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BISON is an advanced fuels performance code being
developed at Idaho National Laboratory and is the code
of choice for fuels performance by the U.S. Department of
Energy (DOE)’s Consortium for Advanced Simulation of
Light Water Reactors (CASL) Program. An approach to
uncertainty quantification and sensitivity analysis with
BISON was developed and a new toolkit was created. A
PWR fuel rod model was developed and simulated by
BISON, and uncertainty quantification and sensitivity
analysis were performed with eighteen uncertain input
parameters. The maximum fuel temperature and gap
conductance were selected as the figures of merit (FOM).
Pearson, Spearman, and partial correlation coefficients
were considered for all of the figures of merit in
sensitivity analysis.

I. INTRODUCTION

The current emergency core cooling system (ECCS)
acceptance criteria for loss-of-coolant accidents (LOCA)
in light-water reactors (LWRs) are described in
10CFR50.46. Two of the five criteria specify that the
calculated peak cladding temperature (PCT) and
maximum cladding oxidation shall not exceed 2200°F
(1478K) and 17% equivalent cladding reacted (ECR),
respectively (Ref. 1). Ever since the establishment of
these cladding embrittlement criteria, more extensive
research and experiments have been conducted which
resulted in an increased understanding of fuel and clad
behavior under both normal operating conditions and
LOCA transient conditions. The new studies indicated
that the current regulatory acceptance criteria may be non-
conservative for high burnup fuel. The Nuclear
Regulatory Commission (NRC) is considering a
rulemaking change that would revise the requirements in
10CFR50.46. In the proposed new rulemaking, designated
as 10CFR50.46(c), the NRC proposed a fuel
performance-based ECR criterion as a function of
cladding hydrogen content before the accident (pre-
transient), to include the effects of fuel burnup on
cladding performance (Ref. 2). The pre-transient cladding
hydrogen content, in turn, is a function of the fuel burnup
and cladding materials. A characteristic of the proposed

new rulemaking, as illustrated in Fig. 1, imposes more
restrictive and fuel rod-dependent cladding embrittlement
criteria. Consequently fuel and cladding performance and
ECCS performance need to be considered in a stronger
coupled way in LOCA analyses.

The ldaho National Laboratory (INL) initiated a
project to develop analytical capabilities to support the
industry in the transition to the new rule (Ref. 3). The
general idea behind the initiative was the development of
an integrated multiphysics evaluation model. The
motivation was to revisit how uncertainties are
propagated across the stream of physical disciplines and
data involved, as well as how risks are evaluated in a
LOCA safety analysis as regulated under 10 CFR 50.46c¢.
This integrated evaluation model is called LOTUS which
stands for LOCA Toolkit for the U.S. Light Water
Reactors (Ref. 3).
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Fig. 1. Analytical generic limit proposed by the NRC for
existing fuel (Ref. 2).

The LOTUS framework is notionally illustrated in
Fig. 2. The primary characteristic of LOTUS is an
integrated multiphysics simulation based tool to manage
data flow stream, uncertainty propagation and risk
assessment. The focus of LOTUS is to establish the
automation interfaces among the five disciplines, as



depicted in Fig. 2, such that uncertainties can be easily
propagated with large number of simulations.
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Fig. 2. Schematic illustration of LOTUS.

As indicated above, one overarching goal of the
LOTUS development is to develop a methodology to
systematically propagate uncertainties across the multiple
disciplines involved in the LOCA analysis in order to
perform best-estimate plus uncertainty (BEPU) analyses
in response to the proposed 10 CFR 50.46¢ new rules.
Therefore, understanding how uncertainties are
propagated within each discipline is essential toward
achieving the overall objective set forth here. As depicted
in Fig. 2, fuels performance is an important component of
LOTUS. The prediction of the behavior and failure
modes of the fuel and clad is extremely difficult because
it involves predicting the interacting and competing
nuclear, thermal, mechanical, chemical and fluids flow
processes. These multi-physics processes often have
multiple scales in space and time and hence make fuels
performance modeling very challenging. The models
developed for these complex physical processes are often
non-linear with various mathematical models and
parameters. Hence uncertainties have to be considered in
fuels performance simulations. The uncertainties may
come from the fuel fabrication, code limitations,
inaccurate material properties, scaling inaccuracies
embedded in the experimental data, and system
parameters. Consequently, uncertainty quantification and
sensitivity analysis methodologies for fuels performance
simulations have to be developed to achieve the goal set
forth for LOTUS to perform BEPU analyses. It is worthy
to point out that the uncertainty quantification (UQ) and
sensitivity analysis (SA) work traditionally has been
focused on thermaldraulics and neutronics. It has not
gained much attention in fuels performance.

The advanced fuels performance code BISON (Ref.
4) is the code of choice for fuels performance by the U.S.
DOE’s Consortium for Advanced Simulation of Light
Water Reactors (CASL) Program and is also one of the
codes of choice for fuels performance analysis within the
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LOTUS framework. Developing a methodology to
perform uncertainty quantification and sensitivity analysis
for BISON is the objective of this work. UQ and SA
methods seek to improve knowledge and understanding of
a considered model. Uncertainty quantification refers to
the determination of uncertainty in model outputs based
on the uncertainty in model inputs. Sensitivity analysis
seeks to determine the contribution of the uncertainty in a
single model input to the uncertainty in model results
(Ref. 5). However, this work only identifies sensitive
input parameters without attempting to quantify the
amount of model uncertainty produced by each parameter.
Results from sensitivity analysis provide a clearer picture
of how system inputs correlate to system outputs.
Parameters with negligible or no contribution to the
system response can be removed in future studies while
those parameters with significant contribution present a
guide to where areas of future research should be focused
on reducing the input uncertainty. Ikonen (Ref. 6)
compared a humber of global sensitivity analysis methods
by use of the nuclear fuel performance code VTT-
modified FRAPCON-3.4. Global sensitivity analysis
methods explore the whole input parameter space by
sampling chosen input parameters simultaneously rather
than performing perturbations of input parameters one-at-
a-time. Global sensitivity analysis has the advantage of
being able to identify nonlinear uncertainty structures
over the global admissible input parameter space. The
non-influential parameters in nonlinearly parameterized
models can be fixed for subsequent model calibration or
uncertainty propagation (Ref. 7). Local sensitivity
analysis tied to perturbing input parameters one at a time
and is not able to identify these structures. There exist
numerous sensitivity analysis methods (Refs. 4 and 5) that
should be carefully chosen based on the complexity and
specific model to be evaluated. In this work, a Monte
Carlo, or sampling based, approach is used to evaluate
those parameters that most profoundly affect the figures
of merits. In Monte Carlo based methods, a large humber
of model simulations are performed to produce a
significant number of samples that can be used for both
uncertainty quantification and sensitivity analysis.
Therefore, probability distribution functions (PDF) and
cumulative distribution functions (CDF) can be computed
for each of the FOMs. The PDF can indicate how the
correlation between model inputs and model outputs
behaves (Ref. 5) while the CDF can be used to quantify
the uncertainty in the FOMs (Ref. 8). It is noted that UQ
and SA work presented in this work focuses solely on
properties of the BISON model and does not rely on
comparisons to experimental data.

Il. BRIEF DESCRIPTION OF THE BISON CODE

BISON is a finite-element multidimensional
multiphysics fuel performance code being developed at



INL (Ref. 4) for a single fuel rod. It is a fully implicit
code which solves fully-coupled equations of
thermomechanics and species diffusion and allows large
time steps to be used in simulations. Oxide fuel models
are included to describe temperature, burnup and porosity
dependent material properties, fission product swelling
and densification strains, thermal and irradiation creep,
fracture, and fission gas production and release. The
cladding behavior models include plasticity, thermal
expansion, irradiation growth, hydrogen uptake and creep.
Models are also available to simulate gap heat transfer,
mechanical contact, and the evolution of the gap/plenum
pressure with plenum volume, gas temperature, and
fission gas addition. BISON can efficiently solve
problems using standard workstations or very large high-
performance computers. The code is applicable to both
steady and transient fuel behavior. BISON is built using
the INL Multiphysics Object-Oriented Simulation
Environment (MOOSE) (Ref. 9). MOOSE is a massively
parallel, finite element-based framework to solve systems
of coupled non-linear partial differential equations.
BISON’s 2D axisymmetric option is a fast running
version of the code and is used in this work.

I11. PROBLEM DESCRIPTION

The fuel performance computer codes are normally
developed to analyze the behavior of a single fuel rod. A
2D full length BISON model is built for a single fuel rod.
BISON is a deterministic fuel performance code that can
calculate the response of light water reactor fuel rods
under both the steady-state and transient conditions.
Boundary conditions such as the fuel irradiation power
history, axial power shapes are supplied as input to the
code. Other user inputted boundary conditions include
the coolant properties such as inlet coolant temperature,
inlet coolant mass flux and system pressure. Since BISON
is a multi-dimensional finite element code with arbitrary
geometry, a mesh file generated with the fuel rod
fabrication parameters has to be supplied to the code. The
mesh file is a binary file format in Exodus Il (Ref. 10).

The parameters used in the BISON model are for a
typical 17x17 PWR fuel assembly design. The geometric
parameters are shown in Table I. The propagation of
uncertainties is studied under steady-state irradiation
conditions with BISON. The analyzed scenario is a
hypothetical normal operation irradiation of a UO2 fuel
rod in a typical four-loop PWR reactor. The scenario is
designed to bring the fuel rod to a relatively high burnup
of 60 GWd/MT. The power history used for this BISON
model is shown in Fig. 3. The axial power shapes versus
burnup time in days used for this model are shown in Fig.
4. The power histories and axial power profiles are
obtained from core design work done for a typical 4-loop
PWR with 17x17 fuel assembly design (Ref. 3).
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TABLE I. Fuel Rod Design Parameters and
Boundary Conditions Used in the BISON Model

Parameter Value Unit
Active Core Length 365.76 cm
Rod Pitch 1.26 cm
Clad Material ZIRC-4 -
Clad Outer Radius 0.475 cm
Clad Inner Radius 0.418 cm
Fuel Material uo, -
Fuel Pellet Outer Radius 0.4096 cm
Gap Initial Width 0.0084 cm
Fuel Enrichment 4.85 %
Fuel Theoretical Density 93.5 %
Coolant Pressure 15.51 MPa
Coolant Inlet Temperature 561 K
Coolant Inlet Mass Flux 3460 kg
m?-s
g
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Fig. 3. Fuel rod power history.
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Fig. 4. Axial power shapes versus time
IV. METHODOLOGY
IV.A. Figures of Merit
Performing uncertainty and sensitivity analysis

requires that a relevant system response output variable,
or figure of merit (FOM), be chosen to analyze. BISON




provides a number of system response variables that could
be analyzed. These include maximum fuel temperature,
clad temperature, gap conductance, gap width, fission gas
release, clad hoop stress, plenum pressure and clad radial
elongation, etc. For brevity, in this work, we selected the
maximum fuel temperatures and the gap conductance as
the FOMs to perform sensitivity analyses.

1V.B. Input Uncertainty

TABLE Il. Uncertain Input Parameters

Input Parameters Range Distribution
Fuel Thermal Conductivity +10% Uniform
Fuel Thermal Expansion +15% Uniform
Clad Creep Rate + 30% Uniform
Clad Oxidation + 40% Uniform
Clad Thermal Conductivity +20% Uniform
Clad Thermal Expansion + 30% Uniform
Coolant Heat Transfer +5% Uniform
Coefficient

Pellet Initial Diameter (mm) +0.02 Uniform
Clad Initial Thickness (mm) +0.025 Uniform
Gap Initial Width (mm) + 0.0005 Uniform
Fuel Enrichment (%) +0.003 Uniform
Fuel Density (%) +1.6 Uniform
Coolant Pressure (MPa) +0.31 Normal
Coolant Inlet Temperature (K) +3 Normal
Coolant Inlet Mass Flux (%) +69 Normal
Linear Power + 5% Uniform
FGR Intra-granular Diffusion +200%/-67% Uniform
Coefficient

FGR Grain-boundary Diffusion +200%/-67% Uniform
Coefficient

There exist large uncertainties in many of system and
model input parameters. The primary objective of this
work is demonstrate the uncertainty propagation and
sensitivity analysis methodology developed in this work
with the focus on system and model parameter uncertainty
as the uncertainty in user inputted values to the BISON
input file. The specific number of input parameters to
consider in uncertainty quantification is sometimes
defined by the analysis method itself. In non-parametric
methods, such as the Monte Carlo approach used in the
current work, the amount of parameters is not specified by
the method itself but there is still motivation to limit the
number of uncertain parameters (Ref. 8). The specific
parameters should be judiciously chosen based on those
that are expected to have the most influence on the FOMs
for sensitivity analysis. A table of uncertain parameters
can be developed that indicates the most important inputs
to the model and their expected range of uncertainty. The
input parameters are assumed to be mutually independent.
Correlation between model inputs will have an effect on
how these parameters are sampled for uncertainty
quantification and sensitivity analysis and this is left for
future work. The uncertain input parameters and their
relevant uncertain ranges used in this work are shown in
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Table 1I. Most of the parameters ranges are consistent
with those used by lkonen in Ref. [6].

IV.C. Sensitivity Analysis
IV.C.1. Scatterplots

Scatterplots are often the first step to examine the
relationship between the uncertainty in model inputs and
analysis results while revealing any non-linearity or
unexpected behavior (Ref. 5). Scatterplots provide the
starting point for development of a more qualitative
sensitivity analysis strategy. Rank transformed data can
also be used to create scatterplots when the data exhibits a
non-linear yet monotonic relationship (Ref. 8). Rank
transformation is used to rank the input and output data
from the smallest values, with a rank of 1, to the largest
values with a rank corresponding to the number of
samples. Rank transformed scatterplots are then formed
by plotting the rank transformed output data y versus the
rank transformed input data x.

IV.C.2. Pearson and Spearman Correlation Coefficients

Although scatterplots are instrumental in examining
the relationship between the model input and output
parameters, quantitative methods such as correlation
coefficients provide the degree of linearity that exists
between inputs and outputs. Various methods for
computing correlation coefficients exist in the literature
(Refs. 4 and 5) and the method used must be sensibly
chosen based on the sensitivity analysis approach.
Correlation coefficients are valued between -1 and +1
where -1 represents a perfect inversely correlated linear
relationship and +1 represents a perfect linear
relationship. A value close to 0 indicates that the input has
insignificant effect on the output. Absolute values of the
correlation coefficients between model inputs and a
particular FOM can then be ranked from those inputs that
are the most influential to those that are the least
influential on the FOM. The Pearson (or sample)
correlation coefficient (CC) between inputs xj and output
y as defined by Helton et al. (Ref. 5) is:

T (xij— %) vi—)

C(xj'y) = T (1)
[ZX, (xij-%))°] & [Z?Ll(yz—s’/)z]l/z
where
— Xij
Xj = 21\217} )
y=XiL 3 3)

and N is the number of samples. The Pearson correlation
coefficient can also be applied to the rank transformed



data and is then known as the Spearman, or rank,
correlation coefficient (RCC).

IV.C.3. Partial Correlation Coefficients (PCC)

In a global sensitivity analysis approach,
perturbations in the model output are not purely a
function of that of a single input, but rather a
combinational effect from the perturbation of all model
inputs simultaneously. To evaluate the comprehensive
quality of the sensitivity analysis the square of the
Pearson correlation coefficient (R?) can be calculated for
each input parameter and summed. If the value remains
significantly below unity then higher order sensitivity
analysis methods, such as partial correlation coefficients
(PCCs), must be used to analyze nonlinearities in the
model (Ref. 5). PCCs characterize the linear relationship
between a model input and model output after corrections
have been made for the linear effects on the output by all
other model inputs.

IV.C.4. Sensitivity Analysis Toolkit

The overall computational method to perform the
uncertainty and sensitivity analysis (Fig. 4) forms the
BISON Uncertainty and Sensitivity Analysis Toolkit
(BISAT). BISAT contains two main portions. In Fig. 5
the solid lines indicate the first BISAT portion of pre-
processing and BISON execution. This pre-processing
step uses a Python script to perform the overall
perturbation of the nominal values. BISON uses a
hierarchical, block-structured input file and the syntax is
completely customizable and replaceable. This makes it
amiable to use Python scripts to modify the input files. A
BISON input file was first created for a fuel rod case with
the nominal input values shown in Table I. The table of
uncertain parameters was also created as an input to the
Python script. The Python script is then called to read the
nominal BISON input file, sample the variables defined in
the table of uncertain parameters from the ranges defined
in the table of uncertain parameters input file, and then
create N new BISON input files with perturbed
parameters. For each of the new BISON input files with
perturbed parameters, a new mesh file is generated with
the same perturbed rod geometry data. The mesh file is
generated by CUBIT (Ref. 11) which is a mesh generator
developed by Sandia National Laboratories. The Python
scripts which are available with the BISON installation
were used to drive CUBIT to generate the mesh file for
the respective BISON input file. BISAT then submits all
of the new perturbed cases to INL’s high performance
computing queue.

For each of the N simulations a BISON output file is
created for the modeled fuel rod. The post-processing
portion of the BISAT (dashed lines in Fig. 5) utilizes

Proceedings of ICAPP 2017
April 24-28, 2017 - Fukui and Kyoto (Japan)

Python scripting to search the quantities of interest. The
final step of the BISAT retrieves the FOMs from each of
the case summary files as well as the values for each of
the perturbed parameters defined by the table of uncertain
parameters input file. A FOM summary file is then
written that contains the FOMs and perturbed values for
each case.

Define nominal BISON case

]

Specify table of uncertain parameters

Randomly sample from the uncertainty ranges to define
the perturbed input value

) |

Create the perturbed
mesh generation file

Create the perturbed
BISON input file

} |

Submit BISON case to
INL’s Falcon queue

Perform N times

i | Submit mesh generation
| file to INL’s Falcon queue

Fm———- ———-

1

H Write case output to file

1

1

[ l -TTT 1
| Gather the figures of merit and perturbed values for each |
i case i
1 1
_______ - l —— i

T
1
i Perform UQ and SA analyses
1

Fig. 5. BISAT flow diagram.
V.RESULTS

The UQ and SA simulations were performed on the
Fission supercomputer at the INL. The BISAT toolkit
described in section 1V was used to create 5000 BISON
input files with perturbed parameters outlined by the table
of uncertain parameters shown in Table Il. All the 5000
BISON cases run successfully and are considered here.
The BISAT post-processor was then used to extract the
FOMs, perturbed values, and any other quantities of
interest.

V.A. Uncertainty Quantification Results

Overall, 5000 BISON model simulations were
performed for uncertainty quantification by use of
BISAT. The data corresponding to fuel burnup of 40.66
GWD/MT were selected for detailed analysis here. Table
I11 shows the percentile values for each FOM. For the
95th percentile, the standard error is shown calculated by
the method in Ref. [12] to obtain the 95 percent



probability at the 95 percent confidence interval as shown
in the following:

Yo5/95 = Uosy, T 1.96 * SEggsy, 4)

where pqs, is the 95 percentile values of the FOM and
SEqosy, is the standard error of pgse, . In this case, the
standard error at the 95th percentile SEyq59, Can be
approximated as 2.11 multiplied by the standard error on
the mean SE,,. The stand errors are less than one percent
of the FOM and hence indicate that 5000 runs are
adequate to generate the results with acceptable
confidence interval.

TABLE Ill. FOM UQ Values from the 5000 BISON

Simulations
Percentiles
FOM
th 5qth 95:;;1. 96 *
095%
Maximum Fuel 1761.15 +
Temperature [K] 142328 | 1566.28 5.06
Gap
Conductance 7624.50 | 11832.27 1717§§ 21;5 +
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g 500 o
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Fig. 6. PDF and CDF for Maximum fuel temperature.
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Fig. 7. PDF and CDF for Gap Conductance.
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Figures 6 and 7 show the empirical PDF and CDF for
the maximum fuel temperature and gap conductance,
respectively. For each FOM, the PDF shape closely
resembles a skewed Gaussian. From the near Gaussian
shaped PDFs it is possible to deduce that the models that
produce these distributions from the input distributions is
quite simple. Therefore, it is not expected that higher
order method of sensitivity analysis will be necessary.

V.B. Sensitivity Analysis Results

The same data used for the uncertainty quantification
study is examined for the sensitivity analysis of the
BISON runs. The 2 FOMs and 18 input parameters were
ranked by the method discussed in section IV using the
RANK function in Microsoft Excel to create scatterplots.
The scatterplots for ranked maximum fuel temperature
versus ranked input parameters are shown in Fig. 8 and a
trendline is used on each of the plots to show a linear fit
to the data. Scatterplots for gap conductance are shown in
Fig. 9. Those inputs that have a more prominent positive
slope are the inputs that are most positively correlated
with an increase in maximum fuel temperature. For
example, the linear power rate has an obvious positive
slope meaning that as the linear power rate is increased,
the maximum fuel temperature increases as more heat is
added to the fuel. Conversely, those inputs that have a
prominent negative slope indicate a negative correlation
between the input and maximum fuel temperature. For
example, as the fuel thermal conductivity is increased the
maximum fuel temperature is decreased. Notably, certain
parameters do not have a particularly strong correlation
with the FOMs. However, correlation coefficients are
needed to quantify the contributions of the uncertainty in
each input parameter to changes in each FOM.

The Pearson correlation coefficients between each of
the perturbed parameters and considered FOMs were
calculated using the PEARSON function in Microsoft
Excel. The Spearman coefficients were also calculated by
use of the CORREL function in Microsoft Excel on the
rank transformed data and results were consistent with the
Pearson correlation coefficients. The sum of the R?
values were examined for each FOM to ensure that
Pearson correlation coefficients were suitable for
analyzing model correlations and for each of the FOMs
the R? values was equal to, or nearly equal to, unity.
However, partial correlation coefficients are shown here
as well to demonstrate the application of sensitivity
analysis techniques to BISON. PCCs were calculated
using an Excel VBA script based on that available
publicly by Listen Data (Ref. 13). Values for all of the
correlation coefficients for each FOM are shown in
Tables 1V-V along with the importance rank of each
particular parameter. The results show that the fuel
thermal conductivity is the most important parameter for



both of the FOMs, regardless of the correlation coefficient
calculation technique.

The most correlated parameters are consistent for
each of the correlation techniques for at least the first
three most influential parameters after which there are
some differences. Interestingly, some sign change is
noticed between correlation coefficient techniques for the
least correlated values (e.g. coolant inlet mass flux for
maximum fuel temperature).

I1. CONCLUSIONS

This work was performed to develop an uncertainty
quantification and sensitivity analysis approach to the
advanced fuels performance code BISON. The BISAT
toolkit was developed to handle the UQ/SA approach with
the ability to perturb any number of selected input
parameters, create an arbitrary number of perturbed
BISON input files along with perturbed meshes, and post-
process the BISON cases to create a single output file
containing the FOM and perturbed parameter values for
each case. A table of uncertain input parameters was
developed for the BISON model considered in this study
with inputs expected to influence the FOMs. The results
of sensitivity analysis show that a number of correlation
coefficients can be calculated for the Monte Carlo global
sensitivity analysis considered in this work. Sensitivity
analysis results also show that fuel thermal conductivity
and linear heat generation rate are most influential to the
maximum fuel temperature and fuel thermal conductivity,
linear heat generation rate and fission gas release intra-
granular diffusion coefficient are most influential on gap
conductance as FOMs analyzed in this work.

Future work for SA with BISON will include using
higher order sensitivity analysis techniques such as
Sobol’s variance decomposition to study the effect of
variable interactions.
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TABLE IV. Summary of Correlation Coefficients and Importance Rank for Maximum Fuel Temperature

Maximum Fuel Temperature
Parameter CcC CC Rank RCC RCC PCC PCC
Rank Rank
Fuel Thermal Conductivity -0.7898 1 -0.7925 1 -0.9927 1
Fuel Thermal Expansion -0.0170 8 -0.0156 8 -0.1696 7
Clad Creep Rate 0.0025 17 0.0057 14 0.0670 11
Clad Oxidation 0.0032 16 -0.0028 17 0.0518 12
Clad Thermal Conductivity -0.0544 5 -0.0509 5 -0.5458 4
Clad Thermal Expansion -0.0055 13 -0.0050 15 -0.0105 17
Coolant Heat Transfer -0.0476 7 -0.0465 6 -0.1416 9
Coefficient
Pellet Initial Diameter -0.0073 12 -0.0099 11 -0.1211 10
Clad Initial Thickness -0.0477 6 -0.0449 7 -0.2283 6
Gap Initial Width -0.0047 14 0.0009 18 -0.0514 13
Fuel Enrichment 0.0002 18 -0.0035 16 0.0393 14
Fuel Density -0.0610 4 -0.0558 4 -0.3900 5
Coolant Inlet Pressure -0.0036 15 -0.0090 12 -0.0068 18
Coolant Inlet Temperature 0.0131 9 0.0118 10 0.1640 8
Coolant Inlet Mass Flux 0.0094 11 0.0087 13 -0.0187 16
Linear Power 0.6028 2 0.5907 2 0.9872 2
FGR Intra-granular 0.0814 3 0.0762 3 0.6866 3
Diffusion Coefficient
FGR Grain-boundary -0.0102 10 -0.0134 9 -0.0237 15
Diffusion Coefficient
TABLE V. Summary of Correlation Coefficients and Importance Rank for Gap Conductance
Gap Conductance
Parameter CcC CC Rank RCC RCC PCC PCC
Rank Rank

Fuel Thermal Conductivity 0.6796 1 0.6847 1 0.9729 1
Fuel Thermal Expansion 0.0340 9 0.0317 9 0.1841 7
Clad Creep Rate -0.0018 17 -0.0042 17 -0.0789 10
Clad Oxidation 0.0027 16 -0.0053 16 0.0360 13
Clad Thermal Conductivity 0.0542 7 0.0496 6 0.3397 5
Clad Thermal Expansion 0.0079 13 0.0068 14 -0.0065 17
Coolant Heat Transfer 0.0350 8 0.0347 8 0.0663 11
Coefficient
Pellet Initial Diameter 0.0213 10 0.0209 10 0.1050 9
Clad Initial Thickness 0.0647 4 0.0659 4 0.1970 6
Gap Initial Width -0.0014 18 -0.0011 18 0.0054 18
Fuel Enrichment -0.0035 15 -0.0066 15 0.0137 15
Fuel Density 0.0548 6 0.0563 5 0.1838 8
Coolant Inlet Pressure 0.0063 14 0.0111 12 0.0101 16
Coolant Inlet Temperature -0.0102 11 -0.0114 11 -0.0620 12
Coolant Inlet Mass Flux -0.0090 12 -0.0077 13 0.0196 14
Linear Power -0.5795 2 -0.5803 2 -0.9621 2
FGR Intra-granular -0.4095 3 -0.3873 3 -0.9323 3
Diffusion Coefficient
FGR Grain-boundary -0.0551 5 -0.0451 7 -0.3563 4
Diffusion Coefficient
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(a) Fuel Thermal Conductivity

(b) Fuel Thermal Expansion (c) Clad Creep Rate
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Fig. 8. Ranked maximum fuel temperature versus ranked input parameter for sensitivity analysis.
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b) Fuel Thermal Expansion c) Clad Creep Rate
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Fig. 9. Ranked gap conductance versus ranked input parameter for sensitivity analysis.
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