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Abstract — The THOR neutral particle transport code enables simulation of complex geometries for
various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V
requiring computational efficiency. This has motivated various improvements including angular
parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future
improvements to the code’s efficiency, better characterization of its parallel performance is necessary. A
parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify
performance bottlenecks. The PPM development incorporates an evaluation of network communication
behavior over heterogeneous links that are present in the utilized High Performance Computer (HPC) and
a functional characterization of the per-cell/angle/group runtime of each major code component. After
evaluating several possible sources of variability, this resulted in a communication model and a parallel
component model. The former’s accuracy is bounded by the variability of communication on the HPC while

the latter has an error on the order of 1%.
1. INTRODUCTION

The THOR neutral particle transport code is being
developed to allow for the simulation of complex
geometries for a variety of problem types across the fields
of reactor simulation and nuclear non-proliferation. It
implements the arbitrarily high order transport method of
the characteristic type (AHOTC) on unstructured,
tetrahedral meshes [1].

Currently, THOR is undergoing thorough Verification
and Validation (V&V) as part of its development process.
The need for computational efficiency in this process has
motivated a variety of improvements to the code including
angular parallelization, outer iteration acceleration, and the
development of peripheral tools [2]. It has also been
recognized that, for guiding future improvements to the
efficiency of the code, a better characterization of its
parallel performance is essential.

By developing a parallel performance model (PPM) for
predicting THOR’s parallel execution time, one can better
identify the benefits and detriments of various modifications
to the code. This may be used to evaluate the true
effectiveness of future modifications as well as to identify
bottlenecks in existing routines. Additionally, by also
characterizing the system on which THOR runs, one can
identify if sources of efficiency loss are related to the code
or to features of the host system.

As such, a PPM provides a powerful tool not just for
the evaluation of the existing code, but as a benchmarking
method for future, more significant modifications to THOR,
such as parallelization with spatial domain decomposition
(SDD). In addition, the obtained characteristic of the host
system constitutes valuable information for other users of

the same system, the system’s administrators, and future
HPC procurement.

1. DESCRIPTION OF THE ACTUAL WORK

This work details the development of a PPM for THOR
executed on a representative leadership-class HPC whose
specifications will be detailed in Sec. 1l1-2. This model is
intended to characterize the behavior of the code for an
arbitrary problem on an arbitrary configuration executed on
the targeted HPC. However, both THOR and the utilized
hardware introduce unique challenges in terms of model
characterization.

1. Challenges to Modeling THOR’s Parallel Performance

As is typical, THOR implements a variety of solvers.
These include an outer iteration procedure for external
source problems and (accelerated) power iterations as well
as JFNK solvers for eigenvalue problems. For simplicity,
the developed model only reflects the behavior of the un-
accelerated power iteration solver. This solver was chosen
as it is the most mature of the existing options and because
it forms the basis for both of the non-JFNK accelerated
solvers. Since the currently implemented accelerations have
a relatively small impact on the runtime of any given
iteration, it is logical that the timing model will hold,
roughly, on a per iteration basis for all of the sub-
implementations of the power iteration solver.

Furthermore, development of THOR’s PPM provides a
unique challenge due to the nature of its characteristic
solver. Instead of solving a given arbitrary tetrahedral (tet)
cell directly, THOR subdivides the cells into canonical
tetrahedrons each having a single incoming and outgoing
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face. This allows a single code section to implement
AHOTC on each of the canonical tetrahedrons comprising
an arbitrary cell. While this simplifies the solving of each
sub-cell, it introduces a degree of uncertainty in the total
number of sub-tets in a given mesh as their number varies
with quadrature angle being swept and with cell orientation.
The 6 possible canonical tetrahedron decompositions are
shown in Fig. 1. The first three correspond to the incoming
direction of particle motion, Q, entering the tetrahedron on a
face, entering on an edge, or exiting on a face, while the
latter three correspond to Q laying along a tetrahedron edge
or face with differing numbers of exposed faces.

Figure 1. Canonical tetrahedron decompositions during the THOR
cell solve operation [1]

After solving the characteristic equations in all of the
generated canonical tets, the data from each is recombined
into values representative of the entire cell. This mesh-cell
level flux data on each outgoing face is then passed to the
next downstream neighbor in the sweep operation and the
single-cell solver starts over. This makes the cell-splitting
process a black box. Outside of the single cell solver, all of
the code components and transport operations only see the
recombined mesh cells. The details of the characteristic cell
solve are covered in detail in Ref. [1].

2. Challenges Resulting from HPC’s Architecture

While larger systems would be required to truly test the
efficiency of massively parallel schemes like SDD, the
utilized HPC has proven an ideal testbed for the current
developmental phase of THOR. It is sufficiently large that
the serial and mid-scale parallel functions (10s-100s of
processors) can be executed easily and frequently.

The utilized computing platform is a ~25,000 processor
system built by SGI using a 7D enhanced Hypercube
topology. Recent upgrades to the system have introduced a
number of heterogenous compute nodes. To avoid
complications from this, all work was done on homogenous
allocations. The 7D enhanced Hypercube topology was
developed by SGI to provide a high bandwidth low latency
environment in the framework of a standard 7D hypercube
architecture [3]. In addition to an interesting system
architecture, the HPC implements a variety of hardware

levels. Within the 7-dimensional hypercube, a single
processor also belongs to a rack, a server, and a processor
die. Each node has two processors of 12 (or, for the newer
nodes, 18) cores each. This results in several different forms
of communication. Two processing nodes located on the
same die may communicate directly. Two nodes in the same
server but on different chips may share a bus. Finally, two
processors on completely different systems will be governed
by the network communications interface. This hardware
layout is common for large cluster systems and introduces a
large number of unknowns regarding relative node locations
in both physical and network space. Comparatively, on a
personal computer or small server, parallel communication
may be limited solely to on-die or on-board hardware
communication buses.

Coupled with this hardware variation is the inability to
request a specific subset of the system. Using a standard
PBS scheduler, users may request exclusive use of a
processor, a server, or a group of servers; but, the
scheduling system assigns the resulting block of processors.
To the authors’ knowledge, the system makes no guarantee
of locality or grouping during a standard allocation. So,
when a communication network is established, the cost of
traversing the links in the tree can vary as a function of
network location in the full network hypercube. From a
performance standpoint, the varying communication speed
is never detrimental. The slowest communication path will
yield the behavior expected by a network-interconnected
hypercube. However, the uncertainty in the allocation can
mean that code behavior is difficult to quantify with
precision. A request for 6 processors each on 2 servers may
yield any 6 of the 24 processors per server and 2 servers at
any point in the hypercube. Even in this small case, there are
multiple resulting combinations of on-die, on-board, and
network communication and, consequently, difficult to
predict latency and contention.

As quantifying this uncertainty in a model is nearly
impossible, the model simply aims to determine whether the
variance due to this phenomenon is significant when
compared to both the aforementioned variability of the code
and the total runtime of the other components.

3. The Parallel Performance Model

To develop the PPM, THOR was divided into 3 major
sections — input, solver, and output. For any reasonably
large problem, the read-in/write-out sections are negligibly
small as they are not executed repeatedly. Hence, their
contribution to execution time was ignored. For very large
problems, like the ATR configuration in [2], the initial read-
in and final write-out can be on the order of a half hour.
Still, a single outer iteration’s execution time is also on this
order. So, the fraction of time consumed by 1/0O drops off
with each iteration. However, as the number of processors
increases, Amdahl’s law states that the total run time of the
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code will approach that of the serial portion. This would
include the serial 1/0 operations during initialization.

Within the solver section, the code was further
subdivided into five major sections that represent the code’s
primary logical functions; these are nested as shown in Fig.
2.

Quter Iteration

Inner Iteration

Call

Sweep Depth

Parallel —
Communication
Sweep

Figure 2: Timing model’s logical components

Using the shown structure, the total run-time of each
component is given as the sum of the run-time of its child
component and the operations executed in that routine. At
the lowest levels of the call tree, the sweep operation is
subdivided into two parts to account for the angular domain
decomposition (ADD) parallelization.

The parallel sweep contribution accounts for the time
taken to sweep over m (m+2) angles, with vacuum boundary
conditions, in an Sy, quadrature set each of which comprises
a sweep over N tetrahedrons using p processors. The time
consumed for each cell/angle combination solve is referred
to as the grind time. The communication portion represents
the two spanning-tree communications used at the end of the
sweep operation to accumulate flux angular moments and
distribute their values to all processors. The AHOTC
formalism comprises an arbitrary-order expansion of the
flux variables within each cell and its bounding faces [1]. In
this work, we consider the zero spatial-expansion order
option in THOR but extension of the PPM to higher order
expansions should be rather straightforward. Furthermore,
all timing measurements were made using a one group
problem under the assumption that a g group problem’s
execution will scale with g. In problems with a very large
number of groups, this assumption may not hold. But, it
should also be a straightforward task to modify the model
with a factor for time growth in terms of g. Also, THOR
does not implement any parallelization in energy at this time
due to that parallelization’s asynchronicity, which is likely
to increase the number of iterations thereby adversely
affecting parallel efficiency.

Based on this description, we propose the timing model
for a single outer running a single inner iteration:

Tsowe = Teonst T N * (P * [Touter + Tinner] + Tsweep T

mx(m+2)

* Tparallel) + f(Tcomms: p)’ (1)

where N is the number of cells, p is the number of angular
moments, and t represents the time constant of each major
function block exclusive to that routine (i.e. Tyyter IS the
time spent in the outer iteration that is not in the inner
iteration). For multiple inner iterations, all values except
Touter WoUld be multiplied by the number of inner
iterations.

The parallel sweep routine demonstrates the effects of
parallelization. In serial codes, one can expect the sweep
work to scale linearly with the number of cells and angles.
Here, as a result of implementing ADD, the dependence on
number of angles is modified. Now, instead of scaling
simply with the number of angles, one also can expect to see
a 1/p relation. This represents the process of distributing the
work across processors based on the angle. However, if p is
not a factor of the number of angles, work is unevenly
assigned. In this case, this code section’s execution time will
behave as if p were lowered to the nearest multiple of

m(m+2), i.e. [@]

Finally, there is the function representing the
communication time component. This component is
dependent not only on the implementation of the code, but
also on the architecture of the system the code is running on
and the topology of the subsystem assigned at run time for
executing the specific case. A proposed model for this
behavior that recognizes the underlying hypercube topology
of the HPC is given by:

2N=*
f (Tcomms D) = 2 x1og,(p) * (Tcomms + Tp) )

Here, B is the system bandwidth in words/s and 7 ymms
is the time to initialize communication, i.e. communication
latency. As discussed before, these constants will be highly
dependent on the processor allocation at runtime. As such, it
is unlikely that generally applicable explicit values of these
parameters can be extracted. The logz(p) represents the
number of send components in a tree based communication
system. This is the system implemented for communication
in this topology. Next, as the communication functions are
2-way (i.e. they send and receive data), the latency and data
size are doubled. The ratio of N to the bandwidth gives the
time consumed in actual data transfer. The entire equation is
multiplied by two to represent the two communication
operations that occur per iteration. These two operations are
used to accumulate the scalar flux calculated on each
processor and then to redistribute it back amongst all
processors.
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I1l. RESULTS

Timing results were obtained for the communication
variation, canonical cell variation, and major parts of the
timing model. Data was collected by running one of
THOR’s standard test problems, a simple cube with various
levels of mesh refinement with S, through Sis quadrature.
Where timing data was collected, each timing case was run
5 times and averaged to produce an approximation to the
expected value. Additionally, for the evaluation of the
variance in the number of canonical tetrahedrons, the C5G7
[4] and Godiva [5] benchmark configurations were used.
After evaluation of the model coefficients, the PPM was
validated against configurations and problems not included
in the original measurement set used in estimating the model
parameters.

1. Canonical Tetrahedron Variation

Based on the orientation of a tetrahedral cell and the
incoming angle, any arbitrary tetrahedron can be subdivided
into 2, 3, or 4 canonical tetrahedra [1]. These configurations
were shown in Fig. 1. Because of this variability, it is
theoretically possible for two meshes featuring the same
number of cells to exhibit differing workload for sweeps
along different angles and for a single mesh to feature
varying workloads between regions with identical number
of cells and also between sweeping directions.

To quantify this behavior, the simple cube test problem
[1] was solved at 4 different mesh refinement levels and 5
different quadratures. This problem features a cubic domain
with vacuum boundaries and a single energy group. Table 1
summarizes the results for these cases.

As can be seen, the degree of variation between the
cases is negligible. All the cases demonstrate an average
number of canonical tetrahedrons around 3.67. However,
there does appear to be a slow upward trend as the number
of angles increases. Regardless, as long as the variation
stays on the order of 10 or 105, it is unlikely that it will
contribute significantly to imprecision in the performance
model.

While the reason for the extremely low variance is not
known, we conjecture that it may result from the simple
configuration of this test problem. The simple cube test
presents a very regular geometry with a good aspect ratio.
These factors could result in very little variation between
input configurations. Additionally, given the regularity of
the domain, it is likely that mesh-refinement produces
similar results in all regions.

Table 1: Simple Cube Test - Canonical Tet Variation

# Angles # Cells Avg. Subcells Std. Dev
8 8,859 3.66836

80 8,859 3.66836 0
288 8,859 3.66836
8 151,562 3.66812

80 151,562 3.66814 1.53E-05
288 151,562 3.66815
8 194,332 3.66802

80 194,332 3.66804 1.15E-05
288 194,332 3.66804
8 426,885 3.66813

80 426,885 3.66820 4.73E-05
288 426,885 3.66822

To address this concern, a small number of

supplemental cases were run using an unfolded version of
the 2x2 assembly C5G7 3D Benchmark. The unfolding was
done to convert the reflective boundary conditions present
in C5G7 to vacuum boundaries. The resulting mesh has
approximately 20 million tetrahedrons and a much more
complicated geometry than the cube test problem. However,
only a single mesh was available for testing with two
angular quadratures as reported in Table 2. Additional
testing was performed using a very small model of the
Godiva benchmark. These results are given in Table 3.

Table 2: C5G7 - Canonical Tet Variation

# Angles Mesh Size Avg. Subcells AAvg
8 20617414 3.618
24 20617414 3.640 .022

In Table 2, we see that the difference even between the
S, and S4 quadratures is significantly larger — on the order of
one percent. This is still a relatively small effect, compared
to for example the effect on execution time from acquiring
different processors at run time. But, it does indicate that
there is the possibility for greater degrees of variation
between cases than suggested by the simple cube case.

Table 3: Godiva - Canonical Tet Variation

# Angles Mesh Size Avg. Subcells AAvg
8 274 3.66836
80 274 3.66836 0
288 274 3.66836
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The Godiva mesh does not show the strong fluctuation
present in the C5G7 mesh. Instead, it is more akin to the
results obtained in the simple cube test. As these two tests
are homogenous systems they are meshed into more regular
tets across the entire geometry; so, it is likely that the
fluctuations present in C5G7 are a result of mesh behavior
along material boundaries. This would indicate that highly
heterogeneous configurations or those with realistically
shaped material interfaces may result in “biased” meshes
and cause the average work to drift with mesh refinement or
increasing number of angles. This would have to be
evaluated on a case by case basis and used to modify the
grind time to ensure that the PPM remains applicable.

2. Communication Time Variation

As stated previously, communication on the utilized
computing platform can be subdivided into two
components, a communication tree building time and a data-
transfer portion [2]. Below about 10° words, the tree-
building time dominates. The tree building time increases
linearly with logz(p) and the communication time increases
linearly with the data size. This behavior is shown in Fig. 3.
The figure was made using data from an external routine
which implements MPI AllReduce operations with sizes
similar to those found in THOR. Across all data sizes and
processor counts, the total communication time can be
decomposed into two parts. The first is a constant time
region which scales with the size of the binary tree used in
the communication. The second is the region in which time
increases linearly with the size of the data being transmitted.

Generic MP| Communication Time
in (processors)x(servers)

1.00E+01
Data
Tree Transfer
= 1.00E+00 Building
g A
E 100601 | [ \
=
(=]
£ 1.00E-02
3 D S ——
O 1.00E-03 -/
1.00E-04 '
1E+00 1E+02 1E+04 1E+06 1E+08

Dataset Size (# of Floats) —1x1 +1x2 -1x4 -1x16 ~24x16

Figure 3: Generic behavior of the HPC during MPI AllReduce
operations [2]

To evaluate this behavior for THOR, the total
communication time was measured for processor counts of
1, 2, 4, 16, and 64 and mesh refinement levels of ~8,000,
~150,000, and ~200,000 tets on the simple cube problem.
As expected, for the ~8,000 cell case, total communication
times on the order of 103s to 10%s were observed. These

align well with the tree construction times shown in Fig. 3.
For the more refined meshes, the results also fall in line with
the data predicted by the communication testing.
Unfortunately, even for the most refined case, the number of
cells is still relatively small. This results in all the
experimental cases occupying a very small region of
predicted behavior.

The time variation between repetitions of identical
cases was calculated. As expected, the run-time standard
deviation between runs on the same processor allocation is
very low, often on the order of 10 or 10°s. However,
occasional cases were seen where the standard deviation
was on the order of 5-10% of the measured time. Rarely,
more extreme spikes resulted in run to run differences of an
order of magnitude. These outliers are likely the result of
network contention and are unlikely to occur repeatedly
over the course of a long-running problem. However, in the
event that the system is heavily loaded, it is possible to see
an unpredictable increase in the cost of communication.

Having established that communication times are
generally consistent on constant allocations, the cases were
rerun on several different allocations. Since, as discussed,
one cannot request a specific (or different) allocation, this
was accomplished by rerunning the cases over the course of
several days. The presence of other users’ jobs should
guarantee that available allocations vary with time. Initially,
under these conditions, it was observed that measured
communication times were highly inconsistent between
allocations. This resulted in not just varying communication
times, but varying trends in communication times. To
highlight this variability, two cases are presented in Figs. 4
and 5. The blue line represents an allocation large enough to
run S;¢ (p = 288) regardless of the quadrature of the current
case, while the orange line is an allocation where p =
m(m + 2) for each attempted m value. The values along the
horizontal-axis are the ceil(log,(p)) and correspond to the
depth of the binary tree used in the reduce operation.

Differing Communication Behavior in 58
0.8 T T

07T [—p=288 Avlocation e
—— p=m(m+2) Allocation ~
06
0.5
)
@
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i
0.3 e ’
0.2 V4 //
01— B /
0
4 45 5 55 6 65 7
ceil(log,(p))

Figure 4: Differing communication trends for p>m(m+2) and
p=m(m+2) for Sg
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Figure 5: Differing communication trends for p>m(m+2) and
p=m(m+2) for Si2

It is likely that the change in trend in Fig. 4 results from
the 3 different loading patterns that must be considered
when allocating processors. For the full Sis cases, 288
processors were allocated and p was selected to be a factor
of m(m+2) for each case (maximizing efficiency). The
resulting communication tree only depends on processors
active in the case. As such, since p is likely not a power of
two, the tree has empty leaves. Still, all possible leaf
positions are still the same distance from the root node.
However, the allocated network sub-hypercube is sized
based on the allocation. This means that processors assigned
to the program do not necessarily come from the smallest
encapsulating sub-cube and that distance from root can vary
by multiple hops.

Once the number of processors is explicitly allocated to
be m(m+2), the network uncertainty is reduced. There are
still various possible configurations, but they all exist in the
same dimensionality. As can be seen above, this results in
the better behaved trends shown in orange.

Yet, as the Si» case shows, there is still some degree of
drift in communications time between allocations. Even
when changing the allocation size does not dramatically
change the shape of the communication trend, there are still
frequently changes in the average time of any given case.
This is demonstrated by all cases and likely results from day
to day changes in system loading/contention.

Based on a subset of the data collected with m(m+2)
sized allocations, an approximate model of the
communication was developed. As shown in Fig. 6, the fit
demonstrates the log, p dependence predicted in the
theoretical parallel performance model (Eq. 2). However,
there are still significant outliers both at very low p and at
various points throughout the curve.

Communication Behavior for p=m(m+2) Allocations
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-
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# of Processors

Figure 6: THOR/HPC communication time fit

3. Developing the Parallel Sweep Model

The innermost evaluated function is the parallel sweep
routine. By proper selection of p this routine divides the
sweep operation evenly among processors based on the
number of angles. Hence, it is expected that the execution
times will exhibit a 1/p behavior while p < m(m + 2). To
evaluate this, a set of cases was selected. These included
combinations of Sy m = 2, 4, and 6 for the simple cube
problem with mesh sizes of ~8k, 150k, and 200k tets. The
Level-Symmetric quadrature set was used with M =
m(m + 2) angles. A selection of these cases is shown in
Fig. 7 with the dashed lines representing the regions where
p < m(m + 2). Data was collected at p = 1, 2,4, 16, 64.
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Figure 7: 1/p relationship between processor count and parallel
sweep time
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As expected, this plot shows a strong 1/p trend where
the number of processors is less than or equal to the number
of angles. If there are more processors than angles, then
some processors will sit idle and not contribute to parallel
speedup. This results in the trend flattening out for higher p.

Further information can be extracted from the plot by
analyzing the amount of work performed for any value of p
as the number of angles changes. This shows the
dependence of the execution time on increasing number of
angles. Since the total amount of work scales approximately
linearly with the number of angles, one would expect to see
a linear relationship between execution time and number of
angles for each p. Additionally, the ratio of the slopes
between any two sets of points should yield the ratio of the
number of processors used as depicted in Fig. 8.

From these values, we can extract the grind time. This
is done by evaluating the time per cell per angle, a value we
have defined as the grind time.

time(m angles, N cells)

grind time = — (3)
Equation 3 was evaluated using both sets of data plotted
in Fig. 8 for angular dependency as well as with the
equivalent calculation for cell-count dependency. These
methods yielded grind times of ~2.30E-6 and ~2.33E-6, a
difference of ~1%. For the sampled cases, the variance in
runtime between case repetitions was typically ~0.5%.
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Figure 8: Linear relation between time and number of angles for a

fixed value of p

Finally, the evaluated grind time was used to predict the
data points used to generate the model. Since the variance in
sweep times was rather small, the predictions were quite
good — on the order of single percent error. Since this error
sets the baseline model error, it should be as low as
possible. Evaluating the runtime of other cases can never be
expected to be higher accuracy than this.

4. Evaluating the Parallel Sweep Model

Having established a model for parallel sweeping using
a limited subset of cases, it is necessary to validate the
model for general cases not included in its own
development. These tests can be broken down into 3 cases —
interpolation, extrapolation, and external. Interpolation
cases are those whose parameters are within the envelope
defined in the previous section and which use the same
geometry. Extrapolation uses the same geometry but
parameters outside the envelope (i.e. higher order
quadratures and mesh refinements). Finally, external
problems use a different geometry at a wide set of parameter
configurations. Based on these descriptions, one would
expect that the interpolation results will have errors
comparable to those used to develop the model.

First, for the interpolation cases, no other mesh
refinements were available. And, as Sxs had been used,
there were no unused quadratures in the interpolation set. To
address this, a set of edge cases were selected instead. These
edge cases are in the interpolation envelope in quadrature,
but not in mesh refinement. They use a 500k tet refinement
of the simple cube mesh. Since the fits in figures 7 and 8 are
very clean, these cases were expected to conform to the
baseline error established for the model cases. For all 3, the
measured error reported in Table 4 was only slightly higher
than that seen in the model cases. This satisfied the
interpolation accuracy of the model.

Table 4: Percent Error for Interpolation Cases

Case Meas. Time Model Time  Difference

p=4 (s) (s) (%)
S2, 500k tet 1.53 1.5 1.9%
S4, 500k tet 4.61 451 2.3%
S6, 500k tet 9.2 9.02 2.1%

Next, a series of extrapolation cases were tested using
S12 and Sy for the 3 mesh refinements used earlier and So-
Si6 for a 500k tet mesh refinement. As the number of
processors, angles, and cells increases, any terms missing
from the model will become increasingly evident. This is a
critical step as the original model envelope used rather small
problems to establish a trend. Figure 9 shows the full set of
quadrature cases for the 500k tet mesh with lines
representing the model and markers representing the
measured parallel component times.
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Actual vs. Predicted Parallel Sweep Times
Lines Depict Model Trends
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Figure 9: Extrapolation cases on a 500k tet mesh

Immediately, it is evident that there is a loss of model
accuracy with increasing processor counts. This effect was
suppressed in the earlier original development due to the
low quadrature and correspondingly low numbers of
processors. What had looked like ~2% error resulting from
runtime noise was the beginning of a much larger deviation.

By evaluating up through Sis on a larger mesh problem,
several important details could be inferred. First, the error
term continues to grow with p (reaching almost 25% in Fig.
9); and, second, the error is independent of the quadrature.
This can be determined by evaluating a “column” of points
in the plot. For example, looking at the first data point right
of p=64 for Sg, S12, & Si6, ONe can observe that the relative
error of each trace is approximately the same, about 20%.
This relation holds true for all “columns” in the plot. Taken
together, these two details indicate that the model is missing
a term that grows purely in p.

To test this hypothesis, the difference between the
model and actual data in Fig. 9 was converted to a
Agrind time and plotted against log, p. As shown in Fig.
10, the resulting trend is highly linear. This indicates that a
purely processor count dependent change in grind time is
present and needs to be corrected globally in the model.

Based on these results, the grind time was modified
from that shown in Eg. 3 to one which includes an error
term with a processor count dependency.

time(m angles, N cells)

+f(®) (4)

grind time = -

As shown in Fig. 11, this modification greatly reduces
the errors present in Fig. 9, but it also raises some concerns
regarding the efficiency of the code. These concerns will be
discussed in the conclusions section. This growth in grind
time is likely the result of an inefficiency in the code which
is causing unnecessary communication or access to a shared
network resource, like file 1/0.
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Figure 10: Per processor change in grind time
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Figure 11: Updated model extrapolation cases on a 500k tet mesh

With the correction applied, see Fig. 11, the error drops
from a maximum of ~25% to a maximum of ~3% for all the
cases shown in Fig. 9. This correction can be further applied
to the interpolation and foundational cases to improve their
accuracy to similar levels. However, since the number of
operations is much smaller in those cases, the total effect of
the correction is smaller.

Finally, the model was used to predict a set of external
cases. For these, the Takeda-1V [6] and Godiva benchmarks
were selected. These benchmarks provide both a
homogenous and heterogeneous material test case on a
geometry dissimilar from the one used in constructing the
model.

The range of quadratures was run against a ~15k tet
Takeda-1V mesh and a ~3k tet Godiva mesh. As this marks
a step away from the previous model problems both in mesh
size and geometry, it is expected that the results will not be
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as clean as the ~3% error seen previously. However, as the
solver treats all power iteration problems in the same
fashion, the model should still serve as an accurate predictor
of problem runtime.

Table 5: Actual and Model Results for External Tests

Case Time Model Time Difference
(s) (s) (%)
Godiva, 3k tet
S8 p=40 1.17E-02 1.36E-02 16%
p=80 5.88E-03 6.78E-03 15%
S12 p=84 1.24E-02 1.36E-02 10%
p=168  6.28E-03 6.78E-03 8%
S16  p=144  1.24E-02 1.36E-02 10%
p=288  6.40E-03 6.79E-03 6%
Takeda, 15k tet
S8 p=40 6.71E-02 7.28E-02 9%
p=80 3.44E-02 3.65E-02 6%
S12 p=84 6.80E-02 7.29E-02 7%
p=168  3.55E-02 3.65E-02 3%
S16  p=144  7.04E-02 7.30E-02 4%
p=288  3.70E-02 3.65E-02 1%

As is shown in Table 5, the PPM predicts the parallel
runtime of these two problems reasonably well. Even the
shortest measured time is well above the clock precision,
1E-6 s, as reported by MP1_Wtick. Discounting the smallest
Godiva case, the maximum error across the two problems is
about 10%. However, for the Takeda-1V cases, the error is
often equivalent to that seen in the extrapolation cases, ~1-
4%. This difference in prediction error, especially as the
problems grow smaller, may result from several sources
such the relative memory footprints of the two problems or
hardware effects. The Takeda mesh is about double the size
of the smallest mesh used to establish the model, while the
Godiva mesh is almost three times smaller. Due to the very
small size of the problem, the Godiva mesh could be
benefitting from caching effects. Regardless of these effects,
the model provides a good estimate of the runtime for
problems outside of the original model set. Additionally, the
accuracy is highest in high processor count cases. As it is
most effective to wuse THOR’s angular domain
decomposition with p = m(m+ 2) , this is the more
relevant region for high accuracy estimates.

5. Evaluating the Combined Model

With the communication and parallel operations
modelled, the vast majority of the work in any given
iteration has been quantified. The remaining work in the
inner, outer, and sweep operations is almost entirely
composed of variable management and 1/O, both to the
screen and files. It was determined that, were the 1/O to be
removed, the remaining work would be negligible. And, the

1/0 behavior is rather small (e.g. printing a one line
summary to the screen / a file). Based on this, it was decided
to mark the constants of the remaining sections as negligible
and to roll the resulting time differences into the error
already present in the model. This avoids having to
characterize time contributions, like file access time, which
are dependent on a huge number of hardware and network
parameters. This gives an effective PPM expression of:

mx(m+2)

Tsore = * N * grind time(p) + f(comm) (5)

Where the communication function is given by the fit in
Fig. 6 and the grind time is 2.3E-6 s plus the processor
based error given in Fig. 10. For problems with large
numbers of groups, a term may need to be added to address
the increasingly non-negligible cost of constructing the
group sources.

With the notable exception of the processor dependent
grind time, this model matches the form of the one proposed
at the beginning of this paper. Several of the parameters
proved negligible or inseparable, however the general
behavior with regards to N, m, and p is preserved.

As a final test of the model, the communications model
and parallel sweep model were integrated to create a general
parallel performance model. This model was then compared
to several cases of the simple cube test to show that the two
major components are accurate and represent the total run
time of a THOR outer iteration.

Outer Iteration Time vs. Model Prediction
Lines Depict Model Trends
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Figure 12: Comparing outer iteration measured time to model time

from Eq (5)

As figure 12 shows, the time represented by the Eq (5)
model is a very good fit for the total time of an outer
iteration. This result does benefit somewhat from
cancellation of errors. In the low p regime, communication
time is often poorly estimated. But, it has a very small
contribution to the problem. Elsewhere, overestimation of
the communication time can negate errors incurred by not
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explicitly accounting for some operations in the outer and
inner loops.

IV. CONCLUSIONS

As this paper has shown, a parallel performance model
can be a powerful tool for characterizing the behavior of
complex codes such as the THOR deterministic transport
code and the computing platform they are executed on. As
the capabilities of THOR grow, it becomes increasingly
important that each addition to the code is well
characterized and well implemented. The addition of a
single inefficient routine can hamper the efficiency of the
entire solver. To address this need, the PPM can be used as
a tool for both characterization and evaluation. Any piece of
code can be functionally characterized based on its run-time
behavior and it can be evaluated by comparing the resulting
functional description to the description expected by a
theoretical model.

The PPM developed here does a good job of
characterizing the behavior of THOR over a broad spectrum
of input configurations. However, due to the multiple
sources of uncertainty found in communication and system
level factors, there is an irreducible amount of noise. Yet,
even given this limitation, the model shows percentage
point order agreement (~1-3%) for both interpolated and
extrapolated cases on the simple cube mesh and ~5-10%
error on the Godiva and Takeda-1V meshes.

The PPM has already been applied in a preliminary
evaluative role as well. As shown in the results section, the
final model was modified with a p term in the grind time.
While this does not invalidate the model, it does mark a
deviation from the expected behavior. This deviation
indicates the possibility of sub-optimal or inefficient
implementation in the code and narrows down both the
location and type of the possible problem. Work is ongoing
to identify and, if necessary, correct the exact source of this
divergence.

Identifying these opportunities for improvement
requires an understanding of both the theoretical and actual
behavior of the code. But, as identified issues are addressed,
the actual behavior should begin to align increasingly
closely with the theoretical. This provides a metric by which
code implementation and efficiency can be verified.

The PPM discussed in this paper is a foundational tool
designed to model one of THOR’s primary solving routines.
For it to remain applicable, the PPM must grow alongside
THOR and represent new functionality as it is added. This
process can be done modularly. As was done here, each new
piece of functionality can be modeled individually and then
integrated into the total model. Ideally, this process will
allow for modeling and evaluation of code before it is
finalized into THOR. In this way, the PPM serves as another
integration test intended to keep the THOR codebase as
efficient and well implemented as possible.
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