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Traditional Material Identification ) i

= Accurate simulations of material deformation rely on well characterized
material properties.

= Traditional material identification consists of a series of uniaxial dog bones

= May not adequately describe material behavior under complex stress states
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High-Throughput, High-Quality
Material Identification
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Complex specimen geometry
= Range of strain rates in one test
= Heterogeneous stress state

Capitalize on rich data from full-field measurements
such as Digital Image Correlation (DIC)

Employ the Virtual Fields Method (VFM) to identify
viscoplastic material properties from a single experiment
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O u t I i n e r.h IluaaEE?rE?éries

= Virtual Fields Method (VFM)
= BCJ-MEM Material Model
= Sample Geometry and VFM Cost Function Sensitivity

= Results

= |dentification of viscoplastic material parameters
= Unigueness of parameter set

= Summary and Next Steps

SEM 2016



Principle of Virtual Power

Current Configuration
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Key Features:
= Large deformation formulation
= No plane stress assumption

Assumptions:
= Neglecting acceleration and body forces

= Constant virtual fields on boundary where load is
applied
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Virtual Fields Method
for Viscoplasticity
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Set-Up VFM Algorithm

1. Choose a material model 1. Calculate stress

2. Choose a sample geometry 2. Compute cost function

2

3. Acquire full-field displacements timel® internal — *external

through the volume
3. Iterate on material parameters

4. Select initial guesses for until cost function is minimized

material parameters

5. Select virtual velocity field(s)

Pierron and Grédiac (2012) The Virtual Fields Method. Springer
-
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BCJ-MEM Material Model

= \/on Mises Flow Criterion

= Equivalent Stress: o= / S:S s =0— —tr(a)l)
= Equivalent Plastic Strain Rate: p = /—ep ep
= Flow Criterion: f=0-—

= Hardening Law

" or(p,p,$) =0, {1 + asinh {(ba)l/ ]} {1 + asinh \(bk)l/m,c]}

* k= (H—RyKr)p
= Constant strain rate: k = Ri [1 — exp(—R,p)]
d
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Viscoplastic Material Parameters
for 304L Stainless Steel
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m
Quasi-static Yield Stress 307.9
Hardening Variable H 2.692 GPa
Dynamic Recovery R, 2.601 --
Rate-Dependent Exponent (Yield) m, 3.169 --
Rate-Dependent Exponent (Hardening) m, 3.169 --
Rate-Dependent Coefficient (Yield) b, 16.25 s’
Rate-Dependent Coefficient (Hardening) b, 16.25 s

p\ /™
or(p,p, &) = 0,)1 + asinh <E>

. 1/mK
} + Rid [1 —exp(—R,p)] {1 + asinh l(%) ]}
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Flow Stress Sensitivity
to Material Parameters
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Variation of Flow Stress at p=0.6
given a +/- 20% Variation of Material Parameters
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Novel Sample Geometry ),

Design Criteria: 5 W = 75 mm R

= Maximize strain/stress
heterogeneity

= Maximize range of
strain rates

. . . L =150 mm
= Minimize amount of

key data near sample
edges

= Planar sample with
complex 2D geometry

T=1.6mm
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Stress Heterogeneity ) e
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Strain Rate Heterogeneity ) o,

Contour Plot of Equivalent Plastic Strain Rate Histogram of Equivalent Plastic Strain Rates
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Cost Function Sensitivity

Virtual Velocity Field

OV, = COS (yTn)
2y + L

2L

ovy,
ov, =0

Cost Function

Y= Z [P internal — P external]2

time

Displacement Field

“Perfect” displacements from
FEM simulation

Kim et al. (2014) Exp Mech
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Simulated Experiments ) e,

Three displacement fields:

1. “Perfect” displacements from FEM simulation

2. 0.1 um random noise added to FEM displacements
= ~1/500 pixel DIC noise floor

3. 1.0 um random noise added to FEM displacements
= ~1/50 pixel DIC noise floor

VEM Algorithm Inputs:
= |nitial Guess: +20 % from exact parameter value

= Bounds: +/- 90 % from exact parameter value
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Material Identification Results ) b,

Exact
Displacements

Parameter \E/;(ﬁg[ Units % Error

g, 307.9 MPa -1.5
H 2692 GPa 2.3
R, 2.601 -- -0.5
m, 3.169 -- 17.9
m, 3.169 -- -17.4
b, 16.25 s 10.8
b, 16.25 s 10.9

Cost Function Residual 2.1e-7
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Material Identification Results ) b,

Exact
Displacements

Parameter \E/;(ﬁg[ Units % Error
g, 307.9 MPa -1.5 -3.5
H 2692 GPa 2.3 0.6
R, 2.601 -- -0.5 5.4
m, 3.169 -- 17.9 40.8
m, 3.169 -- -17.4 9.9
b, 16.25 s 10.8 10.3
b, 16.25 s 10.9 10.4
Cost Function Residual 2.1e-7 3.2e-7
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Material Identification Results

Parameter Exact Units
Value

Exact 0.1 ym noise
Displacements

% Error
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1.0 ym noise

g, 307.9 MPa -3.5 -6.3
H 2692 GPa 0.6 204
R, 2.601 -- 5.4 90.0
m, 3.169 -- 40.8 9.0
m, 3.169 -- 9.9 11.8
b, 16.25 s 10.3 90.0
b, 16.25 s 10.4 90.0
Cost Function Residual 3.2e-7 1.1e-4
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Uniqueness of Parameter Set

N\ Y,
} + Rid [1 —exp(—R;p)] {1 + asinh [(%) B

Error of BCJ-MEM Flow Stress Calculated from Different Parameter Sets
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Reconstructed Stress Field ) e

Exact Displacements < 2% Error in Von Mises Stress
Calculated with Exact Parameters
versus Found Parameters
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Reconstructed Stress Field rh) i,

0.1 pm Random Noise < 5% Error in Von Mises Stress
Calculated with Exact Parameters
versus Found Parameters
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Summary and Next Steps h

Summary:

= Developed a Virtual Fields Method (VFM) framework:
= Viscoplastic material properties from the BCJ-MEM material model
= 3-dimensional (no plane stress assumption)
=  Finite deformations (no small strain assumption)

= Validated VFM implementation using simulated displacements from a FEM model

Next Steps:
=  Optimize specimen geometry, loading path, cost function to activate all material
parameters

= |nvestigate implications of non-orthogonal material parameters

=  Perform a parametric study of noise influence on material ID using a stereo-DIC
simulator (collaboration with Ruben Balcaen and Dr. Pascal Lava at KU Leuven)

= Utilize VFM methodology to experimentally determine material parameters of 304L
stainless steel
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Food for Thought ) s,

Contour of Horizontal Normal Strain, €,
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Material: Acrylonitrile butadiene styrene (ABS)
Open Questions:

« Do material parameters identified from a uniaxial stress state adequately describe material behavior
subjected to complex loading?

« How does orthogonality of a parameter set affect predictions of material behavior?

 Which is better: a material model with physics-based (though covariant) parameters, or a model with
completely independent parameters?
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Sandia
Resultant Load ) e,
Resultant load averaged from 10 individual horizontal slices distributed evenly along height of sample.
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Yield stress
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Model Sensitivity to Quasi-Static
Material Parameters
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Model Sensitivity to Strain-Rate
Dependent Material Parameters

Variation of b_ (pdot = 1e-05)
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Model Sensitivity to Strain-Rate o
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Dependent Material Parameters

Variation of b_ (pdot = 1e+05) Variation of b, (pdot = 1e+05)
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