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Miniapps

 Small, self contained applications

 Proxy for important characteristics of full applications

 Important co-design tool:  performance analysis
 Target 1: existing applications on new and future architectures

 Target 2: new applications on existing architectures

 Strong partnership with industry

 Mantevo MiniApp Suite (Sandia): mantevo.org
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Graph BLAS

 Effort to standardize building blocks for graph algorithms in 
language of linear algebra
 Overloaded linear algebra kernels express most graph computations

 Matrix-graph duality – highly impactful in CS&E (partitioning, solvers,…)

 Promising for data sciences but many challenges

3CS&E = Computational Science and Engineering

Eds. Kepner, Gilbert



Task Parallelism
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 Dataflow of application expressed through tasks/dependencies (Avoid explicit 
barriers between kernels)

 Overdecomposition of problem into tasks (# tasks > #cores)

 Tasks scheduled and moved to appropriate compute resources



Task Parallelism
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 Natural for data analytics (model intrinsically data-centric)

 Several task parallel models/libraries: HPX, Kokkos/Qthreads, 
Uintah, Legion, OCR, …



 Background

 miniTri

 Linear Algebra-Based miniTri (miniTriLA)
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miniTri: Data Analytics Miniapp
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 Proxy for triangle based data analytics (Mantevo)

 Uses triangle enumeration + vertex/edge properties

 Key uses: dense subgraph detection, characterizing graphs, improving 
community detection, generating graphs

 Related applications in cyber security, intelligence, functional biology
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miniTri is more application relevant than standard data analytics 
benchmarks such as Graph 500 

miniTri is more application relevant than standard data analytics 
benchmarks such as Graph 500 

k: 

Max clique size of given triangle 



miniTri: Overview
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 miniTri Steps:
 For each triangle, calculate triangle degrees for vertices and edges

 For each triangle, calculate integer k given triangle degree info

 Developed 20+ variants 
 Different methods: buckets data structure, set intersection, linear algebra

 Different programming models: OpenMP, MPI, HPX, Kokkos/Qthreads

 Focus of talk: linear algebra-based miniTri, task parallel models
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Challenge: Can miniTri be implemented efficiently using 
Graph BLAS-like building blocks?

Challenge: Can miniTri be implemented efficiently using 
Graph BLAS-like building blocks?

k:
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Linear Algebra Based miniTri (miniTriLA)

 Developed Graph BLAS-like formulation of miniTri

 Important stressor of Graph BLAS

10A = adjacency matrix for graph, B = incidence matrix for graph, 
1 = vector of ones

miniTri
1 C = A * B
2 tv = C * 1
3 te = CT * 1
4 kcount(C, tv, te)

Adjacency matrix of G Incidence matrix of G
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miniTriLA: Triangle Enumeration

11A = adjacency matrix for graph, B = incidence matrix for graph, 
1 = vector of ones

miniTri
1 C = A * B
2 tv = C * 1
3 te = CT * 1
4 kcount(C, tv, te)

 Wedges implicitly stored in rows of A
 Adj matrix:  wedges = pairwise combinations of nonzero column ids + row #

 E.g., row 5 wedges: {1,5,2}, {1,5,3}, {1,5,4}, {2,5,3}, {2,5,4}, {3,5,4}

Enumerates each 
triangle 3 times
(once: C=L*B, where L
is lower triangle part of A)

SPGEMM = Sparse Matrix Multiplication

4 
5 1 

2 

3 

G

Adjacency matrix of G Incidence matrix of G Matrix of Triangles



miniTriLA: Triangle Enumeration

12A = adjacency matrix for graph, B = incidence matrix for graph, 
1 = vector of ones

miniTri
1 C = A * B
2 tv = C * 1
3 te = CT * 1
4 kcount(C, tv, te)

 Columns of B tell us whether wedge is “closed” to form triangle

 Overloaded SpGEMM yields triangle enumeration:
 If Ai,x=Ai,y= 1 and Bx,j=By,j = 1 (or equivalently Ai,*B*,j =2), Ci,j = triangle {i,x,y}  

 Else, no triangle 

Enumerates each 
triangle 3 times
(once: C=L*B, where L
is lower triangle part of A)

SPGEMM = Sparse Matrix Multiplication
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miniTriLA: Triangle Degree Calculation

13A = adjacency matrix for graph, B = incidence matrix for graph, 
1 = vector of ones

miniTri
1 C = A * B
2 tv = C * 1
3 te = CT * 1
4 kcount(C, tv, te)

 Triangle degree calculation
 Each triangle represented once in C for each of its edges and vertices

 Triangle vertex and edge degrees are number of nz in rows and columns

Triangles 
with v4

Triangles with e4,5

C=

Overloaded 
SpMV to count
triangles in 
rows



miniTriLA: Kcounts

14A = adjacency matrix for graph, B = incidence matrix for graph, 
1 = vector of ones

4 
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2 

3 
miniTri

1 C = A * B
2 te = C * 1
3 tv = CT * 1
4 kcount(C, te, tv)

K 1 2 3

triangle
count

0 0 2

 Compute k for each triangle (summarize in table)

 k-count table gives us upper bound on largest clique in graph
 Largest c such that Comb(c,3) triangles have k-counts at least c

G

k: 



miniTriLA: Challenges

15A = adjacency matrix for graph, B = incidence matrix for graph, 
1 = vector of ones

miniTri
1 C = A * B
2 te = C * 1
3 tv = CT * 1
4 kcount(C, te, tv)

 Challenge 1: Computation difficult to load-balance 

 Challenge 2: Typical Graph BLAS approach forms C, which means 
storing all triangles in graph
 Worst case: O(|E|3/2) triangles in graph, typical: 100-1000 triangles/edge

 Severely limits size of graph
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Task Parallel Approach

 Each block of linear algebra operations assigned to a task
 Block of rows, 2D block of elements 

 Global barriers between kernels removed
 Replaced by dependencies between tasks

 Tasks in subsequent kernels can start/finish before first kernel finishes
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HPX-3 Implementation

 HPX-3 (LSU)
 General purpose C++ runtime system 

 Supports both on-node and inter-node tasks parallelism

 Active global address space (AGAS)

 Lightweight control objects instead of global barriers 

18

Preliminary results show similar performance of task parallel 
and data parallel approaches

Preliminary results show similar performance of task parallel 
and data parallel approaches

1

2

4

8

16

1 2 4 8 16

T
im

e
(s

)

# Threads

miniTri Run me

OpenMP

HPX

1

2

4

8

16

1 2 4 8 16

Sp
ee

d
u

p

# Threads

miniTri Speedup

OpenMP

HPX

Linear



Kokkos/Qthreads Implementation

 Kokkos
 Performance portable programming model and C++ library 

implementation for intra-node (shared memory) parallelism 

 Supports diverse manycore architectures (GPUs, CPUs, Intel MIC, …)

 policy manages how tasks are scheduled using task-DAG pattern

 Qthreads
 C-based multithreading library inspired by MTA/XMT architectures

 Runtime system to execute Kokkos API’s task-DAG pattern

19

K-count

C=A�B T4 T5 T6 T7 T8 T2 T3 

te = CT�1  

tv = C�1  

T6 T1 T2 T4 T5 T7 T8 T3 

T1 

T4 T5 T6 T7 T8 T3 T1 T2 

T6 T1 T2 T4 T5 T7 T8 T3 



Kokkos Task Parallel API

 Task Creation
 f = policy.create(func); 

 f – future; func – functor that creates/executes tasks

 Setting Dependencies
 policy.add_dependence(f1, f2);

 f1, f2 – futures such that task corresponding to f1 depends on task 
corresponding to f2

 Launch Tasks
 policy.spawn(f); // f is future 
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Dynamic Task Dependencies of miniTri

 Complication with asynchronous task parallel miniTri
 kcount task (e.g., T5) dependencies not known until after 

corresponding triangle enumeration task (e.g., T1) is complete

 Kokkos provides respawn functionality
 Relaunches task

 Necessary for portability to GPUs (tasks can’t yield to other tasks) 

 miniTri exploits this feature to handle dynamic dependencies
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Addressing Challenge #2 with Memory-Constrained 
Task Parallelism

 Key insight:  Tasks can be scheduled asynchronously to free 
temporary memory early
 Prioritize k-count tasks to free blocks of triangles from memory

 Need runtime system to support advanced resource 
management/priorities (on-going effort: Kokkos/Qthreads and HPX)
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Prioritize tasks that can free memory
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Memory-Constrained Task Parallelism

24

Task parallelism with memory-constrained scheduling 
allows solution of larger problems 

Task parallelism with memory-constrained scheduling 
allows solution of larger problems 
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Kokkos/Qthreads miniTri Experiments

 16 core workstation with 64 GB of memory (dual processor 
Intel Xeon E5-2630 v3 @ 2.40 GHz)

 SNAP datasets (http://snap.stanford.edu)
 Oregon-1: autonomous system dataset 

 email-Enron: Enron email network

 ca-AstroPh: Arxiv Astro Physics collaboration network

 com-Youtube: social network dataset

25

Graph |V| |E| |T| |T|/|E|

Oregon-1 11174 23409 19894 0.85

email-Enron* 36692 183831 727044 3.95

ca-AstroPh* 18772 198110 1352469 6.87

com-Youtube 1157827 2987624 3056386 1.02

* University of Florida Sparse Matrix Collection 



Oregon-1: Kokkos/Qthreads
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Oregon-1: Kokkos vs. OpenMP
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email-Enron: Kokkos vs. OpenMP
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Kokkos vs. OpenMP: ca-AstroPh, com-Youtube
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Summary/Conclusions

 Overview of new data analytics miniapp miniTri
 Application relevant, released as part of Mantevo

 Presented linear algebra-based formulation of miniTri
 miniTri in 4 compact linear algebra-based operations

 Asynchronous, task parallel approach for constraining memory usage

 Described Kokkos/Qthreads task parallel implementation that 
outperforms data parallel (OpenMP) implementation

 Graph BLAS powerful approach for expressing graph algorithms 
 However, significant challenges exist for implementing certain graph 

applications efficiently (e.g., miniTri)

 Linear algebra kernels should exploit asynchrony for more flexibility (e.g., 
solving larger problems) and better future performance – task parallelism 
helps here
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Additional Info/Resources

 miniTri now released under Mantevo repo
 mantevo.org

 Repo moving to github: https://github.com/mantevo

 Related publications
 Wolf, Berry, Stark: “A Task-Based Linear Algebra Building Blocks 

Approach for Scalable Graph Analytics,” 2015 IEEE HPEC.

 Wolf, Edwards, Olivier: “Kokkos/Qthreads Task-Parallel Approach to 
Linear Algebra Based Graph Analytics,” 2016 IEEE HPEC (to appear)

 Kokkos
 https://github.com/kokkos

 Qthreads
 https://github.com/Qthreads/qthreads
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Traditional Data Parallelism

35

• Data distributed across cores
• Global barriers between kernels
• Data distributed across cores
• Global barriers between kernels
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kcount

36

• Upper bound on largest clique in graph = largest c such that Comb(c,3) triangles 
have k-counts at least c

• Any v of k-clique, incident on Comb(k-1,2) triangles of that clique

• Any e of k-clique, incident on k-2 triangles of that clique

• argmax selects the largest k satisfying these condition (largest clique containing triangle)
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miniTriLA: Challenges

37A = adjacency matrix for graph, B = incidence matrix for graph, 
1 = vector of ones

miniTri
1 C = A * B
2 te = C * 1
3 tv = CT * 1
4 kcount(C, te, tv)

 Challenge 1: Computation difficult to load-balance 

 Challenge 2: Graph BLAS approach forms C, which means storing 
all triangles in graph
 Worst case: O(|E|3/2) triangles in graph, typical: 100-1000 triangles/edge

 Severely limits size of graph
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Summary

 Overview of new data analytics miniapp miniTri
 Will be released soon as part of Mantevo

 Presented linear algebra-based formulation of miniTri
 miniTri in 4 compact linear algebra-based operations

 Graph Algorithm Building Block (GABB) for triangle enumeration

 GABBs for calculating triangle vertex and edge degree

 miniTri poses challenges for Graph BLAS-like implementations
 Load balancing, Memory usage

 Presented task parallel approach that addresses these 
challenges
 Asynchrony is key

 Can use task priorities to constrain memory usage
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