Asynchrony can be exploited to reduce peak memory of application

Memory-Constrained Task Parallelism



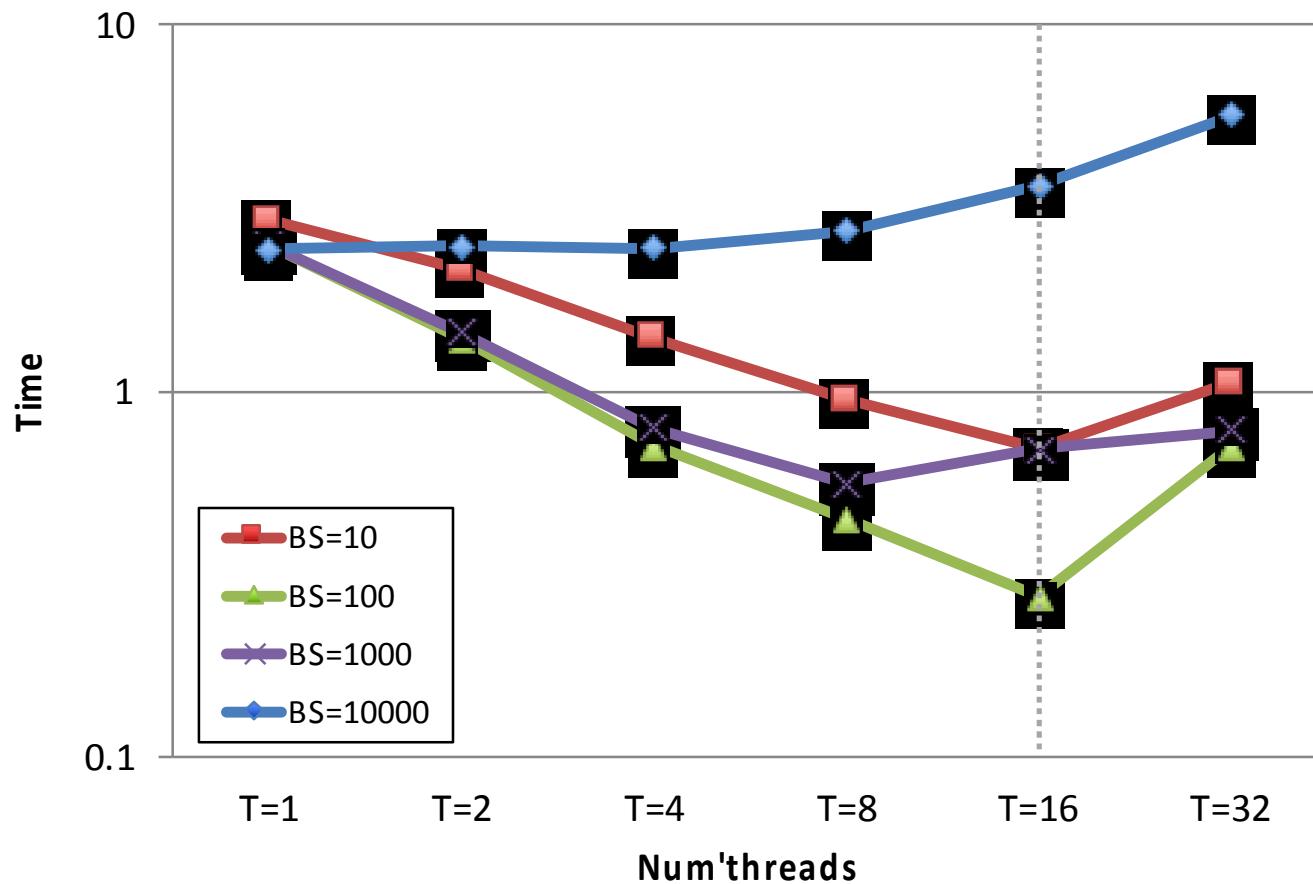
Task parallelism with memory-constrained scheduling allows solution of larger problems

Kokkos/Qthreads miniTri Experiments

Graph	$ V $	$ E $	$ T $	$ T / E $
Oregon-1	11174	23409	19894	0.85
email-Enron*	36692	183831	727044	3.95
ca-AstroPh*	18772	198110	1352469	6.87
com-Youtube	1157827	2987624	3056386	1.02

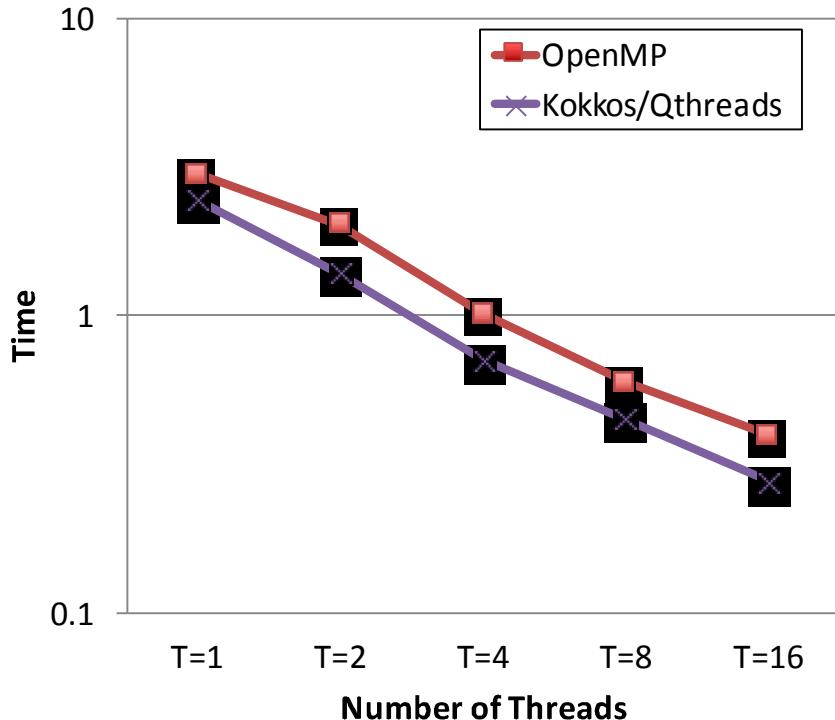
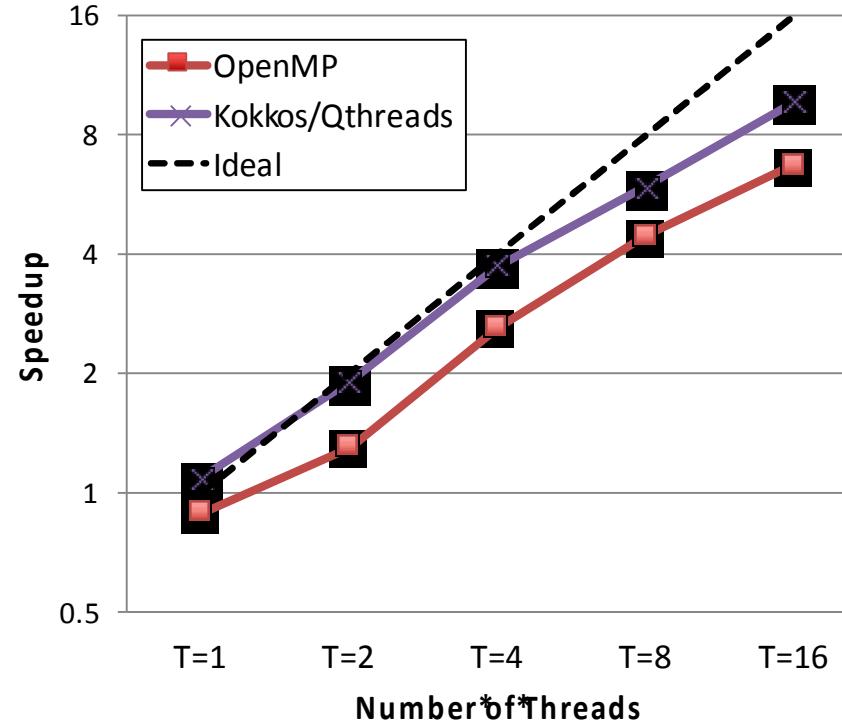
- 16 core workstation with 64 GB of memory (dual processor Intel Xeon E5-2630 v3 @ 2.40 GHz)
- SNAP datasets (<http://snap.stanford.edu>)
 - Oregon-1: autonomous system dataset
 - email-Enron: Enron email network
 - ca-AstroPh: Arxiv Astro Physics collaboration network
 - com-Youtube: social network dataset

Oregon-1: Kokkos/Qthreads



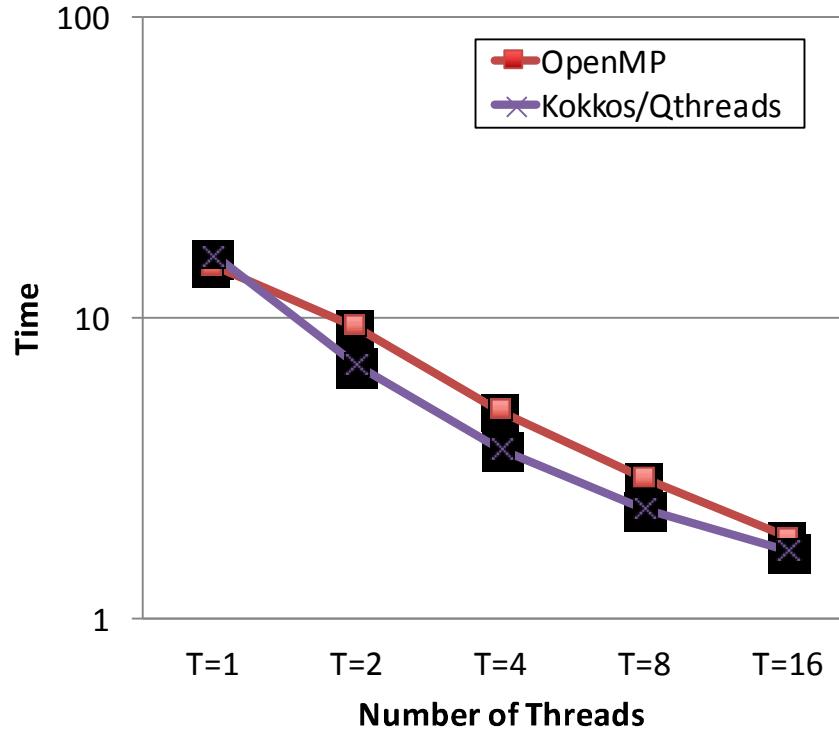
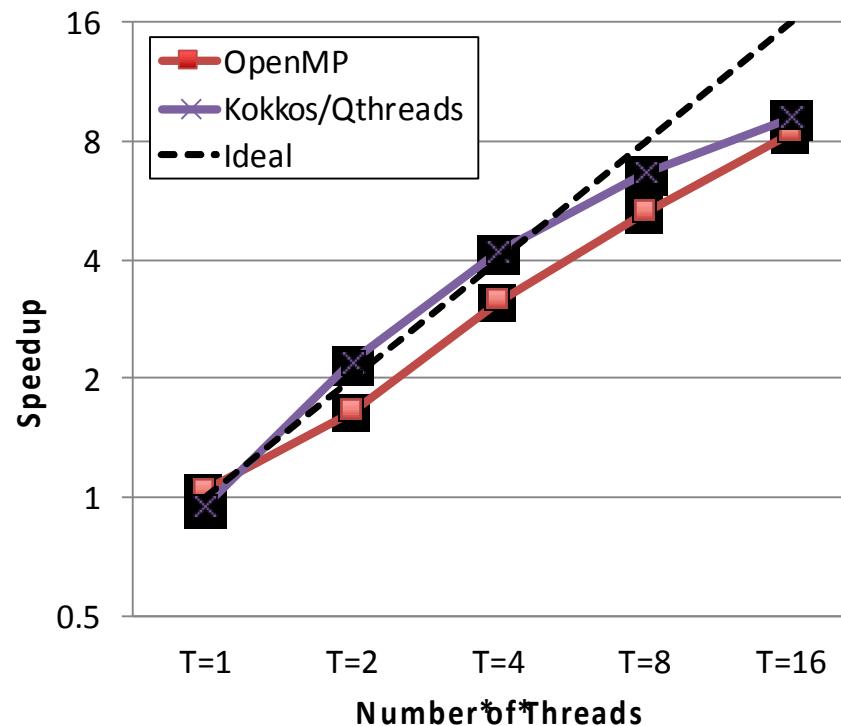
Improvements in runtimes up to 16 threads for block sizes of 100

Oregon-1: Kokkos vs. OpenMP



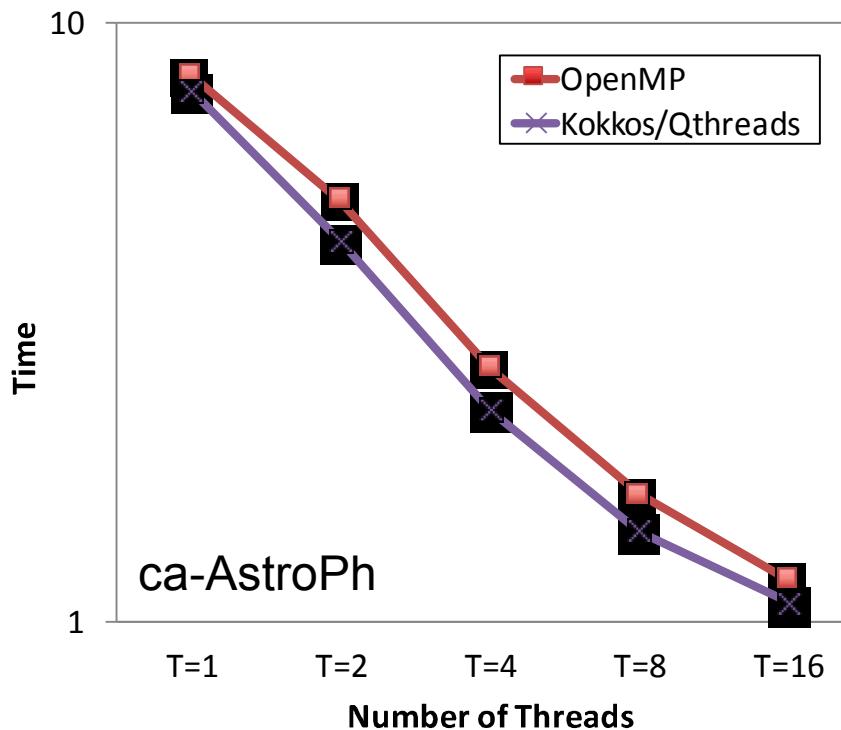
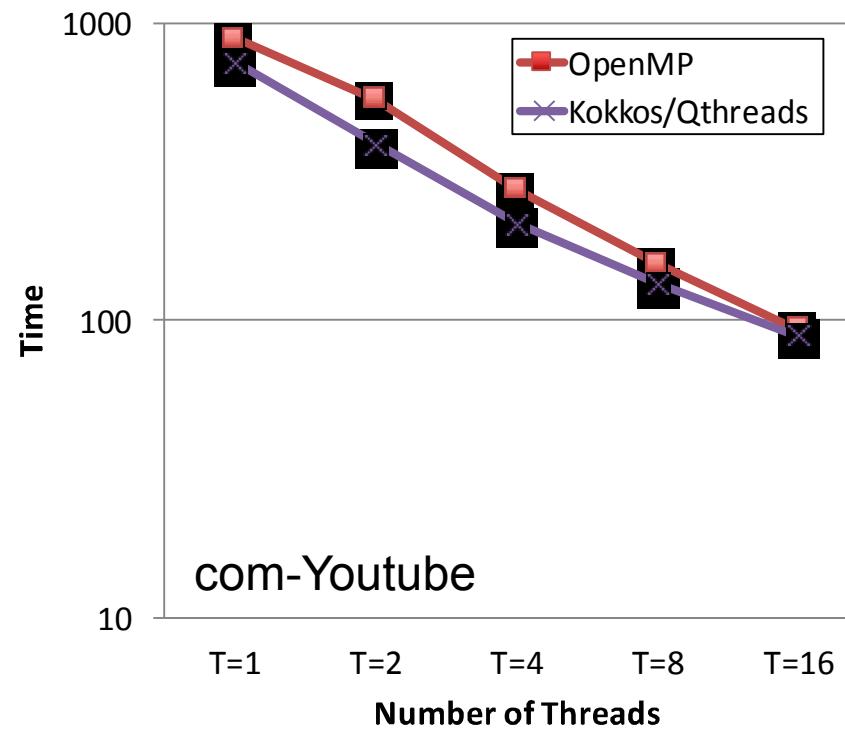
Kokkos/Qthreads performs significantly better than OpenMP

email-Enron: Kokkos vs. OpenMP



Kokkos/Qthreads performs slightly better than OpenMP

Kokkos vs. OpenMP: ca-AstroPh, com-Youtube



Kokkos/Qthreads performs slightly better than OpenMP

Outline

- Background
- miniTri
- Linear Algebra-Based miniTri (miniTriLA)
- Task Parallel Approach to miniTriLA
 - HPX
 - Kokkos/Qthreads
- Memory-Constrained Task Parallelism
- ➔ ■ Summary

Summary/Conclusions

- Overview of new data analytics miniapp **miniTri**
 - Application relevant, released as part of Mantevo
- Presented linear algebra-based formulation of miniTri
 - miniTri in 4 compact linear algebra-based operations
 - Asynchronous, task parallel approach for constraining memory usage
- Described Kokkos/Qthreads task parallel implementation that outperforms data parallel (OpenMP) implementation
- Graph BLAS powerful approach for expressing graph algorithms
 - However, significant challenges exist for implementing certain graph applications efficiently (e.g., miniTri)
 - Linear algebra kernels should exploit **asynchrony** for more flexibility (e.g., solving larger problems) and better future performance – task parallelism helps here

Acknowledgements

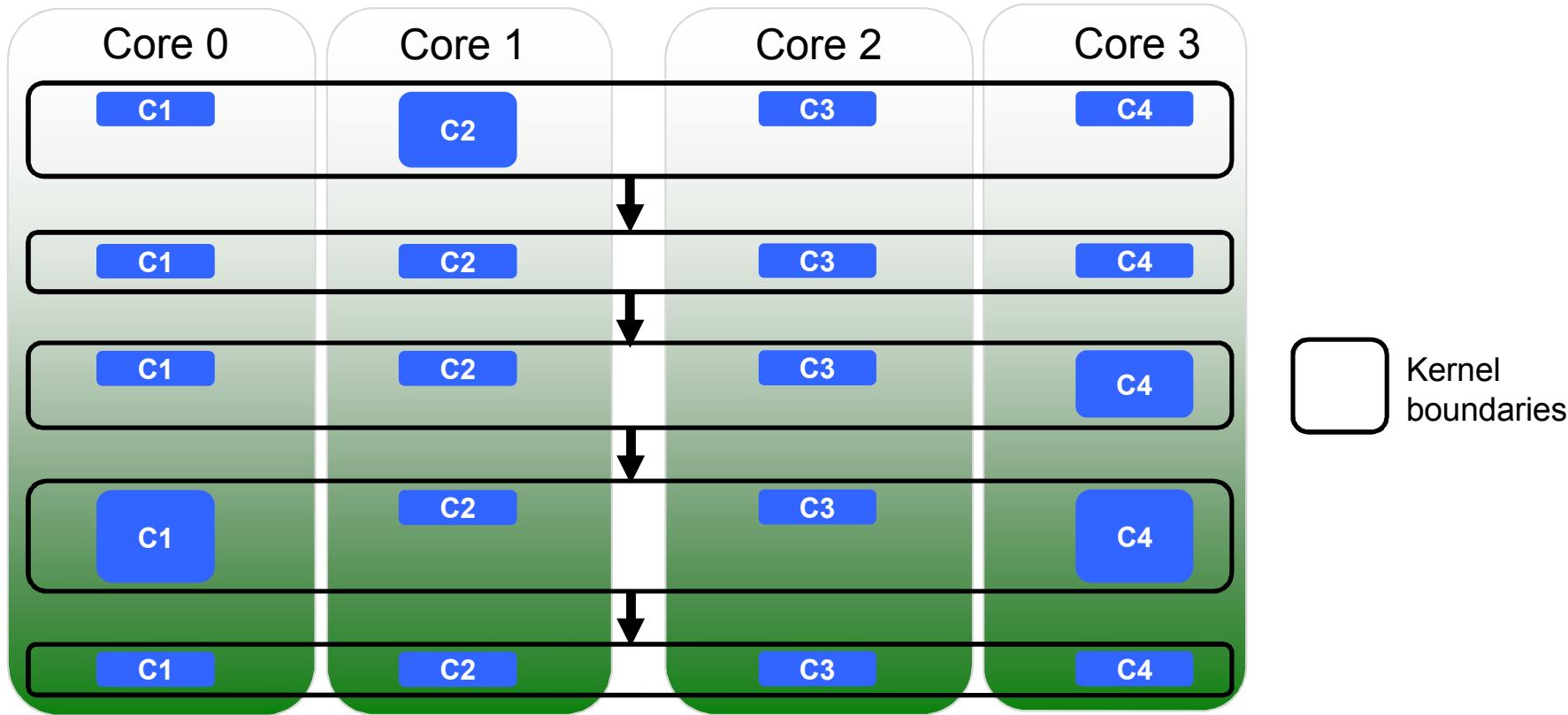
- Jon Berry (SNL)
 - Co-author of miniTri
- Carter Edwards (SNL)
 - Kokkos Lead
- Stephen Olivier (SNL)
 - Qthreads Lead
- Hartmut Kaiser, Daniel Bourgeois (LSU)
 - HPX

Additional Info/Resources

- miniTri now released under Mantevo repo
 - mantevo.org
 - Repo moving to github: **<https://github.com/mantevo>**
- Related publications
 - Wolf, Berry, Stark: “A Task-Based Linear Algebra Building Blocks Approach for Scalable Graph Analytics,” *2015 IEEE HPEC*.
 - Wolf, Edwards, Olivier: “Kokkos/Qthreads Task-Parallel Approach to Linear Algebra Based Graph Analytics,” *2016 IEEE HPEC* (to appear)
- Kokkos
 - <https://github.com/kokkos>
- Qthreads
 - <https://github.com/Qthreads/qthreads>

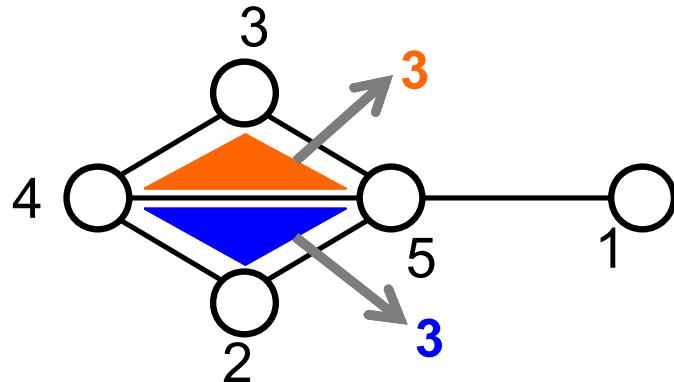
Extra

Traditional Data Parallelism



- Data distributed across cores
- Global barriers between kernels

kcount



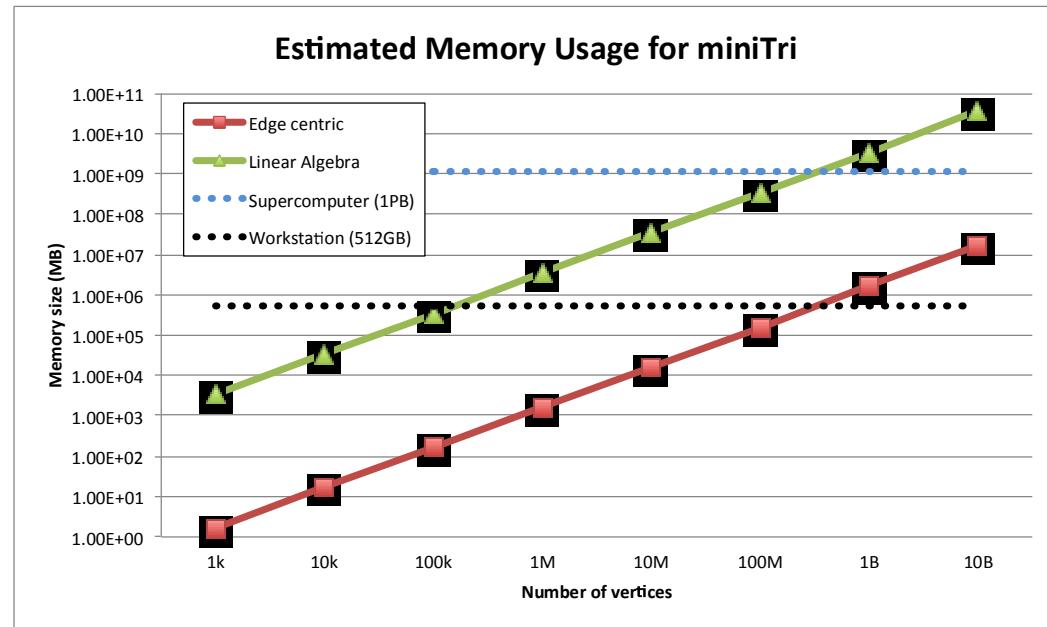
k:

$$\arg \max_k \left\{ \left(\min_{v \in t} t_v \geq \binom{k-1}{2} \right) \cap \left(\min_{e \in t} t_e \geq k-2 \right) \right\}$$

- Upper bound on largest clique in graph = largest c such that $\text{Comb}(c,3)$ triangles have k -counts at least c
 - Any v of k -clique, incident on $\text{Comb}(k-1,2)$ triangles of that clique
 - Any e of k -clique, incident on $k-2$ triangles of that clique
 - argmax selects the largest k satisfying these condition (largest clique containing triangle)

miniTriLA: Challenges

miniTri
 1 $C = A * B$
 2 $t_e = C * 1$
 3 $t_v = C^T * 1$
 4 $kcount(C, t_e, t_v)$



- Challenge 1: Computation difficult to load-balance
- Challenge 2: Graph BLAS approach forms C, which means storing all triangles in graph
 - Worst case: $O(|E|^{3/2})$ triangles in graph, typical: 100-1000 triangles/edge
 - Severely limits size of graph

Summary

- Overview of new data analytics miniapp **miniTri**
 - Will be released soon as part of Mantevo
- Presented linear algebra-based formulation of miniTri
 - miniTri in 4 compact linear algebra-based operations
 - Graph Algorithm Building Block (GABB) for triangle enumeration
 - GABBs for calculating triangle vertex and edge degree
- miniTri poses challenges for Graph BLAS-like implementations
 - Load balancing, Memory usage
- Presented task parallel approach that addresses these challenges
 - Asynchrony is key
 - Can use task priorities to constrain memory usage