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P =100 PCE terms
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Introduction

e Motivation

o Efficient uncertainty quantification algorithms for extreme-scale
stochastic systems, leveraging modern high-performance computing.

* Objective

* Develop parallel scalable algorithms for uncertainty quantification of
systems with high resolution in both stochastic and physical domain.

e Methodology
* Employ intrusive polynomial chaos expansion based Stochastic FEM.
* Develop non-overlapping domain decomposition based solvers.

* Efficient use of memory and floating-point-operations using PETSc.
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Stochastic Partial Differential Equation (SPDE)

* Stationary stochastic diffusion equation.

—V - (ca(z,0) Vu(z,0) )= f(z), D x

 Diffusion coefficient (cs) is modelled as a lognormal stochastic

process.

cq(x,0) = exp (g(m,@))

e Obtained from underlying Gaussian process (g) with 2D
exponential covariance.

C(x1,y1;T2,Y2) = 52 e |T2—z1]/b1—|y2—y1|/b2
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Stochastic Spectral Finite Element Method (SSFEM)

» Stochastic Input : Truncated Karhunen-Loeve Expansion (KLE)

g(mae _gO _I_Z\/igz

* Model parameters/Solution process : Polynomial Chaos Expansion (PCE)

o (2.6(0) = Y () 5(E0)
p— (LL?er?)' 1

where P is a number of PCE terms, p is order of chaos and L is
dimensionality of stochastic space.
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Domain Decomposition Method (DDM)

* Finite element approximation of the SPDE

Af) ud) =f
e Spatial domain D is divided into \
ns non-overlapping subdomains
A5 Ag | [ £
Ay Ayl w8 \\
¢ = ], 2, . " interior(i/) WM interface(b)
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DDM for Stochastic PDEs : Intrusive Approach

* PCE substitution, Galerkin projection, enforce global assembly

- AL L. 0 Al Ry 1 ( u; fi )
. o o o ;/L — o >
0 . Als A Ry, Uy ® fie
RTAI%,L . RZS Agj Z:’il RzAgbRS_ Up ZZ; RZf,f )
where

1

(Aapl, = 2 (WiW; W) [Alg),
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Extended Schur Complement System : Primal Approach

* Eliminating interior degree of freedom,

Suy = g
S =3 R |Aj — A543 4| B,
s=0
gy = iRg[fg — AR [AL] T
s=1

* Preconditioned Schur complement system to solve :

M~ 1Sy, = Mg,
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Preconditioned Conjugate Gradient Method (PCGM)

* One-Level preconditioner :
=R
s=1

1 H\"
k(M;'S) < Cﬁ (1 —I—log—)

h

interior W interface

() (b)

* Two-Level preconditioner :

ZRT |7'R, + RY[Mo] 'R,

Fine Coarse

7 2
k(M;'S) < C (1 + logﬁ>

*Condition number bound of deterministic systems.

interior W remaining @ corner

where & is the finite element mesh size and H is the subdomain size. () (r) ()
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FETI-DP: Dual-Primal Approach

* Preconditioned Lagrange multiplier system of PCE coetficients

Mp [Fop + FrelFee] ' Fop] A = Mp ™ (dy — Fro[Fed ™ d,)

* One-level Dirichlet preconditioner

MB — ZB DS SS ]DSBST

s=1
where n.
Fee =) BIT(S5. —S5.[55]7'S5.)B;
s=1
046 — AS [AS] A?ﬁ
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PCGM Algorithm : Parallel Implementation

10:

11:

12:

13:

14:

15:

16:

Nns
! Sub — M_lgb (a): Mat-Vec Product: 4@ = Z RZ 1Ss| Rspi
s=0
: Compute : 73, = gp — Sup, 13: for s=1,2,...,do
: Precondition : zg = M 1ry, 14: Scatter : pf = R, p;
Compute : po = 2o 15: Solve : out2 = A3, "' (A%, p?)
Compute : do = (3, 20) 16: Compute : ¢i = A, pi — A7, * out2
for :=0,1,2,... , do . Gather : ¢ = Z:io quf
Compute : g; = Sp; =————————
Compute : 7 = (q . pi) 18: end for
Compute : a; = 9;/7;
Update : wu; 1 = u; + a;p; (b): Preconditioning: <i+1 = Z R;F [Ms_l] Rgrpiqq
Update : 7y, , = 71y, — iq; s=0
If iterate has converged, Exit 24: for s=1,2,...,do
Precondition : 241 = M lry, s 25 Scatter : T§i+1 = Rs""bi“
Compute : dis: = (11,7111 . Solve: zf = Mclry
Compute : B; = d;41/0;
Updar.::e - pifl — zz:/-i- Bipi o Gather : 211 = Zns RT i
end for 28: end for

Ajit Desai, Carleton University

FIELDS ICSCA-2016



Challenges

 Memory required to assemble and store the blocks of subdomain

level (local) stochastic FE matrices.
Affz]v [ gb]v [Af:c]a etc. ..
PETSc-Mat for Stochastic Sparse Matrix Assembly

* Time required to solve the local problems.

[Afi]_lv [ gb]_l and [Af:c]_l
PETSc-Ksp Sparse Iterative Solver

* Time, memory and FLOPS for local matrix-vector products.
Av® A v°, Ay vt ete. ..

PETSc-MatMult for Sparse Mat-Vec Products
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One Level PCGM : PETSc-PCGM for Local Problems

Original Problem

Au=f

l

Schur Complement

One Level PCGM
—1 —1
Ml Sup = M1 gb

|
1 1

Mat-Vec Product Preconditioning
Bense-Chelesky Bense-Chelesky
PETSc-PCGM : (1) PETSc-PCGM : (2)
s s1—1 s s s 1—1 s
v, = A% P vy = [Ap] 1y

Ajit Desai, & Carleton University FIELDS ICSCA-2016



NNC/FETI-DP PCGM : PETSc-PCGM for Local Problems

rOriginal Problemj
- Au=f
NNC-PCGM FETIDP-PCGM
Schur Complement System s Lagrange Multiplier System: )
TVXO-Level PCGN{ < > One-Level PCGM
My " Sup = M, gy LMBl (B + Fpe[Fee) ' For| A= M5 (dy — Fre[Fec]™? dc)J

|

|

|

NNC-MVP NNC-PP .

e e mmmmmemmmmm e e
FETIDP-PP FETIDP-MVP
\ 4 N \ 4 ~ \ 4
- Local [ Global Coarse . Local Fine h
PETSc-l;(l:gNI_: (1)8 One-Level PCGM PETSc-PCGM :1(2)
D — . . —1 _ —1 s S 1— S
B [ zz] sz ijl Fecze = My dCJ LZT - [Srr] ’UTJ
. Mat-Vec Product h g Preconditioning
PETSc-PCGM :1(3) PETSc-PCGM :1(4)
s __ s1—1 s s s 1—1 s
Vi = A7l P ) Ve = Al e 3
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Numerical Results : 2D Stochastic Diffusion Equation
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Exponential covariance function
with numerical parameters :

0=0.3, bj=b,=1.0 and

L=4 p=3 P=35
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Few Higher Order PCE Coefficients

.
..

u?9

0
- L
-0.000764 0.000763 -0.000471
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One Level PCGM: Dense vs PETSc-Sparse

« Total execution time (including assembly) and memory occupied / node :

For fixed number of processors (nProc = 60), with increasing problem size.

nPCE =35 nPCE = 35
100 [T T s 6000 [ A T
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R4 i /7
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5 10f 2T T C A o ;s e
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*® O o "
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s r©
* - O - : L ! 4 _ — ]
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-1 Dense-Direct for interior problem 10&’ --[1- Dense-Direct for interior problem
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Mesh Size (N x P) x 10° Mesh Size (N x P) x 10°

e Execution time and memory required using dense solver (LAPACK-Cholesky)

increase exponentially as compared to sparse-iterative-solver (PETSc-PCGM)
sparse-direct-solver (PETSc-MUMPS) for subdomain-level-interior-problems.

FIELDS ICSCA-2016
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Two Level PCGM: Dense vs PETSc-Sparse

» Total execution time (including assembly) and memory occupied / node :

For fixed number of processors (nProc = 176), with increasing problem size

nPCE =35 nPCE =35
I T ,‘ T T ’YO
90 B * I . - -
] , Pe
] - Pl
80 1 s O 4 m Pie
I R 100 o -
1 g 1
70 1 . . ’ ! ) , ’
e ’
(] l* Phe g ¢ , ’
'8 60+ . @’ ] e
Z | 2 ~ | .
> 501, S @
L 4
£ | E |7
é‘ 40r, (= |
* i ¢
* ’ !
o 30; Oz 10 : ﬁ '
' o
20 9
| 1
10(55® - © - Sparse Solver for interior problem I - © - Sparse Solver for interior problem
- % - Dense Solver for interior problem | ¢ =[} Dense-Solver for interior problem
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e Execution time and memory required using dense-solver (LAPACK-Cholesky)

increase exponentially as compared to sparse-solve (PETSc-PCGM).
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Numerical Scalability : One/Two-Level PCGM

Scalability studies : performed using Linux-cluster having 22 nodes
with 176 processors and 32 GB of memory per node (Quad-Core 3.0
GHz Intel Xeon processors) with InfiniBand interconnect using
Message Passing Interface(MPI).

Numer of lterations

nPCE = 35, Problem Size/Core = 80,000 nPCE = 35, Problem Size/Core = 80,000
120 T T T T 10 T T T
\“‘* :
% One Level (L) - | % One Level (L)
-©-Two Level (NNC) - |-©-Two Level (NNC)
100+ L i 7
L%
80| R
K & 10t C@emmmmmmTT 0]
60 @ | _Oo--"""" g ]
o E | .--"
g = O
401
,,,,,,,,,,,,,,,, *
o *
200 e
103 o et *'
Go----- o------ O------- @---=-=-=-=-=-=-- O f
%736 64 96 128 176 36 64 96 128 176
Number of Processors Number of Processors
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Parallel Scalability : Two-Level PCGM

Time (S)

Strong Scalability

nPCE = 35, ProblemSize = 7.5 million
13000 — ‘

12000} @
11000 Y.
10000 - N
9000 N
8000 S
7000 - N

6000 B.

5000 RS

4000 —

Time (S)

64 96 128
Number of Processors

Weak Scalability

nPCE = 35, Problem Size/Core = 80,000
11000 T T T T T T T

10000 Pad

9000 R

8000 - [C)

7000 ’

6000 - ’

5000
20

40 60 80 100 120 140 160 180
Number of Processors

 Scalability studies : performed using Linux-cluster with 22 nodes,

2 Quad-Core processors per node, 32 GB of memory per node.
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Conclusions

e At extreme scale, the subdomain-level i.e. the local problem size becomes
the bottleneck of the DDM based PCGM algorithms.

* Optimized sparse memory allocation using PETSc objects:
Mat / Vec /| KSP / PC

e Optimized sparse solvers using PETSc routines:
KSPCG / MUMPS / KSPSolve / PCSetType

* Optimized FLOPS for algebraic operation using PETSc routines:
MatMult / MatTranspose / VecDot / VecNorm / VecAYPX

» With a given machine, the PETSc-based-DDM-solver could able to solve a

much bigger problem in less time.
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