
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-7696C

Task Parallel Approach to the
Linear Algebra-Based
Implementation of miniTri

Michael Wolf

SIAM Annual Meeting

11 July, 2016

SAND2016-6439C

Miniapps

 Small, self contained applications

 Proxy for important characteristics of full applications

 Important co-design tool: performance analysis
 Target 1: existing applications on new and future architectures

 Target 2: new applications on existing architectures

 Strong partnership with industry

 Mantevo MiniApp Suite (Sandia): mantevo.org

2

phdMesh
(Mantevo)

Graph BLAS

 Effort to standardize building blocks for graph algorithms in
language of linear algebra
 Overloaded linear algebra kernels express most graph computations

 Matrix-graph duality – highly impactful in CS&E (partitioning, solvers,…)

 Promising for data sciences but many challenges

3CS&E = Computational Science and Engineering

Eds. Kepner, Gilbert

Task Parallelism

4

Dependency
between tasks

T4

T2

T5 T6 T7 T8T1 T2

T2 T3 T4T1

T3

T1

T1 T2

T3

T4 T5 T6

T4

T7 T8T3

T2 T3 T4T1

T3 T4 T5 T6 T7 T8T1 T2

Core 0 Core 1 Core 2 Core 3

Kernel
boundaries

 Dataflow of application expressed through tasks/dependencies (Avoid explicit
barriers between kernels)

 Overdecomposition of problem into tasks (# tasks > #cores)

 Tasks scheduled and moved to appropriate compute resources

Task Parallelism

5

Dependency
between tasks

T4

T2

T5 T6 T7 T8T1 T2

T2 T3 T4T1

T3

T1

T1 T2

T3

T4 T5 T6

T4

T7 T8T3

T2 T3 T4T1

T3 T4 T5 T6 T7 T8T1 T2

Core 0 Core 1 Core 2 Core 3

Kernel
boundaries

 Natural for data analytics (model intrinsically data-centric)

 Several task parallel models/libraries: HPX, Kokkos/Qthreads,
Uintah, Legion, OCR, …

 Background

 miniTri

 Linear Algebra-Based miniTri (miniTriLA)

 Task Parallel Approach to miniTriLA
 HPX

 Kokkos/Qthreads

 Memory-Constrained Task Parallelism

 Summary

Outline

6

miniTri: Data Analytics Miniapp

7

 Proxy for triangle based data analytics (Mantevo)

 Uses triangle enumeration + vertex/edge properties

 Key uses: dense subgraph detection, characterizing graphs, improving
community detection, generating graphs

 Related applications in cyber security, intelligence, functional biology

4
5 1

2

3

3

3

miniTri is more application relevant than standard data analytics
benchmarks such as Graph 500

miniTri is more application relevant than standard data analytics
benchmarks such as Graph 500

k:

Max clique size of given triangle

miniTri: Overview

8

 miniTri Steps:
 For each triangle, calculate triangle degrees for vertices and edges

 For each triangle, calculate integer k given triangle degree info

 Developed 20+ variants
 Different methods: buckets data structure, set intersection, linear algebra

 Different programming models: OpenMP, MPI, HPX, Kokkos/Qthreads

 Focus of talk: linear algebra-based miniTri, task parallel models

4
5 1

2

3

3

3

Challenge: Can miniTri be implemented efficiently using
Graph BLAS-like building blocks?

Challenge: Can miniTri be implemented efficiently using
Graph BLAS-like building blocks?

k:

 Background

 miniTri

 Linear Algebra-Based miniTri (miniTriLA)

 Task Parallel Approach to miniTriLA
 HPX

 Kokkos/Qthreads

 Memory-Constrained Task Parallelism

 Summary

Outline

9

Linear Algebra Based miniTri (miniTriLA)

 Developed Graph BLAS-like formulation of miniTri

 Important stressor of Graph BLAS

10A = adjacency matrix for graph, B = incidence matrix for graph,
1 = vector of ones

miniTri
1 C = A * B
2 tv = C * 1
3 te = CT * 1
4 kcount(C, tv, te)

Adjacency matrix of G Incidence matrix of G

4
5 1

2

3

G

miniTriLA: Triangle Enumeration

11A = adjacency matrix for graph, B = incidence matrix for graph,
1 = vector of ones

miniTri
1 C = A * B
2 tv = C * 1
3 te = CT * 1
4 kcount(C, tv, te)

 Wedges implicitly stored in rows of A
 Adj matrix: wedges = pairwise combinations of nonzero column ids + row #

 E.g., row 5 wedges: {1,5,2}, {1,5,3}, {1,5,4}, {2,5,3}, {2,5,4}, {3,5,4}

Enumerates each
triangle 3 times
(once: C=L*B, where L
is lower triangle part of A)

SPGEMM = Sparse Matrix Multiplication

4
5 1

2

3

G

Adjacency matrix of G Incidence matrix of G Matrix of Triangles

miniTriLA: Triangle Enumeration

12A = adjacency matrix for graph, B = incidence matrix for graph,
1 = vector of ones

miniTri
1 C = A * B
2 tv = C * 1
3 te = CT * 1
4 kcount(C, tv, te)

 Columns of B tell us whether wedge is “closed” to form triangle

 Overloaded SpGEMM yields triangle enumeration:
 If Ai,x=Ai,y= 1 and Bx,j=By,j = 1 (or equivalently Ai,*B*,j =2), Ci,j = triangle {i,x,y}

 Else, no triangle

Enumerates each
triangle 3 times
(once: C=L*B, where L
is lower triangle part of A)

SPGEMM = Sparse Matrix Multiplication

4
5 1

2

3

G

Adjacency matrix of G Incidence matrix of G Matrix of Triangles

miniTriLA: Triangle Degree Calculation

13A = adjacency matrix for graph, B = incidence matrix for graph,
1 = vector of ones

miniTri
1 C = A * B
2 tv = C * 1
3 te = CT * 1
4 kcount(C, tv, te)

 Triangle degree calculation
 Each triangle represented once in C for each of its edges and vertices

 Triangle vertex and edge degrees are number of nz in rows and columns

Triangles
with v4

Triangles with e4,5

C=

Overloaded
SpMV to count
triangles in
rows

miniTriLA: Kcounts

14A = adjacency matrix for graph, B = incidence matrix for graph,
1 = vector of ones

4
5 1

2

3
miniTri

1 C = A * B
2 te = C * 1
3 tv = CT * 1
4 kcount(C, te, tv)

K 1 2 3

triangle
count

0 0 2

 Compute k for each triangle (summarize in table)

 k-count table gives us upper bound on largest clique in graph
 Largest c such that Comb(c,3) triangles have k-counts at least c

G

k:

miniTriLA: Challenges

15A = adjacency matrix for graph, B = incidence matrix for graph,
1 = vector of ones

miniTri
1 C = A * B
2 te = C * 1
3 tv = CT * 1
4 kcount(C, te, tv)

 Challenge 1: Computation difficult to load-balance

 Challenge 2: Typical Graph BLAS approach forms C, which means
storing all triangles in graph
 Worst case: O(|E|3/2) triangles in graph, typical: 100-1000 triangles/edge

 Severely limits size of graph

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1k 10k 100k 1M 10M 100M 1B 10B

M
e

m
o

ry
si

ze
(M

B
)

Number of ver ces

Es mated Memory Usage for miniTri

Edge centric

Linear Algebra

Supercomputer (1PB)

Worksta on (512GB)

 Background

 miniTri

 Linear Algebra-Based miniTri (miniTriLA)

 Task Parallel Approach to miniTriLA
 HPX

 Kokkos/Qthreads

 Memory-Constrained Task Parallelism

 Summary

Outline

16

Task Parallel Approach

 Each block of linear algebra operations assigned to a task
 Block of rows, 2D block of elements

 Global barriers between kernels removed
 Replaced by dependencies between tasks

 Tasks in subsequent kernels can start/finish before first kernel finishes

17

K-count

C=A�B T4 T5 T6 T7 T8 T2 T3

te = CT�1

tv = C�1

T6 T1 T2 T4 T5 T7 T8 T3

T1

T4 T5 T6 T7 T8 T3 T1 T2

T6 T1 T2 T4 T5 T7 T8 T3

Illustrative Example of GraphBLAS Approaches

Global barrier

tv = C�1

C3 C4 C1

C2
core 1

core 2

core 3

core 4

C=A�B

tv1
tv3

tv4tv2

te1 te3 te4te2

k1 k3 k4 k2 K-count

te = CT�1

Traditional data parallel Task parallel

HPX-3 Implementation

 HPX-3 (LSU)
 General purpose C++ runtime system

 Supports both on-node and inter-node tasks parallelism

 Active global address space (AGAS)

 Lightweight control objects instead of global barriers

18

Preliminary results show similar performance of task parallel
and data parallel approaches

Preliminary results show similar performance of task parallel
and data parallel approaches

1

2

4

8

16

1 2 4 8 16

T
im

e
(s

)

Threads

miniTri Run me

OpenMP

HPX

1

2

4

8

16

1 2 4 8 16

Sp
ee

d
u

p

Threads

miniTri Speedup

OpenMP

HPX

Linear

Kokkos/Qthreads Implementation

 Kokkos
 Performance portable programming model and C++ library

implementation for intra-node (shared memory) parallelism

 Supports diverse manycore architectures (GPUs, CPUs, Intel MIC, …)

 policy manages how tasks are scheduled using task-DAG pattern

 Qthreads
 C-based multithreading library inspired by MTA/XMT architectures

 Runtime system to execute Kokkos API’s task-DAG pattern

19

K-count

C=A�B T4 T5 T6 T7 T8 T2 T3

te = CT�1

tv = C�1

T6 T1 T2 T4 T5 T7 T8 T3

T1

T4 T5 T6 T7 T8 T3 T1 T2

T6 T1 T2 T4 T5 T7 T8 T3

Kokkos Task Parallel API

 Task Creation
 f = policy.create(func);

 f – future; func – functor that creates/executes tasks

 Setting Dependencies
 policy.add_dependence(f1, f2);

 f1, f2 – futures such that task corresponding to f1 depends on task
corresponding to f2

 Launch Tasks
 policy.spawn(f); // f is future

20

K-count

C=A�B T4 T5 T6 T7 T8 T2 T3

te = CT�1

tv = C�1

T6 T1 T2 T4 T5 T7 T8 T3

T1

T4 T5 T6 T7 T8 T3 T1 T2

T6 T1 T2 T4 T5 T7 T8 T3

Dynamic Task Dependencies of miniTri

 Complication with asynchronous task parallel miniTri
 kcount task (e.g., T5) dependencies not known until after

corresponding triangle enumeration task (e.g., T1) is complete

 Kokkos provides respawn functionality
 Relaunches task

 Necessary for portability to GPUs (tasks can’t yield to other tasks)

 miniTri exploits this feature to handle dynamic dependencies

21

K"count

C=AB

te =-CT1-

tv =-C1-

T5

T1

T3T2

T4

K"count

C=AB

te =-CT1-

tv =-C1-

T5

T1

T3T2

T4

T5 initially spawned T5 respawned once T1 complete

 Background

 miniTri

 Linear Algebra-Based miniTri (miniTriLA)

 Task Parallel Approach to miniTriLA
 HPX

 Kokkos/Qthreads

 Memory-Constrained Task Parallelism

 Summary

Outline

22

Addressing Challenge #2 with Memory-Constrained
Task Parallelism

 Key insight: Tasks can be scheduled asynchronously to free
temporary memory early
 Prioritize k-count tasks to free blocks of triangles from memory

 Need runtime system to support advanced resource
management/priorities (on-going effort: Kokkos/Qthreads and HPX)

23

Prioritize tasks that can free memory

K"count

C=AB T14 T15 T16 T17 T18T12 T13

te =-CT1-

tv =-C1-

T46T41 T42 T44 T45 T47 T48T43

T11

T24 T25 T26 T27 T28T23

T36T31 T34 T35 T37 T38T32

Allocate
Memory

Free
Memory

T21

T33

T22

Asynchrony can be exploited to reduce peak memory of application Asynchrony can be exploited to reduce peak memory of application

Memory-Constrained Task Parallelism

24

Task parallelism with memory-constrained scheduling
allows solution of larger problems

Task parallelism with memory-constrained scheduling
allows solution of larger problems

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1k 10k 100k 1M 10M 100M 1B

M
em

o
ry

si
ze

(M
B

)

Number of Vertices

Memory Usage for miniTri

miniTri

mem-constrained miniTri

Workstation (512 GB)

Goal: Peak Memory Usage for miniTri

Solve Larger Problem

Kokkos/Qthreads miniTri Experiments

 16 core workstation with 64 GB of memory (dual processor
Intel Xeon E5-2630 v3 @ 2.40 GHz)

 SNAP datasets (http://snap.stanford.edu)
 Oregon-1: autonomous system dataset

 email-Enron: Enron email network

 ca-AstroPh: Arxiv Astro Physics collaboration network

 com-Youtube: social network dataset

25

Graph |V| |E| |T| |T|/|E|

Oregon-1 11174 23409 19894 0.85

email-Enron* 36692 183831 727044 3.95

ca-AstroPh* 18772 198110 1352469 6.87

com-Youtube 1157827 2987624 3056386 1.02

* University of Florida Sparse Matrix Collection

Oregon-1: Kokkos/Qthreads

26

0.1

1

10

T=1 T=2 T=4 T=8 T=16 T=32

T
im

e

Num'threads

BS=10

BS=100

BS=1000

BS=10000

Improvements in runtimes up to 16 threads for block sizes of 100Improvements in runtimes up to 16 threads for block sizes of 100

Oregon-1: Kokkos vs. OpenMP

27

0.1

1

10

T=1 T=2 T=4 T=8 T=16

OpenMP

Kokkos/Qthreads

0.5

1

2

4

8

16

T=1 T=2 T=4 T=8 T=16

Sp
e

e
d

u
p

Number*of*Threads

OpenMP

Kokkos/Qthreads

Ideal

Kokkos/Qthreads performs significantly better than OpenMPKokkos/Qthreads performs significantly better than OpenMP

email-Enron: Kokkos vs. OpenMP

28

1

10

100

T=1 T=2 T=4 T=8 T=16

OpenMP

Kokkos/Qthreads

0.5

1

2

4

8

16

T=1 T=2 T=4 T=8 T=16

S
p

e
ed

u
p

N umber*of*Threads

OpenMP

Kokkos/Qthreads

Ideal

Kokkos/Qthreads performs slightly better than OpenMPKokkos/Qthreads performs slightly better than OpenMP

Kokkos vs. OpenMP: ca-AstroPh, com-Youtube

29

1

10

T=1 T=2 T=4 T=8 T=16

OpenMP

Kokkos/Qthreads

10

100

1000

T=1 T=2 T=4 T=8 T=16

OpenMP

Kokkos/Qthreads

ca-AstroPh com-Youtube

Kokkos/Qthreads performs slightly better than OpenMPKokkos/Qthreads performs slightly better than OpenMP

 Background

 miniTri

 Linear Algebra-Based miniTri (miniTriLA)

 Task Parallel Approach to miniTriLA
 HPX

 Kokkos/Qthreads

 Memory-Constrained Task Parallelism

 Summary

Outline

30

Summary/Conclusions

 Overview of new data analytics miniapp miniTri
 Application relevant, released as part of Mantevo

 Presented linear algebra-based formulation of miniTri
 miniTri in 4 compact linear algebra-based operations

 Asynchronous, task parallel approach for constraining memory usage

 Described Kokkos/Qthreads task parallel implementation that
outperforms data parallel (OpenMP) implementation

 Graph BLAS powerful approach for expressing graph algorithms
 However, significant challenges exist for implementing certain graph

applications efficiently (e.g., miniTri)

 Linear algebra kernels should exploit asynchrony for more flexibility (e.g.,
solving larger problems) and better future performance – task parallelism
helps here

31

Acknowledgements

 Jon Berry (SNL)
 Co-author of miniTri

 Carter Edwards (SNL)
 Kokkos Lead

 Stephen Olivier (SNL)
 Qthreads Lead

 Hartmut Kaiser, Daniel Bourgeois (LSU)
 HPX

32

Additional Info/Resources

 miniTri now released under Mantevo repo
 mantevo.org

 Repo moving to github: https://github.com/mantevo

 Related publications
 Wolf, Berry, Stark: “A Task-Based Linear Algebra Building Blocks

Approach for Scalable Graph Analytics,” 2015 IEEE HPEC.

 Wolf, Edwards, Olivier: “Kokkos/Qthreads Task-Parallel Approach to
Linear Algebra Based Graph Analytics,” 2016 IEEE HPEC (to appear)

 Kokkos
 https://github.com/kokkos

 Qthreads
 https://github.com/Qthreads/qthreads

33

Extra

34

Traditional Data Parallelism

35

• Data distributed across cores
• Global barriers between kernels
• Data distributed across cores
• Global barriers between kernels

C1

Core 0 Core 1 Core 2 Core 3

Kernel
boundaries

C2
C3 C4

C1 C2 C3 C4

C1 C2 C3
C4

C1
C2 C3

C4

C1 C2 C3 C4

kcount

36

• Upper bound on largest clique in graph = largest c such that Comb(c,3) triangles
have k-counts at least c

• Any v of k-clique, incident on Comb(k-1,2) triangles of that clique

• Any e of k-clique, incident on k-2 triangles of that clique

• argmax selects the largest k satisfying these condition (largest clique containing triangle)

4
5 1

2

3

3

3
k:

miniTriLA: Challenges

37A = adjacency matrix for graph, B = incidence matrix for graph,
1 = vector of ones

miniTri
1 C = A * B
2 te = C * 1
3 tv = CT * 1
4 kcount(C, te, tv)

 Challenge 1: Computation difficult to load-balance

 Challenge 2: Graph BLAS approach forms C, which means storing
all triangles in graph
 Worst case: O(|E|3/2) triangles in graph, typical: 100-1000 triangles/edge

 Severely limits size of graph

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1k 10k 100k 1M 10M 100M 1B 10B
M

e
m

o
ry

si
ze

(M
B

)

Number of ver ces

Es mated Memory Usage for miniTri

Edge centric

Linear Algebra

Supercomputer (1PB)

Worksta on (512GB)

Summary

 Overview of new data analytics miniapp miniTri
 Will be released soon as part of Mantevo

 Presented linear algebra-based formulation of miniTri
 miniTri in 4 compact linear algebra-based operations

 Graph Algorithm Building Block (GABB) for triangle enumeration

 GABBs for calculating triangle vertex and edge degree

 miniTri poses challenges for Graph BLAS-like implementations
 Load balancing, Memory usage

 Presented task parallel approach that addresses these
challenges
 Asynchrony is key

 Can use task priorities to constrain memory usage

38

