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Abstract. We report a self-consistent electric field coupling between the10

mid-latitude ionospheric electrodynamics and inner magnetosphere dynam-11

ics represented in a kinetic ring current model. This implementation in the12

model features another self-consistency in addition to its already existing self-13

consistent magnetic field coupling with plasma. The model is therefore named14

as Ring current-Atmosphere interaction Model with Self-Consistent magnetic15

(B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore,16

by comparing with previously employed empirical Weimer potential, the im-17

pact of using self-consistent electric fields on the modeling of storm-time global18

electric potential distribution, plasma sheet particle injection, and the sub-19

auroral polarization streams (SAPS) which heavily rely on the coupled in-20

terplay between the inner magnetosphere and mid-latitude ionosphere. We21

find the following phenomena in the self-consistent model: (1) the spatially22

localized enhancement of electric field is produced within 2.5<L<4 during23

geomagnetic active time in the dusk-premidnight sector, with a similar dy-24

namic penetration as found in statistical observations. (2) The electric po-25

tential contours show more substantial skewing towards the post-midnight26

than the Weimer potential, suggesting the resistance on the particles from27

directly injecting towards the low-L region. (3) The proton flux indeed in-28

dicates that the plasmasheet inner boundary at the dusk-premidnight sec-29

tor is located further away from the Earth than in the Weimer potential, and30

a “tongue’ of low energy protons extends eastward towards the dawn, lead-31

ing to the Harang reversal. (4) SAPS are reproduced in the subauroral re-32
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gion and their magnitude and latitudinal width are in reasonable agreement33

with data.34

135
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1. Introduction

The electric field has been long considered as a crucial element in understanding the36

inner magnetosphere-ionosphere coupled system, owing to its important role in governing37

a rich variety of dynamics in the system. In the ionosphere, the electric potential pattern38

typically shows two convection cells, which correspond to dawn-to-dusk convection elec-39

tric field over the polar cap and poleward electric field at lower latitudes. This pattern40

can become complex during geomagnetic disturbed conditions, including the formation41

of a “potential tongue” extending from premidnight to early morning sector, and an en-42

hancement of a penetration electric field below the Region 2 current system when the43

current is unable to fully shield the potential from lower latitudes. It is these additions44

that complicate the entire coupling processes. For instance, the “tongue” usually is asso-45

ciated with a flow reversal, namely the Harang reversal [Harang , 1946], where field-aligned46

currents (FACs) of opposite directions are overlap in the local time highly associated with47

substorm onset [e.g., Zou et al., 2009; Gkioulidou et al., 2009]. The penetration electric48

field can lead to phenomena such as ionospheric scintillation [Kelley and Heelis , 1989]49

and plasmaspheric bite-outs [Horwitz , 1987]. Its enhancement near the dusk terminator50

also gives rise to increased ion drift in the ionosphere, termed subauroral polarization51

streams (SAPS) [Foster and Burke, 2002], which are closely affiliated with ring currents,52

FACs, electric/magnetic fields, and hot plasma dynamics in the inner magnetosphere [e.g.,53

Ebihara et al., 2009; Wang et al., 2014; Yu et al., 2015].54

Besides the influence on the ionospheric electrodynamics, the electric field is also a55

primary determinant for inner magnetospheric dynamics. When the inner magnetosphere56
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can be assumed to be free of parallel potential drop, it is reasonable to approximate the57

potential representing the electric field in the magnetosphere as the same as the ionospheric58

potential. The convection electric field is one major element in regulating the transport59

of charged particles from the tail plasmasheet towards the Earth inner region [Cao et al.,60

2011; Zhang et al., 2015], providing a source population to the ring current and radiation61

belts. With the combined effect of magnetic gradient and curvature, charged particles62

drift separately eastward and westward around the Earth, with the hot ring current ions63

(westward drifting) carrying most of the energy content of the inner magnetosphere [Daglis64

et al., 1999; Daglis and Kozyra, 2002; Jordanova et al., 2012]. The same electric field also65

participates in the erosion of cold dense plasmaspheric particles and the formation of a66

drainage plume during geomagnetic active time [e.g., Chappell et al., 1970; Liu et al.,67

2015].68

As described above, the electric potential along magnetic field lines acts as a bridge69

coupling the magnetosphere-ionosphere system. Therefore it is important to understand70

not only the morphology of the electric fields but also its effects on various physical71

processes in the inner magnetosphere and mid-latitude ionosphere. While observations of72

the global electric field pattern are still limited due to the limitation in the coverage of73

satellites in the near-Earth space, an alternative effective approach is through numerical74

tools. In a height-integrated ionospheric electrodynamics model, the electric field pattern75

is usually derived from a Poisson equation at the ionospheric altitude (e.g., ∼100 km)76

given two major quantities J|| and Σ:77

∇ · (Σ · ∇Φ) = −J|| sin I (1)

D R A F T April 5, 2017, 4:04am D R A F T



X - 6 SELF-CONSISTENT ELECTRIC FIELD:

where J|| is the FACs into and out of the ionosphere, Σ is the tensor of height-integrated78

ionospheric conductance, including both Hall and Pedersen conductances, and I is the79

inclination angle of the magnetic field in the ionosphere. This equation demonstrates80

that FACs and conductance play key roles in controlling the ionospheric electric poten-81

tial/field. Although these two factors are specified at the ionosphere altitude, they are82

mostly determined by the magnetospheric dynamics, particularly for the Region 2 FACs83

[Cao et al., 2008, 2010] and the mid-latitude auroral conductance. The Region 2 FACs84

in and out of the ionosphere are diverted from the partial ring current formed during85

storm main phase [Vasyliunas , 1970]. The auroral conductance is mainly caused by keV86

electron precipitation that is scattered into the loss cone via wave particle interactions in87

the magnetosphere [Horne et al., 2003; Ni et al., 2008], namely diffuse precipitation, or88

accelerated down to the upper atmosphere [Newell et al., 2009], namely discrete precipita-89

tion. Therefore, the ring current evolution and plasma wave excitation are two principal90

regulators of the Region-2 FACs and auroral conductance. Consequently, the electric field91

can be generated self-consistently knowing the ring current particle distributions, which92

in turn feed back to the magnetospheric plasma drift, resulting in particle distributions93

that are used to determine the properties of plasma waves.94

These relationships reveal a nonlinear feedback loop in the system and also complicate95

the understanding of underlying physical processes. It is a challenge for first-principle96

modeling studies to comprehensively and self-consistently include all the coupling pro-97

cesses and missing physics or inconsistent cause-effect physics in the model may introduce98

substantial bias. In the past decades, efforts have been extensively made to improve99

modeling skills, not only for a better understanding of the fundamental physics, but also100
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for a more accurate, promising predictive capability of the geospace system. One pivotal101

task in previous modeling efforts is to specify a realistic auroral conductance pattern be-102

cause of its critical role in determining the electric field. One such specification relates103

the auroral conductance with FACs [e.g., Ridley and Liemohn, 2002; Ridley et al., 2004;104

Liemohn et al., 2004, 2005; Ebihara et al., 2004; Ilie et al., 2012; Yu et al., 2015]. The105

relation was statistically derived from thousands of maps of the ionospheric Hall and106

Pedersen conductance and FACs generated by the assimilative mapping of ionospheric107

electrodynamics (AMIE) technique [Richmond and Kamide, 1988], described in Ridley108

et al. [2004]. It simplifies the way of prescribing the conductance and bypasses the pitfalls109

in embracing some direct physical processes such as diffuse auroral precipitation. While110

discrete auroral precipitation may be carried by FACs, diffuse precipitation caused by the111

wave scattering process in the magnetosphere cannot be represented by FACs. Studies112

also found that diffuse auroral precipitation contributes more than discrete precipitation113

to the energy flux deposited into the ionosphere. Another inclusive specification of auro-114

ral conductance in the inner magnetosphere models uses an empirical conductance model115

[e.g., Hardy et al., 1987; Galand and Richmond , 2001; Robinson et al., 1987] that calcu-116

lates conductance based on precipitation flux and energy (independent on FACs) [e.g.,117

Fok et al., 2001; Toffoletto et al., 2003; Khazanov et al., 2003; Chen et al., 2015a, b; Yu118

et al., 2016]. In most of these studies, the precipitation flux is estimated from the loss119

cone particle flux, which is scattered from wave particle interactions in the inner magneto-120

sphere. The scattering process is crudely represented by simply applying loss rates to the121

particles. Such rates are called lifetimes. Determining the lifetimes of charged particles at122

various energies is also one popular research topic in the inner magnetosphere community123
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[e.g., Albert and Shprits , 2009; Artemyev et al., 2013; Li et al., 2013] as it is essential for124

understanding the dynamics of energetic particles in both ring current and radiation belt.125

Recently, Yu et al. [2016] applied pitch angle diffusion coefficients, rather than lifetimes,126

to account for the wave-particle scattering processes and showed significant improvement127

over using a lifetime method in reproducing the measured spatial and temporal evolution128

of ionospheric electron precipitation. This new capability leads to a more realistic auroral129

precipitation pattern, and is deemed to be more suitable for a physical representation of130

auroral conductance and for studying subauroral physics.131

It should be noted that Yu et al. [2016] implemented such a precipitation module within132

a fully coupled MHD-kinetic framework, not in a stand-alone kinetic ring current model.133

Within that framework, the ionospheric electric potential is computed from the Poisson134

equation with FACs calculated in the MHD model and auroral conductance determined135

by the electron precipitation from the ring current model. It is known that the MHD136

code coupled with a kinetic ring current model produces stronger distortion of the global137

magnetic field owing to the inclusion of kinetic physics in the inner magnetosphere, and the138

Region-2 FACs at mid-latitude, deviation from the ring current, is significantly improved139

over pure-MHD results [De Zeeuw et al., 2004]. But the Region-2 FACs are still weaker140

and more diffuse than observations [Zaharia et al., 2006; Yu et al., 2016], mainly because141

the ring current pressure in the MHD model is only nudged towards but does not exactly142

match the pressure in the kinetic ring current model. One consequence of a weaker Region-143

2 FAC is that the lower-latitude electric field may be undershielded [Yu et al., 2016] and144

the inner boundary of plasmasheet resides closer to the Earth. Also the MHD grid stops145

at ∼2.5 Re, so low-latitude currents are not well captured in the MHD code. Therefore, in146
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order to achieve a more realistic, fully self-consistent closure of the ring current-ionosphere147

coupled system, the Region-2 FACs should be simultaneously determined from the ring148

current dynamics rather than from MHD fields.149

In this study, we utilize the newly developed physics-based and more realistic electron150

precipitation module in Yu et al. [2016] and the Region-2 FACs calculated from a stand-151

alone ring current model RAM-SCB (i.e., Ring current Atmosphere interaction Model152

with Self-Consistent magnetic field (B)) [Jordanova et al., 2006, 2010; Zaharia et al.,153

2006, 2010] to self-consistently yield the electric field. We further investigate the global154

electric potential pattern, plasmasheet particle injection, and more importantly the SAPS,155

a physical process that is closely associated with electron precipitation and Region-2 FACs156

[Foster and Burke, 2002]. The ring current model RAM-SCB possesses a self-consistent157

magnetic field, and computes differential particle distributions within a prescribed electric158

field that is usually updated from empirical electric field/potential models [e.g., Volland ,159

1973; Stern, 1975; Weimer , 2001; Weimer , 2005]. The problem with these empirical160

electric field models is that they are not self-consistent with the first-principle calculated161

hot plasma dynamics. Therefore, in this study, the ring current model will be updated to162

calculated the electric field self-consistently, resulting in a even more self-consistent and163

comprehensive treatment of the plasma and fields.164

2. Methodology

In this section, the kinetic ring current model RAM-SCB-E is presented in detail and165

the magnetic storm event under investigation is also described.166
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2.1. Model description

In order to best represent the physics in the inner magnetosphere-ionosphere system,167

the kinetic ring current model is solved with electric/magnetic fields self-consistently de-168

termined based on the solution of the ring current phase space distribution. Figure 1 illus-169

trates how the coupling physics is fulfilled numerically. First, the Ring current-Atmosphere170

interaction model (RAM) [Jordanova et al., 2006, 2010] solves the Fokker-Planck equations171

for both ring current ions and electrons to yield their distribution functions Ql(R, ϕ,E, α):172

∂Ql

∂t
+

1

R2
o

∂

∂Ro

(R2
o <

dRo

dt
> Ql) +

∂

∂ϕ
(<

dϕ

dt
> Ql)

+
1

γp

∂

∂E
(γp <

dE

dt
> Ql) +

1

hµo

∂

∂µo

(hµo <
dµo

dt
> Ql)

=< (
∂Ql

∂t
)loss > (2)

where Ql is a function of radial distance R from 2 to 6.5 Re with spatial resolution of173

0.25 Re, geomagnetic east longitude ϕ with resolution of 15◦, energy E between 0.15 to174

400 keV, and pitch angle α from 0 to 90◦. The subscription l represents the species,175

the bracket <> represents bounce averaging, the subscript index o denotes the magnetic176

equatorial plane, p is the relativistic momentum of the particle, γ is the Lorentz factor,177

and h is defined by:178

h(µo) =
1

2R0

∫ s
′
m

sm

ds√
(1−B(s)/Bm)

(3)
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which is proportional to the bounce period. Here, Bm is the magnetic field at the mirror179

point, ds is a distance interval along the field line, and R0 is the magnetic equatorial180

distance of the field line.181

The loss terms on the right hand side of Equation (2) represent several physical pro-182

cesses, including charge exchange with geocoronal hydrogen for ring current ions, atmo-183

spheric collisional loss for both electrons and ions, and wave induced scattering loss for184

electrons. Such scattering loss of keV electrons is induced by whistler mode chorus and185

hiss waves outside and inside the plasmapause respectively, resulting in electron precipi-186

tation. This process is numerically described by a diffusion equation of the distribution187

function, using pitch angle diffusion coefficients obtained from statistical satellite obser-188

vations [Glauert and Horne, 2005; Horne et al., 2013; Glauert et al., 2014; Albert , 2005].189

These coefficients take into account the effect of both whistler mode chorus and hiss waves190

on scattering electrons from tens of eV to hundreds of keV into the loss cone. The differen-191

tial electron flux within loss cones is subsequently integrated to produce the precipitation192

energy flux FE (details can be found in Yu et al. [2016] regarding the wave-induced loss193

and the conversion of particle distributions at the equator to the total precipitation flux194

in the ionosphere) .195

RAM is coupled to a 3D magnetic field equilibrium code that computes the magnetic196

field [Zaharia et al., 2004] from the anisotropic plasma pressure provided by RAM. The197

resulting magnetic field in turn is used in determining the transport of charged particles198

and changes in their distributions [Jordanova et al., 2006; Zaharia et al., 2006]. This199

coupling is updated every 5 minutes.200
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In addition to this existing magnetic field self-consistency in the model, the electric201

field is also self-consistently determined at the ionospheric altitude ∼ 100km based on the202

Poisson Equation (1). As the equatorial computational domain of RAM is confined within203

2.0-6.5 Re, the outermost closed magnetic field lines often find their footprints at magnetic204

latitudes between 70◦ and 60◦, highly depending on the magnetospheric configuration. So205

while solving the electric potential in the ionosphere, the high-latitude boundary is time-206

varying. But the low-latitude boundary is fixed at 30◦. The high-latitude boundary207

condition is enforced by the potential calculated from the Weimer 2K model [Weimer ,208

2001], driven by solar wind/interplanetary magnetic field (IMF) conditions and AL index,209

and the low-latitude boundary condition of potential is zero.210

To solve the potential with Equation 1 that takes inputs of FACs and conductance,211

FACs are firstly obtained from the Vasyliunas equation [Vasyliunas , 1970] that relates212

the field-aligned current density J|| to the magnetic equatorial hot plasma conditions,213

specifically the gradient in the plasma pressure and magnetic field [Zaharia et al., 2010]:214

B · ∇(
J||

B
) =

2B · (∇ ·P× κ)

B2
. (4)

where κ = (b · ∇b) is the field line curvature. The above equation is derived from the215

charge neutrality ∇ · J = 0. To obtain FACs at the ionospheric altitude, we integrate the216

above equation along magnetic field lines from the magnetic equator to the ionosphere.217

Then, the conductance is determined from a combination of dayside conductance asso-218

ciated with solar radiation, and auroral conductance contributed by diffusive and discrete219

electron precipitation. The dayside solar EUV induced conductance is obtained by an220
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empirical function based on the solar zenith angle and the F10.7 index [Moen and Brekke,221

1993]. The auroral conductance is calculated according to the empirical Robinson relation222

[Robinson et al., 1987] using precipitation energy flux FE obtained from RAM as men-223

tioned above for the diffusive aurora and using the FACs for the discrete aurora (Details224

can be found in Yu et al. [2016]).225

Hence, with the electric potential solved from FACs and conductance both determined226

by the hot plasma physics, this well coupled scheme (Figure 1) is termed RAM-SCB-E,227

that is, Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B)228

and electric (E) fields.229

2.2. Event description and model setup

We simulate a magnetic storm event that occurred on August 31, 2005 with RAM-230

SCB-E. Figure 2 shows that during this event, the IMF turns southward around 12:00231

UT accompanied by a large solar wind density that is sustained above 20 cm−3 for a few232

hours. The magnetic field remains southward for nearly 10 hours, but the solar wind speed233

stays around 400 km/s. A minimum SYM-H index is recorded to be -120 nT at 19:00234

UT before it gradually recovers. The AL index frequently hits 1000 nT. Some of these235

solar wind and geomagnetic conditions are used to determine the time-varying Weimer236

electric potential at the high-latitude boundary in the model. The plasma sheet boundary237

condition at 6.5 Re is taken from LANL/SOPA and MPA satellites that measure electron238

and ion fluxes. The fluxes are then interpolated into all local times and energy grids within239

the model, and are further decoupled into proton, helium and oxygen ions according to240

Young et al. [1982]’s statistical results on the ratios of these ion species. Figure 3 shows241

such a boundary condition at MLT = 0 as an example. The low-energy proton flux is242
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consistently high during the entire event, but the high-energy flux (above 30 keV) shows243

drastic injections after 12:00 UT. On the other hand, injection occurs at 10:00 UT for244

low-energy electrons, and similarly high-energy electrons experience continual injections245

in the storm main phase. These plasmasheet injections provide important sources to the246

ring current, as will be demonstrated in the simulation result. The magnetic field at the247

outer most shell of the 3D magnetic field code is specified by the Tsyganenko magnetic248

field model [Tsyganenko, 1989] parameterized by the Kp index.249

3. Results

Two simulations are conducted for the storm event: one uses a self-consistent electric250

field as described above, and the other one uses a prescribed electric potential model (i.e.,251

[Weimer , 2001]) in governing the ring current particle transport. The latter, based on252

statistical observations, cannot represent the feedback effects of the changes in the hot253

populations on the ionospheric electrodynamics in this particular simulation. That is,254

the part inside the dashed rectangle in Figure 1 is not represented in the simulation. By255

comparing these two types of simulation, we intend to address the following questions:256

How different is the self-consistent electric field from empirically obtained representation?257

What are the influences on inner magnetosphere drift physics? What are the influences258

on ionospheric electrodynamics?259

3.1. Effect on the inner magnetospheric dynamics

Figure 4 illustrates electric potential contours and dawn-to-dusk convection electric260

fields (Ey) mapped from the ionospheric altitude where the potential is solved with Equa-261

tion (1) during the storm main phase for both simulations. Two main features are distinc-262
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tive: (1) The potential contour lines from the self-consistent solver show stronger skewing263

in the dusk-to-post-midnight sector than the Weimer potential contours; (2) The Weimer264

model shows a much stronger dawn-to-dusk electric field (Ey) in the dusk sector than in265

the self-consistent case. While the potential contour skewing may suggest an effect from266

the transport of energetic particles, the localized electric field enhancement indicates the267

degree of penetration of the convection.268

It is also known that the potential contour skewing is associated with inner magne-269

tosphere shielding that prevents the convection electric field in the outer magnetosphere270

from penetrating into the inner region. The above difference in the potential patterns sug-271

gests that the Weimer potential is less shielded than the self-consistent potential, because272

the latter experiences a weaker penetration field. To demonstrate the penetration and273

shielding effects during the entire storm event, Figure 5 shows the dawn-to-dusk compo-274

nent of convection electric field (Ey) at MLT=20, as a function of radial distance and UT275

time. Localized enhancements of penetration electric field are evident in both cases but276

with remarkable differences. The self-consistent solver displays gradual migration of the277

peak of the penetration electric field, with the electric field well shielded in the pre-storm278

time at 12:00 UT, and then penetrating from L = 4.5 to 3.0 during storm main phase279

until retreating back to L = 4 in the early recovery phase. Such a process precisely implies280

the competition between the establishment of Region-2 FACs, ionospheric currents, and281

changes in the convection strength. While changes in the convection that respond with a282

longer time scale than the currents may be effectively shielded, sudden transitions like the283

IMF southward turning can lead to a rapid increase in the polar cap potential, causing284

large penetration of the convection electric field. But meanwhile the formation and en-285
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hancement of ring current, FACs, and ionospheric currents create a shielding electric field286

in the ionosphere (Region-2 FACs are connected with dusk-to-dawn Pedersen current in287

the nightside sector), opposing the penetration and resulting in a “residual” dawn-to-dusk288

convection electric field in the undershielded situation.289

In contrast, with a Weimer potential model, since the FACs and ionospheric currents290

do not respond self-consistently to oppose the dawn-to-dusk convection electric field, the291

penetration electric field is much greater and extends to lower L shells, even during pre-292

storm time. The peak of the penetration electric field is located around L=2.5 or even293

closer, regardless of the storm phase. The gradual inward motion of the penetration along294

with the development of the ring current is not present, indicating a non self-consistent295

response between the ring current, FACs, ionospheric current, and the prescribed electric296

field.297

The radially localized enhancement of the penetration electric field has been statistically298

studied using satellite observations [e.g., Rowland and Wygant , 1998; Nishimura et al.,299

2006, 2007; Matsui et al., 2004, 2013] for different geomagnetic activity levels. The obser-300

vational studies show that the dawn-to-dusk electric field in the dusk sector of the inner301

magnetosphere usually increases with radial distance under quiet and less disturbed condi-302

tions, but a localized peak of the electric field appears around L = 3-4 for disturbed time,303

and moves outward during storm recovery phase. In agreement with the observational304

results, our simulation with a self-consistent electric field produces a similar dynamic elec-305

tric field penetration that varies with the evolution of the ring current. This approach306

therefore shows a more reasonable and consistent picture of the radial distribution of the307

dawn-to-dusk electric field.308
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To examine the effect of the potential pattern on particle transport, we next study309

the particle injections from the outer boundary. When particles travel through the in-310

ner magnetosphere, they experience various electric and magnetic drifts induced by the311

perpendicular electric field and the gradient and curvature of the magnetic field. The312

electric potential contours represent the drift trajectory of zero-energy particles, while313

higher-energy particles are more subject to magnetic gradient and curvature drift. From314

the electric potential pattern across midnight in Figure 4, we expect to see a diverted315

flow of low-energy protons in the simulation with a self-consistent electric field and direct316

injection in the simulation with the Weimer model. Indeed, Figure 6 illustrates that under317

the influence of a self-consistent electric field (Figure 6 (a) top panel), protons at E = 9.3318

keV in the dusk-premidnight sector are convected inward from the outer boundary and319

their flux significantly drops near L = 2.5. In contrast, these low-energy protons maintain320

high-level flux down to L = 2 and eventually get lost from the inner boundary when the321

Weimer electric field is utilized (Figure 6 (b) top panel). At higher energies, the proton322

injections from the outer boundary down to the inner region behave similarly in both323

cases, so do the electrons in the early morning sector (Figure 6 (c, d)). This similarity324

in the electron dynamics is probably attributed to the similar electric potential contours325

and magnetic field configuration in the dawn sector.326

Although high-energy protons above 30 keV are the dominant contributor to the ring327

current energy and carry most of the energy content of the inner magnetosphere, low-328

energy ions are of particular importance to the pre-midnight electrodynamics, especially329

in the Harang reversal commonly detected in the ionosphere. Gkioulidou et al. [2009]330

conducted detailed analysis of the Rice Convection Model (RCM) simulation and found331
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that a pair of FACs with opposite polarity overlaps near the same midnight local time332

across different latitudes is necessary for the formation of the Harang reversal. Such a333

pair of FACs (downward and upward) is found to be associated with low energy ions334

penetrating closer to the Earth towards the dawn side and high energy ions that are335

further away from the Earth. In this study, the simulation with a self-consistent electric336

field presents a “tongue” of 9.3 keV protons extending across midnight towards dawn in337

the low L-shell region, as shown in Figure 7, but limited extension is developed in the338

Weimer case. On the other hand, the Weimer model does not allow high-energy protons to339

extend towards the dawn or penetrate as deeply. Such an extension of low energy protons340

in wider MLT coverage, as concluded in Gkioulidou et al. [2009], is highly related to the341

downward FACs into the ionosphere, which can control the ionospheric electrodynamics342

to be discussed in the next section. In contrast, the Weimer electric potential does not343

interact with the real-time FACs originating from the inner magnetosphere.344

3.2. Effect on the ionospheric electrodynamics

Figure 8 (a) displays the FACs at the ionospheric altitudes calculated from the ring345

current. As expected, downward FACs in the dusk side extend across local midnight to-346

wards the dawn side, equatorward of the upward FACs. An MLT-overlap region is formed347

near midnight, allowing for the formation of the Harang reversal [Gkioulidou et al., 2009].348

Figure 8 (b) presents the conductance contributed from a combination of solar irradiance349

and auroral precipitation originating from the wave-induced pitch angle scattering of ring350

current electrons. An enhanced auroral conductance is evident around 60◦ in the pre-351

midnight to the dawn sector as the chorus waves responsible for the electron scattering352

are mostly active in that region. From FACs and conductance, the self-consistent electric353
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potential is generated (Figure 8 (c)). A “tongue” of the negative potential cell (potential354

well) in the dusk side stretches into early morning at low latitudes, representing the Ha-355

rang reversal. The westward return flows in the reversal at lower latitudes are located on356

top of the collapsed potential contour lines (i.e., a large electric field) where conductance357

is low, resulting in enhanced flow speed, or SAPS, shown in Figure 8 (d). The speed358

exceeds 1000 m/s around latitude of 55◦ in the dusk-to-premidnight sector, a typical loca-359

tion reported from observations. By contrast, the Weimer potential pattern (Figure 8 (e,360

f) has neither extension of the negative cell nor tightly collapsed contour lines, meaning361

that SAPS are not prominent.362

To verify that the flow in the self-consistent simulation is indeed SAPS, the subauroral363

region is first identified. It is defined as that region located below the equatorward edge364

of auroral precipitation. Figure 9 (d) shows the auroral precipitation energy flux at MLT365

= 21 as a function of latitude. A rapid drop of the precipitation energy flux marks the366

equatorward edge of the auroral boundary, denoted by the vertical dashed line. In the367

subauroral region, the precipitation flux is about three orders of magnitude lower, and the368

conductance falls to 0.5 mhos. The downward Region-2 FACs flow into this subauroral369

region, and a strong poleward electric field is produced in order to drive the horizontal370

Pedersen current that connects to the upward Region-1 FACs at higher latitudes. This371

leads to an enhancement of westward flows in the subauroral region, namely SAPS at ∼54◦372

latitude. As a flow speed above 500 m/s in the subauroral region is commonly referred as373

SAPS, it is found that SAPS occur in the region equatorward of the enhanced Pedersen374

conductance and concurrent with both Region-1 and -2 FACs. The SAPS peak is located375

between the peaks of Region-1 and Region-2 FACs with the Region-2 FAC well below the376
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equatorward edge of the auroral boundary. These relative positions are in agreement with377

statistical observational results reported in Wang et al. [2014], and reveal relationships378

consistent with the current-generator mechanism proposed in Anderson et al. [1991, 2001].379

Figure 10 shows simulation results extracted along two consecutive DMSP trajectories380

in the subauroral region in the dusk-premidnight sector when the satellite flew across381

the polar cap region approximately from 21:00 MLT towards 09:00 MLT in the northern382

hemisphere. Due to the cutoff at the high-latitude boundary, the model only shows results383

at mid-latitudes which, however, sufficiently describe the subauroral dynamics. Along the384

first orbit, the spacecraft first measures a negative sunward flow, peaking around the385

latitude of 52◦, and decreases with increasing latitude. It then detects an increase of flow386

speed again above 60◦, which is the auroral zone flow at higher latitude. Such a trend is387

well captured by the simulation (blue line), which shows a comparable magnitude for the388

SAPS. The observed peak of SAPS however appears at lower latitudes by 2-3◦ and flow389

channel is narrower. In the second orbit, the model reproduces a comparable width of the390

flow channel, which again misses the observed peak flow by 2-3◦ towards higher latitudes.391

In the bottom panels, the Pedersen conductance is compared. The Pedersen conduc-392

tance based on observations is computed from both electron and ion precipitation mea-393

sured by the DMSP spacecraft. The electron associated conductance is computed from394

the Robinson relation [Robinson et al., 1987] (black dashed line), while the ion associ-395

ated (mainly protons) conductance is from the Galand & Richmond relation [Galand and396

Richmond , 2001]. Both relations take into account the precipitation energy flux and av-397

eraged energy. It can be clearly seen during the first orbit that the proton precipitation398

significantly contributes to the auroral conductance below the equatorward edge of the399
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electron precipitation boundary, although the second orbit shows a much smaller contri-400

bution near that region. Such a difference is attributed to the time-varying separation401

between the inner boundaries of the ion and electron plasmasheets. During the second402

orbit, the separation is not very clear, probably owing to a weaker electric potential at403

that time. Nevertheless, between these two inner boundaries, the ion precipitation can404

not be neglected given that it significantly enhances the auroral conductance near the405

equatorward edge of the auroral boundary. In the simulation, the conductance rapidly406

increases near the equatorward boundary of the observed electron auroral zone, but the407

magnitude is highly underestimated. This may be caused by an inadequate precipitation408

flux into to the ionosphere. It is possible that the statistical averaged pitch angle diffusion409

coefficients used to account for electron loss are not strong enough or representative in this410

intense storm event, or that whistler mode waves are not the only driver of diffuse electron411

precipitation, or that the electron energy distributions can be altered during the precipi-412

tation process from the magnetosphere to the ionosphere so the integrated precipitation413

energy flux at the ionospheric altitude is larger than that in the magnetospheric source414

region. It should also be noted that the ion precipitation is not yet incorporated into the415

model, which might be an additional cause of the underestimation. Our future study will416

add ion precipitation caused by magnetic field line curvature scattering and EMIC waves417

and further examine their relative importance in the ionospheric electrodynamics.418

4. Discussion

In the above comparisons, we noticed that although the magnitude and width of the419

SAPS channel produced by RAM-SCB-E are in reasonable agreement with the data, they420

appear at slightly higher latitudes than observed. This is probably associated with a421

D R A F T April 5, 2017, 4:04am D R A F T



X - 22 SELF-CONSISTENT ELECTRIC FIELD:

weaker representation of the ring current in the simulation. Figure 11 shows the simu-422

lated Dst index, calculated with the Dessler-Parker-Sckopke (DPS) relationship [Dessler423

and Parker , 1959; Sckopke, 1966] from the content of ring current energy. It is not as424

strong as the measured SYM-H index. A weaker ring current creates a more dipolar mag-425

netic field configuration in which the footprints of the magnetic field lines lie at higher426

latitudes than in reality. The underestimate of ring current may be associated with the427

boundary conditions of plasmasheet flux that were not realistically specified over all lo-428

cal times, because the flux at 24 local times are interpolated from three well-separated429

geosynchronous LANL satellites in this simulation. This may lead to underestimated430

plasmasheet sources convecting from the tail into the inner magnetosphere, creating a431

ring current with smaller strength. Indeed, during the storm main phase, these three432

satellites are located from post-midnight to the dayside, corotating eastward, missing the433

important source region in the dusk-midnight sector. This means that highly-possible434

localized injections in that region are not captured by these satellites nor included in the435

simulation, which is likely the reason of underestimation. We conducted an experiment436

that increases the boundary flux by a factor of 1.5, and found that the ring current, as437

expected, is enhanced and the Dst index is closer to the observation. However, the posi-438

tion of Region-2 FACs flowing into the ionosphere in the subauroral region is not greatly439

changed, probably because the nondipolar configuration in the inner region is not sig-440

nificantly altered. Thus, the boundary condition does not seem to be the direct or only441

cause of the mismatch of the SAPS peak. It should be noted that the tail current and442

other induced currents on ground may also contribute to the SYM-H index during storm443

main phase. If that compensates the simulated Dst index, the ring current is actually not444
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significantly underestimated. Therefore, other causes should be sought for the offsetting445

of the position of SAPS. Nevertheless, inadequate specification of the outer boundary446

potential may be an improvement that requires further attention.447

We then propose another possibility that causes the location of SAPS appearing at448

higher latitude. It maybe lie in the location of precipitation since the equatorward edge449

of the electron precipitation is closely related to the location of the SAPS peak. To cap-450

ture the right position of the SAPS, a better representation of the auroral precipitation is451

another critical element. We also notice from the data that the ion precipitation actually452

contributes significantly to the auroral conductance, particularly below the equatorward453

edge of the electron precipitation. This contributes to an additional enhancement of454

conductance equatorward of the electron aurora. Yet, in the simulation, not only the ion455

precipitation is missing, but the electron precipitation is also insufficiently included. These456

combined effects may contribute to the underestimation in the conductance and the devi-457

ation of the location of SAPS. We performed an experiment that shifts the equatorward458

edge of the aurora (i.e., maps the precipitation flux) towards lower latitudes by 2◦, and459

found the peak of SAPS appearing at lower latitudes, consistent with the observations.460

Such an experiment suggests the importance of a correct location of the equatorward461

edge of auroral precipitation, which might be complemented by the ion precipitation.462

The implementation of such ion precipitation will be our next research task.463

In revealing the SAPS features, we are aware that observations often reported that SAPS464

are well separated from the high-latitude auroral returning flow in the same westward465

direction, thus featured a “double-dip” profile in the velocity [Foster and Burke, 2002].466

The spatial separation is small but varies from one degree to a few degrees. In our467
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simulation, due to the limited coverage of the simulation domain, the high-latitude auroral468

region is not fully resolved by the model, and the high-latitude westward flow is not well469

produced in the storm main phase as shown in Figure 8. Nevertheless, during early storm470

main phase (e.g., around 13 - 14 UT) when the high-latitude boundary of the ionospheric471

solver is still around 65◦ in the dusk-to-premidnight sector due to less stretched magnetic472

field configuration, the auroral returning flow is captured above 60◦, forming two westward473

flows around MLT from 19 to 22, hence consistent with observations.474

Regarding the finite width of the SAPS channel, we expect a finer resolution of the475

model may sharpen the narrow-scale features. The current spatial resolution of 0.25 Re476

in the equatorial plane corresponds to a spatial separation of 1◦ around magnetic latitude477

of 60◦, and 2.5◦ separation around magnetic latitude of 50◦. Such a model resolution478

may smear out small-scale fluctuations in the electric field or velocity, leading to averaged479

results. A finer resolution thus is in demand in the future for a better performance of480

resolving small-scale features.481

5. Summary

This study investigated the effects of using a self-consistent treatment of electric field482

in the kinetic ring current model on the hot plasma dynamics and electrodynamics espe-483

cially in the mid-latitude ionosphere. The ring current model thus includes both electric484

and magnetic field self-consistency, and is named RAM-SCB-E. The new model uses485

a recently developed, physics-based electron precipitation module that accounts for the486

diffusive pitch angle scattering processes caused by whistler waves by using pitch-angle487

dependent diffusion coefficients. Such a module gives rise to a more realistic temporal488

and spatial distribution of electron precipitation [Yu et al., 2016] and provides a more489
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realistic auroral precipitation pattern needed in specifying the ionospheric conductance in490

the model. While Yu et al. [2016] used this module in a coupled framework in which the491

ring current model is coupled to an MHD code, this study only treats the ring current492

model in a stand-alone fashion. It is a big advancement from the previous stand-alone493

version of the ring current model using empirical electric fields that omit the feedback494

effect of the hot plasma physics on the large-scale convection electric field.495

Two simulations are performed using either a self-consistent electric field or the em-496

pirical Weimer potential. Significant differences are found, especially in the transport of497

low-energy protons and the electrodynamics that are closely associated with the coupling498

between the inner magnetosphere and the mid-latitude ionospheric region. It is these499

dynamics that play an important role in controlling the coupling processes and empha-500

size the necessity of modeling the system in a self-consistent manner to account for the501

complicated interactions within it.502

When comparing these two approaches, we found the following results:503

1. RAM-SCB-E produces local enhancements of penetration electric field in the dusk-504

premidnight sector, the peak of which gradually evolves to lower L shells as the ring505

current is being built up, whereas the empirical model produces a larger and more stable506

penetration electric field inside L=3 during the entire storm event. The former is thus in507

better agreement with statistical results reported in Rowland and Wygant [1998], which508

showed that the spatial distribution of the local electric field enhancement in the dusk509

sector depends on the geomagnetic activity level.510

2. The electric potential pattern in the magnetic equatorial plane shows more predom-511

inant skewing in the dusk-premidnight sector around L = 4 in the self-consistent case512
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than in the empirical model case, causing more shielding from the outer region. The low-513

energy protons are thus transported along different paths rather than directly along the514

Sun-Earth direction. They are diverted azimuthally eastward, and can not reach the deep515

inner magnetosphere in the dusk-midnight sector as they do under the Weimer potential.516

For high-energy protons and electrons, no significant difference is found.517

3. Since the low-energy protons are associated with FACs in the mid-latitude [Gkiouli-518

dou et al., 2009], they are closely related to the mid-latitude electrodynamics, which519

reflects the feedback effect within the coupled system. We found that the eastward ex-520

tending FACs in the mid-latitudes induce the Harang reversal that is missing in the521

Weimer model.522

4. Another outstanding feature in the subauroral region is that subauroral polarization523

streams (SAPS) are captured when using a self-consistent electric field, but are not distin-524

guished in the empirical model. RAM-SCB-E also verifies the popular current-generator525

mechanism for SAPS, which are proposed to be generated when FACs flow into the sub-526

auroral ionosphere where the conductance is relatively low with respect to the auroral527

zone.528

Besides the above results, we realize that even more self-consistent physics is further529

needed in order to understand the underlying processes more precisely. In this study,530

albeit with the physics-based precipitation flux down to the ionospheric altitude, the cal-531

culation of auroral conductance still relies on the empirical Robinson formalism under532

an assumption of Maxwellian distribution. Removing this empirical limitation is cur-533

rently in progress, typically by coupling the inner magnetosphere model with an upper534

atmosphere model, which, given the auroral precipitation flux, determines the vertical535

D R A F T April 5, 2017, 4:04am D R A F T



SELF-CONSISTENT ELECTRIC FIELD: X - 27

ionization profile and thus the ionospheric conductivity. This will establish a truly self-536

consistent mid-latitude ionospheric electrodynamics with the inner magnetosphere. Re-537

cently, one such effort was reported in Huba and Sazykin [2014]; Huba et al. [2017] that538

coupled the global ionosphere-plasmasphere model SAMI3 with the ring current model539

RCM and demonstrated the underlying processes within the ionosphere-plasmasphere-ring540

current system. These studies not only revealed the power of self-consistent modeling of541

fundamental physics, but also initiated the direction to more comprehensively accounting542

for the coupled system.543
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Figure 1. The coupling within the RAM-SCB-E model. The part within the dashed box is

used to implement the self-consistency of electric field using inputs of J|| and precipitation energy

flux FE from the kinetic ring current model.

Figure 2. Solar wind and interplanetary magentic field conditions and geomagnetic AL and

SYM-H index during the storm event occurred on August 31, 2005.

Figure 3. Particle flux obtained from LANL-GEO satellites (e.g., LANL-1989, LANL-1990,

LANL-1994, LANL-1997,LANL-2001 were available during the storm event in this study) is used

to specify the boundary condition for the model at L = 6.5. The electron and proton fluxes at

MLT=0 are selected for demonstration.

Figure 4. Magnetic equatorial potential pattern (top) and the Y component of the convection

electric field (bottom) in the self-consistent electric field method (left) and Weimer potential

model (right).The dashed circles in each plot indicates L shells at 2, 4, and 6 respectively.

Figure 5. Dawn-to-dusk convection electric field component at MLT = 20 in the self-consistent

electric field approach (left) and Weimer model (right). Top row shows electric field as a function

of L and UT, and bottom row shows electric field as function of L at four selected times, covering

from pre-storm, storm main phase, and recovery phase.

Figure 6. Ring current proton and electron flux as function of L shell and time selected at

MLT = 20 for protons and MLT = 4 for electrons. (a, c) use self-consistent electric field model.

(b, d) use Weimer electric potential model. During the storm main phase, low energy protons

are convected towards the Earth with the aid of convection electric field. The Weimer potential

model shows more profound effect on the low-energy plasma transport as they penetrate well

deep down to 2.0 Re, but they are nearly prohibited at 2.5 Re when a self-consistent electric field

model is used. For high-energy protons and electrons in various energy, their inward transport

is similar in both simulations.
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Figure 7. Ring current proton flux at 9.3 keV (top row) and 100 keV (bottom row) with pitch

angle near 90◦. In the case with self-consistent electric field, low-energy protons are convected

from dusk to dawn through midnight, affected by the potential contours that are skewed towards

early morning sector as shown in Figure 4. On the contrary, under the prescribed Weimer

potential, low-energy protons preferentially convect towards dayside mainly through the dusk

side. The high-energy proton fluxes are similar in both cases.

Figure 8. Global pattern of (a) ionospheric FACs, (b) Pedersen conductance, (c, e) electric

potential, and (d, f) eastward flow in the ionosphere altitude from simulations with either both

self-consistent (top two rows) or Weimer (bottom row) electric field.

Figure 9. Simulation results from using self-consistent electric field: latitudinal distribution of

FACs, Pedersen and Hall conductance, precipitated electron energy flux, poleward electric field,

and eastward drift velocity at the ionospheric altitude for MLT = 21. The vertical dashed line

denotes the equatorward boundary of auroral precipitation, where precipitation is significantly

lower in the subauroral region than in the auroral latitudes.

Figure 10. Comparisons of flow speed and Pedersen conductance between the self-consistent

simulation (blue) and DMSP measurements (black). All passes are in the northern hemisphere,

flying from the dusk side to dawn side. Negative cross-track flow represents a westward velocity to

the left of the trajectory direction. The Pedersen conductance based on observations is calculated

from the measured precipitation flux (here, the solid black line marks the conductance associated

with both electron and ion precipitation, and dashed black line denotes that only from electron

precipitation).
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Figure 11. Measured SYM-H index (black) and simulated Dst index using different electric

field models. “IESC” stands for self-consistent electric field, “VOLS” is for Volland-Stern electric

field, and “Weimer” uses Weimer potential model.
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