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Uncertainty Quantification at Extreme Scale

• Deterministic finite element method with spatial mesh resolution N = 100,000.  

• Stochastic finite element method with stochastic discretization using P = 100 PCE terms 
will leads to the total problem of size,

N × P = 10 million 
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Introduction 
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• Motivation 

• Efficient uncertainty quantification algorithms for extreme-scale 
stochastic systems, leveraging modern high-performance computing. 

• Objective 

• Develop parallel scalable algorithms for uncertainty quantification of 
systems with high resolution in both stochastic and physical domain.

• Methodology 

• Employ intrusive polynomial chaos expansion based Stochastic FEM.

• Develop non-overlapping domain decomposition based solvers.

• Efficient use of memory and floating-point-operations using PETSc.



Stochastic Partial Differential Equation (SPDE) 
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• Stationary stochastic diffusion equation.  
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• Diffusion coefficient (cd) is modelled as a lognormal stochastic 
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cd(x , ✓) = exp

�
g(x , ✓)

�

• Obtained from underlying Gaussian process (   ) with 2D 
exponential covariance. 
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Stochastic Spectral Finite Element Method (SSFEM) 
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• Stochastic Input : Truncated Karhunen-Loève Expansion (KLE)

• Model parameters/Solution process : Polynomial Chaos Expansion (PCE)

where P is a number of PCE terms,  p is order of chaos and  L is 
dimensionality of stochastic space.
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Domain Decomposition Method (DDM) 
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• Finite element approximation of the SPDE
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• Spatial domain D is divided into                                                                                                         
ns non-overlapping subdomains
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DDM for Stochastic PDEs : Intrusive Approach 
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• PCE substitution, Galerkin projection, enforce global assembly

where
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Extended Schur Complement System : Primal Approach
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• Eliminating interior degree of freedom,

Sub = gb
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• Preconditioned Schur complement system to solve :

M�1Sub = M�1gb



Preconditioned Conjugate Gradient Method (PCGM)
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• One-Level preconditioner :

• Two-Level preconditioner : 
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*Condition number bound of deterministic systems. 
where h is the finite element mesh size and H is the subdomain size.
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FETI-DP: Dual-Primal Approach
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• Preconditioned Lagrange multiplier system of PCE coefficients

• One-level Dirichlet preconditioner 
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PCGM Algorithm : Parallel Implementation 
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(b): Preconditioning: 
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Challenges
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• Memory required to assemble and store the blocks of subdomain 
level (local) stochastic FE matrices.
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PETSc-Ksp Sparse Iterative Solver 
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• Time required to solve the local problems.

• Time, memory and FLOPS for local matrix-vector products.
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One Level PCGM : PETSc-PCGM for Local Problems
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NNC/FETI-DP PCGM : PETSc-PCGM for Local Problems
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Numerical Results : 2D Stochastic Diffusion Equation 
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Exponential covariance function 
with numerical parameters :                                          
σ = 0.3,  b1 = b2 = 1.0 and

L = 4,  p = 3,  P = 35 



Few Higher Order PCE Coefficients 
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One Level PCGM: Dense vs  PETSc-Sparse
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• Total execution time (including assembly) and memory occupied / node :                                                              
For fixed number of processors (nProc = 60), with increasing problem size.

• Execution time and memory required using dense solver (LAPACK-Cholesky) 
increase exponentially as compared to sparse-iterative-solver (PETSc-PCGM)
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Sparse−Iterative for interior problem
Dense−Direct for interior problem
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Sparse−Iterative for interior problem
Dense−Direct for interior problem

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 106

1

10

100
nPCE = 35

Mesh Size (N × P)

%
 M

em
or

y 
/N

od
e

 

 

Sparse−Iterative for interior problem
Sparse−Direct for interior problem
Dense−Direct for interior problem
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Sparse−Iterative for interior problem
Sparse−Direct for interior problem
Dense−Direct for interior problem

sparse-direct-solver (PETSc-MUMPS) for subdomain-level-interior-problems.  



Two Level PCGM: Dense vs  PETSc-Sparse
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• Total execution time (including assembly) and memory occupied / node :                                                                                                                               
For fixed number of processors (nProc = 176), with increasing problem size.

• Execution time and memory required using dense-solver (LAPACK-Cholesky) 
increase exponentially as compared to sparse-solve (PETSc-PCGM).
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Sparse Solver for interior problem
Dense Solver for interior problem
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Sparse Solver for interior problem
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Numerical Scalability : One/Two-Level PCGM
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• Scalability studies : performed using Linux-cluster having 22 nodes 
with 176 processors and 32 GB of memory per node (Quad-Core 3.0 
GHz Intel Xeon processors) with InfiniBand interconnect using 
Message Passing Interface(MPI). 
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Parallel Scalability : Two-Level PCGM
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                   Strong Scalability                                       Weak Scalability 

• Scalability studies : performed using Linux-cluster with 22 nodes,        
2 Quad-Core processors per node, 32 GB of memory per node.
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Conclusions 
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• At extreme scale, the subdomain-level i.e. the local problem size becomes 
the bottleneck of the DDM based PCGM algorithms.

• Optimized sparse memory allocation using PETSc objects:
  Mat / Vec / KSP / PC

• Optimized sparse solvers using PETSc routines: 
  KSPCG / MUMPS / KSPSolve / PCSetType

• Optimized FLOPS for algebraic operation using PETSc routines: 
  MatMult / MatTranspose / VecDot / VecNorm / VecAYPX

• With a given machine, the PETSc-based-DDM-solver could able to solve a 
much bigger problem in less time. 



Thank You!

Questions?

ICSCA 2016 
University of Toronto, Canada


