

Used Fuel Disposition Campaign

GDSA Planning for FY2017

Paul Mariner, Glenn Hammond, Emily Stein, David Sevougian, and Jennifer Frederick
Sandia National Laboratories

2016 UFD Group Meeting
UNLV, Las Vegas, Nevada
June 8, 2016

■ Basic Code Needs

- Add/upgrade basic GDSA processes and capabilities
- Improve code efficiency, convergence, gridding techniques

■ Applications

- Upgrade GDSA reference case models in the various host rocks
- Expand and improve uncertainty and sensitivity analyses
- Design and perform additional analyses to address questions of repository design and prioritization of UFD campaign research

■ Integration

- Integrate subsystem conceptual models, developed under other disposal research work packages, into the GDSA-PA system model architecture
- Discussion continued in the GDSA Integration Session

■ Basic Code Needs (SNL)

- Processes and capabilities
 - *Canister performance after breach*
 - *Comprehensive decay and ingrowth*
 - *Control variate method for PA*
 - *Dual or multi continuum*
 - ***Grid refinement (e.g. Octree)***
 - *Optimization (e.g., FMDM)*
 - *Pitzer equations*
 - ***Solute property temperature dependence***
 - *Withdrawal well*
- V&V documentation (workflow)

Items in bold are currently at the top of the list for FY2017

■ Application (SNL)

- Climate
- **Continued fractured media development**
 - *Revisit engineered barrier needs*
- Disruptive events
- **Multiphase**
 - *Re-saturation, gas generation, ventilation*
- Reactive transport in near field
- Reference biospheres
 - *Topography, surface morphology, infiltration, pumping wells*
- Updated salt and clay generic repository models
 - *Add heterogeneities*

■ Integration

- Process models
 - *Biosphere pathways*
 - *Canister degradation, various*
 - *Clay deformation*
 - ***Colloid stability/transport***
 - *Discrete fracture network enhancements*
 - *Early WP failure*
 - *Flow through WPs*
 - ***FMDM enhancements***
 - *Glass dissolution*
 - *Neutron activation*
 - *Non-Darcy flow*
 - *Solid solution model*
 - ***THM for buffer materials***
 - ***THM for salt repository***
 - ***THMC with clay illitization***
- Data
 - *Process model input parameters*
 - *Properties of solutes, phases, materials, and formations*