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Instabilities: When do they occur? i)

Clark et al. 2013

Infinitesimal disturbances amplify spontaneously and
ultimately dominate the flows.

The growth of the instability is influenced by
viscosity, compressibility, three-dimensionality, density ratio.

It is postulated that the failure to achieve ignition at NIF
can be attributed to the Rayleigh-Taylor instability (RTI).

RTI can produce the Kelvin-Helmholtz instability (KHI) and
has the Richtmyer-Meshkov instability (RMI) as a limiting case.

Applications range from Inertial Confinement Fusion (ICF, mm)
to the formation of supernova remnants (light-years).

Molecular methods like DSMC are becoming

increasingly popular for investigating the effects of viscosity
and diffusivity in ICF applications, which are known as
“kinetic” or “ion-kinetic” effects. (Larroche et al. 2016)




Rayleigh-Taylor Instability (RTI) ) .

« RTl is an instability of an interface between two fluids heavy flid v
of different densities which occurs when the by )
lighter fluid is pushing the heavier fluid. ” , “ & ” |g
light fluid P “
« Baroclinic torque at the interface creates vorticity and K’:p ,,

induces a velocity field that increases the amplitude,
which in turn increases the baroclinic torque.

* RTI has four main stages:
* Linear (linear growth of initial perturbations)
* Nonlinear (mushroom-like structures appear)
« Structures interact and compete (as in RMI, KHI)

e Turbulent mixing
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(Wei & Livescu 2012)




Most Unstable Wavelength ) .

= The initial growth rates of small-amplitude
perturbations are influenced by the fluid
properties.

= Viscosity and diffusivity inhibit small-
wavelength perturbations from growing,
allowing a particular wavelength, the
most unstable wavelength, to emerge,
outpacing the growth of all other
wavelengths:

A =4m(v* [ Ag)"”




RTI Is Related to RMI

Initial Configuration Refraction Regime Early Time Late Time
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Grove et al., Phys. Rev. Lett., 71 (21), 3473 (1993).

Shock propagation

* Incident shock travels down in upper gas

* Transmitted shock travels down in lower gas
* Reflected shock travels upward in upper gas

Interface motion
» Interface is accelerated to constant velocity
* Travels in same direction as shock
» Vorticity generated baroclinically at interface
* Density & pressure gradients misaligned

Perturbation growth
* Initially, amplitude growth is linear with time
* Later, amplitude growth becomes nonlinear
*  When amplitude is similar to wavelength
+ Bubbles, spikes, roll-up, more instabilities

Gallis et al. Physics of Fluids (2015)
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Why DSMC for Rayleigh-Taylor Instability?

= DSMC provides a molecular-level description of the

hydrodynamic processes that may be physically more realistic for

large accelerations and chemically reacting flows and the
representation of naturally occurring thermal fluctuations

= DSMC inherently accounts for transport properties

= The DSMC method offers the potential to identify the impact of

molecular level effects (e.g., rotational and vibrational energy
exchange, gas-phase chemical reactions, and gas-surface
interactions) on hydrodynamic instabilities.

= Typical 2D DSMC simulation characteristics:
e Physical Domain: 1 mm x 4 mm (ICF-pellet-size domain)
o # Cells: 4 billion
o # Particles: 400 billion
o # Cores: /4-"2 million
*Run time: 30 hrs (= 900, 1800 CPU years)
* Time steps: 200,000 x 0.1 ns = 20 us

h

Sandia
National _
Laboratories




DSMC Simulations of the Rayleigh-Taylor ) e
Instability in Gases

Laboratories

*The interface between argon (red) and
helium (green) gases is slightly perturbed:

A=0.001m, a=10um, A=0.81
=|nitial state hydrostatic equilibrium
=Acceleration of the system excites the RTI

e Initially, thermal fluctuations and diffusion
perturb the interface

e The initial perturbation amplitude grows
exponentially

* A second growth stage occurs at the
most unstable wavelength, which forms
“‘bubbles” and “spikes”

e Additional instabilities break up the larger _
structures, resulting in turbulent mixing of ~ Helium
the gases

Argon




Development of 1-mm Wavelength L=
Perturbation for Gravity 10 m/s?
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« Initial perturbations of a small wavelength develop and grow exponentially.
« Smaller structures, corresponding to the most unstable wavelength, appear.
* Their number is independent of the molecular simulation ratio and the
random number seed.
« Larger structures emerge as the smaller disturbances interact and combine.
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Density Profiles for 1-mm Wavelength rh) foes,
Perturbation for Gravity 10° m/s?
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Images progress at 10,000 time step increments

Initially, diffusion thickens the interface. Subsequently, bubbles and spikes appear.
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RTI for Ar/He with Different Wavelengths
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For each simulation, the domain width is one wavelength,

and the amelitude is 1% of the wavelength. 11



DSMC Simulations of the RTI for Kr/Ne ) .
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DSMC Simulations of the RTI for Ar/Ne ) .

Ar
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RTI from an Initially Molecularly Flat Interface i) tetns

*The interface between argon (red) and
helium (green) gases is initially flat Argon

=Acceleration of the system excites the RTI

e |nitially, thermal fluctuations and diffusion
perturb the interface

e The amplitude of thermal fluctuations
grows exponentially

*Gases penetrate each other differently,
forming “bubbles” and “spikes”

Finally, additional instabilities break up
the larger structures resulting in turbulent
and chaotic mixing of the gases

Helium
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RTI from an Initially Flat Interface
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Images progress at 10,000 time step increments

The numbers of bubbles and spikes correspond to the most unstable wavelength.
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Density Profiles for an Initially Flat Interface

Images progress at 10,000 time step increments
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Late-Time Behavior: Self-Similarity ) 52

At late times, under certain idealized conditions, the flow can forget its initial
conditions and enter a self-similar growth phase (Fermi and von Neumann
1953) described by the following equation:
_ 2
a, = ocb,sAgt
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Self-similar behavior is observed for long times.
Waviness is due to competition between bubbles and spikes.
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RTIl in 3D: Density Profile

Typical 3D DSMC simulation characteristics:

Physical Domain: 1 mm x 1 mm x 4 mm

# Cells: 62.5 billion
# Particles: 1.2 trillion
# Cores: 2 million

Run time: 90 hrs (5400 CPU years)
Time steps: 200,000 x 0.1 ns = 20 us
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RTIl from a Flat Interface in 3D L[

Images progress at multiples of 10,000 time step increments
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3D Late-Time Behavior: Self-Similarity ) .

Condition for Self-Similarity: a, = o, Agt”
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Self-similar behavior is observed at late times.

Waviness is due to competition between bubbles and spikes 20




Conclusions

The Direct Simulation Monte Carlo (DSMC)
method can simulate the Rayleigh-Taylor and
Richtmyer-Meshkov instabilities.

= Structures are like those in other approaches
=  Amplitude growth rates are also similar

= The growth rate in the self-similar regime is
within experimental observations

SPARTA is open source: http://sparta.sandia.gov
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