

LA-UR-17-25362

Approved for public release; distribution is unlimited.

Title: Revolutionize Situational Awareness in Emergencies

Author(s): Hehlen, Markus Peter

Intended for: Web

Issued: 2017-07-05

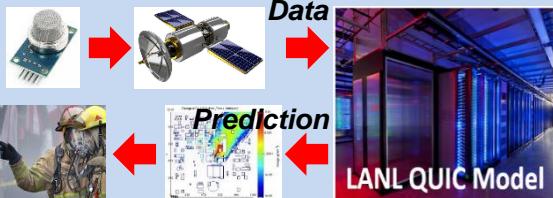
Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Revolutionize Situational Awareness in Emergencies

Integrated system provides real-time actionable information to first responders

BACKGROUND & MOTIVATION


Railroad chemical accidents can have catastrophic impacts on communities

- The amount of crude oil and chemicals shipped by rail, and with it the number of accidents, have increased dramatically
- 1 in 4 residents live/work in evacuation zones
- High situational awareness is critical to first responders in order to rapidly make the correct decisions in an emergency

INNOVATION

Integrate a contamination dispersion model (QUIC) with a robust sensor and data network to provide real-time actionable information to communities

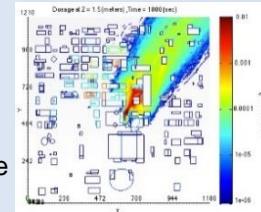
- A network of chemical and wind sensors sends data via satellite to remote server
- QUIC makes a prediction on the spread of contamination in real time
- This real-time actionable information is relayed back to the community to enable an optimum emergency response

DESCRIPTION

We will integrate three LANL technologies to form an advanced predictive real-time sensor network:

(1) Compact chemical & wind sensors in a low cost rugged package for outdoor installation:

- Builds on LANL's extensive experience with chemical, bio, and radiological sensors
- Configured for the specific needs of the customer


(2) Flexible, robust communication architecture linking sensors in near-real time to globally accessible servers:

- Processing of raw data at the sensor into high-quality compact information
- Key algorithms: cross-correlation, data compression, queuing
- Robust data communication from urban scene via satellite to globally accessible servers for modeling

(3) LANL's QUIC code predicts contamination transport and dispersal in urban environments in near real time:

- One of the most validated plume modeling codes for urban areas
- Accuracy greatly improved by real-time data feed from many sensors
- Computationally highly efficient code with existing building models for 130+ US cities

Current Technology Readiness Level (TRL) 4

- Detectors and sensor-to-server satellite link demonstrated
- QUIC code experimentally validated

ANTICIPATED IMPACT

Real-time actionable information will revolutionize situational awareness in emergencies and optimize the emergency and cleanup response.

- This technology can save lives, minimize damage to infrastructure and the environment, and speed up the recovery after an accident
- Railroad or oil companies benefit from reduced lost revenue, liability, and costs of cleanup and environmental remediation
- This technology can provide highly valuable data for the development of emergency response plans prior to accidents

PATH FORWARD

Development path and critical demos:

- Phase 1:
 - Assess and define customer-specific application needs
 - Develop application-specific sensor units
- Phase 2:
 - Establish an integrated pilot system in a representative environment
 - Test and qualify the system performance using controlled releases of surrogate substances

Potential End Users:

- Railroad and oil companies
- State and local emergency services

Point of Contact: Markus Hehlen, MST-7, 665-1737, hehlen@lanl.gov