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        BISON is an advanced fuels performance code being 
developed at Idaho National Laboratory and is the code 
of choice for fuels performance by the U.S. Department of 
Energy (DOE)’s Consortium for Advanced Simulation of 
Light Water Reactors (CASL) Program.  An approach to 
uncertainty quantification and sensitivity analysis with 
BISON was developed and a new toolkit was created.  A 
PWR fuel rod model was developed and simulated by 
BISON, and uncertainty quantification and sensitivity 
analysis were performed with eighteen uncertain input 
parameters. The maximum fuel temperature and gap 
conductance were selected as the figures of merit (FOM).  
Pearson, Spearman, and partial correlation coefficients 
were considered for all of the figures of merit in 
sensitivity analysis.  
 

 
I. INTRODUCTION  

 
The current emergency core cooling system (ECCS) 

acceptance criteria for loss-of-coolant accidents (LOCA) 
in light-water reactors (LWRs) are described in 
10CFR50.46. Two of the five criteria specify that the 
calculated peak cladding temperature (PCT) and 
maximum cladding oxidation shall not exceed 2200°F 
(1478K) and 17% equivalent cladding reacted (ECR), 
respectively (Ref. 1). Ever since the establishment of 
these cladding embrittlement criteria, more extensive 
research and experiments have been conducted which 
resulted in an increased understanding of fuel and clad 
behavior under both normal operating conditions and 
LOCA transient conditions. The new studies indicated 
that the current regulatory acceptance criteria may be non-
conservative for high burnup fuel. The Nuclear 
Regulatory Commission (NRC) is considering a 
rulemaking change that would revise the requirements in 
10CFR50.46. In the proposed new rulemaking, designated 
as 10CFR50.46(c), the NRC proposed a fuel 
performance-based ECR criterion as a function of 
cladding hydrogen content before the accident (pre-
transient), to include the effects of fuel burnup on 
cladding performance (Ref. 2). The pre-transient cladding 
hydrogen content, in turn, is a function of the fuel burnup 
and cladding materials. A characteristic of the proposed 

new rulemaking, as illustrated in Fig. 1, imposes more 
restrictive and fuel rod-dependent cladding embrittlement 
criteria. Consequently fuel and cladding performance and 
ECCS performance need to be considered in a stronger 
coupled way in LOCA analyses. 

 
The Idaho National Laboratory (INL) initiated a 

project to develop analytical capabilities to support the 
industry in the transition to the new rule (Ref. 3). The 
general idea behind the initiative was the development of 
an integrated multiphysics evaluation model. The 
motivation was to revisit how uncertainties are 
propagated across the stream of physical disciplines and 
data involved, as well as how risks are evaluated in a 
LOCA safety analysis as regulated under 10 CFR 50.46c.  
This integrated evaluation model is called LOTUS which 
stands for LOCA Toolkit for the U.S. Light Water 
Reactors (Ref. 3). 

 
Fig. 1. Analytical generic limit proposed by the NRC for 
existing fuel (Ref. 2). 
 

The LOTUS framework is notionally illustrated in 
Fig. 2.  The primary characteristic of LOTUS is an 
integrated multiphysics simulation based tool to manage 
data flow stream, uncertainty propagation and risk 
assessment. The focus of LOTUS is to establish the 
automation interfaces among the five disciplines, as 
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depicted in Fig. 2, such that uncertainties can be easily 
propagated with large number of simulations.  

 

 
Fig. 2. Schematic illustration of LOTUS. 
 

As indicated above, one overarching goal of the 
LOTUS development is to develop a methodology to 
systematically propagate uncertainties across the multiple 
disciplines involved in the LOCA analysis in order to 
perform best-estimate plus uncertainty (BEPU) analyses 
in response to the proposed 10 CFR 50.46c new rules.  
Therefore, understanding how uncertainties are 
propagated within each discipline is essential toward 
achieving the overall objective set forth here.  As depicted 
in Fig. 2, fuels performance is an important component of 
LOTUS.  The prediction of the behavior and failure 
modes of the fuel and clad is extremely difficult because 
it involves predicting the interacting and competing 
nuclear, thermal, mechanical, chemical and fluids flow 
processes. These multi-physics processes often have 
multiple scales in space and time and hence make fuels 
performance modeling very challenging.  The models 
developed for these complex physical processes are often 
non-linear with various mathematical models and 
parameters. Hence uncertainties have to be considered in 
fuels performance simulations. The uncertainties may 
come from the fuel fabrication, code limitations, 
inaccurate material properties, scaling inaccuracies 
embedded in the experimental data, and system 
parameters. Consequently, uncertainty quantification and 
sensitivity analysis methodologies for fuels performance 
simulations have to be developed to achieve the goal set 
forth for LOTUS to perform BEPU analyses.   It is worthy 
to point out that the uncertainty quantification (UQ) and 
sensitivity analysis (SA) work traditionally has been 
focused on thermaldraulics and neutronics.  It has not 
gained much attention in fuels performance.    

 
The advanced fuels performance code BISON (Ref. 

4) is the code of choice for fuels performance by the U.S. 
DOE’s Consortium for Advanced Simulation of Light 
Water Reactors (CASL) Program and is also one of the 
codes of choice for fuels performance analysis within the 

LOTUS framework. Developing a methodology to 
perform uncertainty quantification and sensitivity analysis 
for BISON is the objective of this work. UQ and SA 
methods seek to improve knowledge and understanding of 
a considered model. Uncertainty quantification refers to 
the determination of uncertainty in model outputs based 
on the uncertainty in model inputs. Sensitivity analysis 
seeks to determine the contribution of the uncertainty in a 
single model input to the uncertainty in model results 
(Ref. 5).  However, this work only identifies sensitive 
input parameters without attempting to quantify the 
amount of model uncertainty produced by each parameter. 
Results from sensitivity analysis provide a clearer picture 
of how system inputs correlate to system outputs. 
Parameters with negligible or no contribution to the 
system response can be removed in future studies while 
those parameters with significant contribution present a 
guide to where areas of future research should be focused 
on reducing the input uncertainty.  Ikonen (Ref. 6) 
compared a number of global sensitivity analysis methods 
by use of the nuclear fuel performance code VTT-
modified FRAPCON-3.4. Global sensitivity analysis 
methods explore the whole input parameter space by 
sampling chosen input parameters simultaneously rather 
than performing perturbations of input parameters one-at-
a-time. Global sensitivity analysis has the advantage of 
being able to identify nonlinear uncertainty structures 
over the global admissible input parameter space. The 
non-influential parameters in nonlinearly parameterized 
models can be fixed for subsequent model calibration or 
uncertainty propagation (Ref. 7). Local sensitivity 
analysis tied to perturbing input parameters one at a time 
and is not able to identify these structures. There exist 
numerous sensitivity analysis methods (Refs. 4 and 5) that 
should be carefully chosen based on the complexity and 
specific model to be evaluated. In this work, a Monte 
Carlo, or sampling based, approach is used to evaluate 
those parameters that most profoundly affect the figures 
of merits. In Monte Carlo based methods, a large number 
of model simulations are performed to produce a 
significant number of samples that can be used for both 
uncertainty quantification and sensitivity analysis. 
Therefore, probability distribution functions (PDF) and 
cumulative distribution functions (CDF) can be computed 
for each of the FOMs. The PDF can indicate how the 
correlation between model inputs and model outputs 
behaves (Ref. 5) while the CDF can be used to quantify 
the uncertainty in the FOMs (Ref. 8).  It is noted that UQ 
and SA work presented in this work focuses solely on 
properties of the BISON model and does not rely on 
comparisons to experimental data.  

 
II. BRIEF DESCRIPTION OF THE BISON CODE 

 
BISON is a finite-element multidimensional 

multiphysics fuel performance code being developed at 
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INL (Ref. 4) for a single fuel rod. It is a fully implicit 
code which solves fully-coupled equations of 
thermomechanics and species diffusion and allows large 
time steps to be used in simulations. Oxide fuel models 
are included to describe temperature, burnup and porosity 
dependent material properties, fission product swelling 
and densification strains, thermal and irradiation creep, 
fracture, and fission gas production and release. The 
cladding behavior models include plasticity, thermal 
expansion, irradiation growth, hydrogen uptake and creep. 
Models are also available to simulate gap heat transfer, 
mechanical contact, and the evolution of the gap/plenum 
pressure with plenum volume, gas temperature, and 
fission gas addition. BISON can efficiently solve 
problems using standard workstations or very large high-
performance computers. The code is applicable to both 
steady and transient fuel behavior. BISON is built using 
the INL Multiphysics Object-Oriented Simulation 
Environment (MOOSE) (Ref. 9). MOOSE is a massively 
parallel, finite element-based framework to solve systems 
of coupled non-linear partial differential equations.  
BISON’s 2D axisymmetric option is a fast running 
version of the code and is used in this work. 

 
III. PROBLEM DESCRIPTION 

 
The fuel performance computer codes are normally 

developed to analyze the behavior of a single fuel rod. A 
2D full length BISON model is built for a single fuel rod. 
BISON is a deterministic fuel performance code that can 
calculate the response of light water reactor fuel rods 
under both the steady-state and transient conditions. 
Boundary conditions such as the fuel irradiation power 
history, axial power shapes are supplied as input to the 
code.  Other user inputted boundary conditions include 
the coolant properties such as inlet coolant temperature, 
inlet coolant mass flux and system pressure. Since BISON 
is a multi-dimensional finite element code with arbitrary 
geometry, a mesh file generated with the fuel rod 
fabrication parameters has to be supplied to the code. The 
mesh file is a binary file format in Exodus II (Ref. 10).  

 
The parameters used in the BISON model are for a 

typical 17x17 PWR fuel assembly design.  The geometric 
parameters are shown in Table I.  The propagation of 
uncertainties is studied under steady-state irradiation 
conditions with BISON. The analyzed scenario is a 
hypothetical normal operation irradiation of a UO2 fuel 
rod in a typical four-loop PWR reactor.  The scenario is 
designed to bring the fuel rod to a relatively high burnup 
of 60 GWd/MT.  The power history used for this BISON 
model is shown in Fig. 3.  The axial power shapes versus 
burnup time in days used for this model are shown in Fig. 
4. The power histories and axial power profiles are 
obtained from core design work done for a typical 4-loop 
PWR with 17x17 fuel assembly design (Ref. 3). 

TABLE I. Fuel Rod Design Parameters and 
Boundary Conditions Used in the BISON Model 

 
Parameter Value Unit 

Active Core Length 365.76 cm 
Rod Pitch 1.26 cm 

Clad Material ZIRC-4 -  
Clad Outer Radius 0.475 cm 
Clad Inner Radius 0.418 cm 

Fuel Material UO2 -  
Fuel Pellet Outer Radius 0.4096 cm 

Gap Initial Width 0.0084 cm 
Fuel Enrichment 4.85 % 

Fuel Theoretical Density 93.5 % 
Coolant Pressure 15.51 MPa 

Coolant Inlet Temperature 561 K 
Coolant Inlet Mass Flux 3460 kg

m2∙s
 

 

 
Fig. 3. Fuel rod power history. 
 

 
Fig. 4. Axial power shapes versus time  
 
IV.  METHODOLOGY 
 
IV.A. Figures of Merit  

 
Performing uncertainty and sensitivity analysis 

requires that a relevant system response output variable, 
or figure of merit (FOM), be chosen to analyze. BISON 
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provides a number of system response variables that could 
be analyzed. These include maximum fuel temperature, 
clad temperature, gap conductance, gap width, fission gas 
release, clad hoop stress, plenum pressure and clad radial 
elongation, etc.  For brevity, in this work, we selected the 
maximum fuel temperatures and the gap conductance as 
the FOMs to perform sensitivity analyses. 

 
IV.B. Input Uncertainty 
 

TABLE II. Uncertain Input Parameters 
Input Parameters Range Distribution 
Fuel Thermal Conductivity ±10% Uniform 
Fuel Thermal Expansion ±15% Uniform 
Clad Creep Rate ± 30% Uniform 
Clad Oxidation ± 40% Uniform 
Clad Thermal Conductivity ± 20% Uniform 
Clad Thermal Expansion ± 30% Uniform 
Coolant Heat Transfer 
Coefficient 

± 5% Uniform 

Pellet Initial Diameter (mm)  ± 0.02 Uniform 
Clad Initial Thickness (mm)  ± 0.025 Uniform 
Gap Initial Width (mm)  ± 0.0005 Uniform 
Fuel Enrichment (%)  ± 0.003 Uniform 
Fuel Density (%)  ± 1.6 Uniform 
Coolant Pressure (MPa)  ± 0.31 Normal 
Coolant Inlet Temperature (K) ± 3  Normal 
Coolant Inlet Mass Flux ( kg

m2∙s
) ± 69 Normal 

Linear Power ± 5% Uniform 
FGR Intra-granular Diffusion 
Coefficient 

+200%/-67% Uniform 

FGR Grain-boundary Diffusion 
Coefficient 

+200%/-67% Uniform 

 
There exist large uncertainties in many of system and 

model input parameters. The primary objective of this 
work is demonstrate the uncertainty propagation and 
sensitivity analysis methodology developed in this work 
with the focus on system and model parameter uncertainty 
as the uncertainty in user inputted values to the BISON 
input file. The specific number of input parameters to 
consider in uncertainty quantification is sometimes 
defined by the analysis method itself. In non-parametric 
methods, such as the Monte Carlo approach used in the 
current work, the amount of parameters is not specified by 
the method itself but there is still motivation to limit the 
number of uncertain parameters (Ref. 8). The specific 
parameters should be judiciously chosen based on those 
that are expected to have the most influence on the FOMs 
for sensitivity analysis. A table of uncertain parameters 
can be developed that indicates the most important inputs 
to the model and their expected range of uncertainty. The 
input parameters are assumed to be mutually independent. 
Correlation between model inputs will have an effect on 
how these parameters are sampled for uncertainty 
quantification and sensitivity analysis and this is left for 
future work. The uncertain input parameters and their 
relevant uncertain ranges used in this work are shown in 

Table II. Most of the parameters ranges are consistent 
with those used by Ikonen in Ref. [6]. 

 
IV.C. Sensitivity Analysis 
 
IV.C.1. Scatterplots 

 
Scatterplots are often the first step to examine the 

relationship between the uncertainty in model inputs and 
analysis results while revealing any non-linearity or 
unexpected behavior (Ref. 5). Scatterplots provide the 
starting point for development of a more qualitative 
sensitivity analysis strategy. Rank transformed data can 
also be used to create scatterplots when the data exhibits a 
non-linear yet monotonic relationship (Ref. 8). Rank 
transformation is used to rank the input and output data 
from the smallest values, with a rank of 1, to the largest 
values with a rank corresponding to the number of 
samples. Rank transformed scatterplots are then formed 
by plotting the rank transformed output data y versus the 
rank transformed input data x. 
 
IV.C.2. Pearson and Spearman Correlation Coefficients 
 

Although scatterplots are instrumental in examining 
the relationship between the model input and output 
parameters, quantitative methods such as correlation 
coefficients provide the degree of linearity that exists 
between inputs and outputs. Various methods for 
computing correlation coefficients exist in the literature 
(Refs. 4 and 5) and the method used must be sensibly 
chosen based on the sensitivity analysis approach. 
Correlation coefficients are valued between -1 and +1 
where -1 represents a perfect inversely correlated linear 
relationship and +1 represents a perfect linear 
relationship. A value close to 0 indicates that the input has 
insignificant effect on the output. Absolute values of the 
correlation coefficients between model inputs and a 
particular FOM can then be ranked from those inputs that 
are the most influential to those that are the least 
influential on the FOM. The Pearson (or sample) 
correlation coefficient (CC) between inputs xj and output 
y as defined by Helton et al. (Ref. 5) is: 

 

𝑐𝑐�𝑥𝑥𝑗𝑗,𝑦𝑦� =
∑ �𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑗𝑗�(𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑁𝑁
𝑖𝑖=1

�∑ �𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑗𝑗�
2𝑁𝑁

𝑖𝑖=1 �
1
2�  �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑁𝑁

𝑖𝑖=1 �
1
2�
 (1) 

 
where 

𝑥̅𝑥𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑁𝑁

𝑁𝑁
𝑖𝑖=1                  (2) 

 
𝑦𝑦� = ∑ 𝑦𝑦𝑖𝑖

𝑁𝑁
𝑁𝑁
𝑖𝑖=1        (3) 

 
and N is the number of samples. The Pearson correlation 
coefficient can also be applied to the rank transformed 
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data and is then known as the Spearman, or rank, 
correlation coefficient (RCC). 
 
IV.C.3. Partial Correlation Coefficients (PCC) 
 

In a global sensitivity analysis approach, 
perturbations in the model output are not purely a 
function of that of a single input, but rather a 
combinational effect from the perturbation of all model 
inputs simultaneously. To evaluate the comprehensive 
quality of the sensitivity analysis the square of the 
Pearson correlation coefficient (R2) can be calculated for 
each input parameter and summed. If the value remains 
significantly below unity then higher order sensitivity 
analysis methods, such as partial correlation coefficients 
(PCCs), must be used to analyze nonlinearities in the 
model (Ref. 5). PCCs characterize the linear relationship 
between a model input and model output after corrections 
have been made for the linear effects on the output by all 
other model inputs. 
 
IV.C.4. Sensitivity Analysis Toolkit 
 

The overall computational method to perform the 
uncertainty and sensitivity analysis (Fig. 4) forms the 
BISON Uncertainty and Sensitivity Analysis Toolkit 
(BISAT). BISAT contains two main portions. In Fig. 5 
the solid lines indicate the first BISAT portion of pre-
processing and BISON execution. This pre-processing 
step uses a Python script to perform the overall 
perturbation of the nominal values. BISON uses a 
hierarchical, block-structured input file and the syntax is 
completely customizable and replaceable. This makes it 
amiable to use Python scripts to modify the input files.  A 
BISON input file was first created for a fuel rod case with 
the nominal input values shown in Table I. The table of 
uncertain parameters was also created as an input to the 
Python script. The Python script is then called to read the 
nominal BISON input file, sample the variables defined in 
the table of uncertain parameters from the ranges defined 
in the table of uncertain parameters input file, and then 
create N new BISON input files with perturbed 
parameters. For each of the new BISON input files with 
perturbed parameters, a new mesh file is generated with 
the same perturbed rod geometry data. The mesh file is 
generated by CUBIT (Ref. 11) which is a mesh generator 
developed by Sandia National Laboratories. The Python 
scripts which are available with the BISON installation 
were used to drive CUBIT to generate the mesh file for 
the respective BISON input file.  BISAT then submits all 
of the new perturbed cases to INL’s high performance 
computing queue.  

 
For each of the N simulations a BISON output file is 

created for the modeled fuel rod. The post-processing 
portion of the BISAT (dashed lines in Fig. 5) utilizes 

Python scripting to search the quantities of interest. The 
final step of the BISAT retrieves the FOMs from each of 
the case summary files as well as the values for each of 
the perturbed parameters defined by the table of uncertain 
parameters input file. A FOM summary file is then 
written that contains the FOMs and perturbed values for 
each case. 

 

 
 
Fig. 5. BISAT flow diagram. 
 
V. RESULTS 
 

The UQ and SA simulations were performed on the 
Fission supercomputer at the INL.  The BISAT toolkit 
described in section IV was used to create 5000 BISON 
input files with perturbed parameters outlined by the table 
of uncertain parameters shown in Table II.  All the 5000 
BISON cases run successfully and are considered here.  
The BISAT post-processor was then used to extract the 
FOMs, perturbed values, and any other quantities of 
interest. 
 
V.A. Uncertainty Quantification Results 
 

Overall, 5000 BISON model simulations were 
performed for uncertainty quantification by use of 
BISAT.  The data corresponding to fuel burnup of 40.66 
GWD/MT were selected for detailed analysis here.  Table 
III shows the percentile values for each FOM.  For the 
95th percentile, the standard error is shown calculated by 
the method in Ref. [12] to obtain the 95 percent 
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probability at the 95 percent confidence interval as shown 
in the following:   

 
𝑌𝑌95/95 = 𝜇𝜇95% ± 1.96 ∗ 𝑆𝑆𝐸𝐸𝑄𝑄95%       (4) 

 
where 𝜇𝜇95% is the 95 percentile values of the FOM and 
𝑆𝑆𝐸𝐸𝑄𝑄95%  is the standard error of 𝜇𝜇95% . In this case, the 
standard error at the 95th percentile 𝑆𝑆𝐸𝐸𝑄𝑄95%  can be 
approximated as 2.11 multiplied by the standard error on 
the mean 𝑆𝑆𝐸𝐸𝑀𝑀. The stand errors are less than one percent 
of the FOM and hence indicate that 5000 runs are 
adequate to generate the results with acceptable 
confidence interval. 
 

TABLE III.  FOM UQ Values from the 5000 BISON 
Simulations 

FOM 
Percentiles 

5th 50th 95th±𝟏𝟏.𝟗𝟗𝟗𝟗 ∗
𝑺𝑺𝑬𝑬𝑸𝑸𝑸𝑸𝑸𝑸% 

Maximum Fuel 
Temperature [𝐾𝐾] 1423.28 1566.28 1761.15 ± 

5.06 
Gap 

Conductance 
[W/m2-K] 

7624.50 11832.27 17793.16 ± 
153.27 

 

 
Fig. 6. PDF and CDF for Maximum fuel temperature. 
 

 
Fig. 7.  PDF and CDF for Gap Conductance. 

Figures 6 and 7 show the empirical PDF and CDF for 
the maximum fuel temperature and gap conductance, 
respectively.  For each FOM, the PDF shape closely 
resembles a skewed Gaussian.  From the near Gaussian 
shaped PDFs it is possible to deduce that the models that 
produce these distributions from the input distributions is 
quite simple.  Therefore, it is not expected that higher 
order method of sensitivity analysis will be necessary. 

 
V.B. Sensitivity Analysis Results 
 

The same data used for the uncertainty quantification 
study is examined for the sensitivity analysis of the 
BISON runs.  The 2 FOMs and 18 input parameters were 
ranked by the method discussed in section IV using the 
RANK function in Microsoft Excel to create scatterplots.  
The scatterplots for ranked maximum fuel temperature 
versus ranked input parameters are shown in Fig. 8 and a 
trendline is used on each of the plots to show a linear fit 
to the data.  Scatterplots for gap conductance are shown in 
Fig. 9.  Those inputs that have a more prominent positive 
slope are the inputs that are most positively correlated 
with an increase in maximum fuel temperature.  For 
example, the linear power rate has an obvious positive 
slope meaning that as the linear power rate is increased, 
the maximum fuel temperature increases as more heat is 
added to the fuel.  Conversely, those inputs that have a 
prominent negative slope indicate a negative correlation 
between the input and maximum fuel temperature.  For 
example, as the fuel thermal conductivity is increased the 
maximum fuel temperature is decreased.  Notably, certain 
parameters do not have a particularly strong correlation 
with the FOMs.  However, correlation coefficients are 
needed to quantify the contributions of the uncertainty in 
each input parameter to changes in each FOM. 

 
The Pearson correlation coefficients between each of 

the perturbed parameters and considered FOMs were 
calculated using the PEARSON function in Microsoft 
Excel.  The Spearman coefficients were also calculated by 
use of the CORREL function in Microsoft Excel on the 
rank transformed data and results were consistent with the 
Pearson correlation coefficients.  The sum of the R2 
values were examined for each FOM to ensure that 
Pearson correlation coefficients were suitable for 
analyzing model correlations and for each of the FOMs 
the R2 values was equal to, or nearly equal to, unity.  
However, partial correlation coefficients are shown here 
as well to demonstrate the application of sensitivity 
analysis techniques to BISON.  PCCs were calculated 
using an Excel VBA script based on that available 
publicly by Listen Data (Ref. 13).  Values for all of the 
correlation coefficients for each FOM are shown in 
Tables IV-V along with the importance rank of each 
particular parameter.  The results show that the fuel 
thermal conductivity is the most important parameter for 
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both of the FOMs, regardless of the correlation coefficient 
calculation technique. 

 
The most correlated parameters are consistent for 

each of the correlation techniques for at least the first 
three most influential parameters after which there are 
some differences.  Interestingly, some sign change is 
noticed between correlation coefficient techniques for the 
least correlated values (e.g. coolant inlet mass flux for 
maximum fuel temperature).    
 
II. CONCLUSIONS 

 
      This work was performed to develop an uncertainty 
quantification and sensitivity analysis approach to the 
advanced fuels performance code BISON.  The BISAT 
toolkit was developed to handle the UQ/SA approach with 
the ability to perturb any number of selected input 
parameters, create an arbitrary number of perturbed 
BISON input files along with perturbed meshes, and post-
process the BISON cases to create a single output file 
containing the FOM and perturbed parameter values for 
each case.  A table of uncertain input parameters was 
developed for the BISON model considered in this study 
with inputs expected to influence the FOMs.  The results 
of sensitivity analysis show that a number of correlation 
coefficients can be calculated for the Monte Carlo global 
sensitivity analysis considered in this work.  Sensitivity 
analysis results also show that fuel thermal conductivity 
and linear heat generation rate are most influential to the 
maximum fuel temperature and fuel thermal conductivity, 
linear heat generation rate and fission gas release intra-
granular diffusion coefficient are most influential on gap 
conductance as FOMs analyzed in this work.  
 

Future work for SA with BISON will include using 
higher order sensitivity analysis techniques such as 
Sobol’s variance decomposition to study the effect of 
variable interactions.  
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TABLE IV.  Summary of Correlation Coefficients and Importance Rank for Maximum Fuel Temperature 

 
Maximum Fuel Temperature 

Parameter CC CC Rank RCC RCC 
Rank PCC PCC 

Rank 
Fuel Thermal Conductivity -0.7898 1 -0.7925 1 -0.9927 1 
Fuel Thermal Expansion -0.0170 8 -0.0156 8 -0.1696 7 
Clad Creep Rate 0.0025 17 0.0057 14 0.0670 11 
Clad Oxidation 0.0032 16 -0.0028 17 0.0518 12 
Clad Thermal Conductivity -0.0544 5 -0.0509 5 -0.5458 4 
Clad Thermal Expansion -0.0055 13 -0.0050 15 -0.0105 17 
Coolant Heat Transfer 
Coefficient 

-0.0476 7 -0.0465 6 -0.1416 9 

Pellet Initial Diameter -0.0073 12 -0.0099 11 -0.1211 10 
Clad Initial Thickness -0.0477 6 -0.0449 7 -0.2283 6 
Gap Initial Width -0.0047 14 0.0009 18 -0.0514 13 
Fuel Enrichment 0.0002 18 -0.0035 16 0.0393 14 
Fuel Density -0.0610 4 -0.0558 4 -0.3900 5 
Coolant Inlet Pressure -0.0036 15 -0.0090 12 -0.0068 18 
Coolant Inlet Temperature 0.0131 9 0.0118 10 0.1640 8 
Coolant Inlet Mass Flux 0.0094 11 0.0087 13 -0.0187 16 
Linear Power 0.6028 2 0.5907 2 0.9872 2 
FGR Intra-granular 
Diffusion Coefficient 

0.0814 3 0.0762 3 0.6866 3 

FGR Grain-boundary 
Diffusion Coefficient 

-0.0102 10 -0.0134 9 -0.0237 15 

 
TABLE V.  Summary of Correlation Coefficients and Importance Rank for Gap Conductance 

 
Gap Conductance 

Parameter CC CC Rank RCC RCC 
Rank PCC PCC 

Rank 
Fuel Thermal Conductivity 0.6796 1 0.6847 1 0.9729 1 
Fuel Thermal Expansion 0.0340 9 0.0317 9 0.1841 7 
Clad Creep Rate -0.0018 17 -0.0042 17 -0.0789 10 
Clad Oxidation 0.0027 16 -0.0053 16 0.0360 13 
Clad Thermal Conductivity 0.0542 7 0.0496 6 0.3397 5 
Clad Thermal Expansion 0.0079 13 0.0068 14 -0.0065 17 
Coolant Heat Transfer 
Coefficient 

0.0350 8 0.0347 8 0.0663 11 

Pellet Initial Diameter 0.0213 10 0.0209 10 0.1050 9 
Clad Initial Thickness 0.0647 4 0.0659 4 0.1970 6 
Gap Initial Width -0.0014 18 -0.0011 18 0.0054 18 
Fuel Enrichment -0.0035 15 -0.0066 15 0.0137 15 
Fuel Density 0.0548 6 0.0563 5 0.1838 8 
Coolant Inlet Pressure 0.0063 14 0.0111 12 0.0101 16 
Coolant Inlet Temperature -0.0102 11 -0.0114 11 -0.0620 12 
Coolant Inlet Mass Flux -0.0090 12 -0.0077 13 0.0196 14 
Linear Power -0.5795 2 -0.5803 2 -0.9621 2 
FGR Intra-granular 
Diffusion Coefficient 

-0.4095 3 -0.3873 3 -0.9323 3 

FGR Grain-boundary 
Diffusion Coefficient 

-0.0551 5 -0.0451 7 -0.3563 4 
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Fig. 8.  Ranked maximum fuel temperature versus ranked input parameter for sensitivity analysis. 
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Fig. 9. Ranked gap conductance versus ranked input parameter for sensitivity analysis. 
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