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Motivation

= Releases of spent nuclear fuel (SNF) by sabotage
could have significant impacts to the public health
and nuclear industry
* Need to quantify the amount released (source term)

« Subject of research for almost 40 years in US
— Early studies were overly conservative due to lack of data
* Model refinements as a result of testing
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= Concern that surrogate fuel pellets may aerosolize differently than
actual spent fuel
« Spent fuel pellets undergo changes to bulk material properties such as
density and porosity due to irradiation

= Data needed to scale release fractions determined from previous
large-scale tests conducted with surrogate (DUO,)

= SFR quantifies the respirable aerosols produced by an high energy
device (HED) acting on spent fuel compared to a surrogate material

RF
e SFR = _>eentPuel “aerodynamic Equivalent Diameter (AED) < 10 ym

Surrogate
« Comparisons must be made under identical conditions

— Statistically significant number of experiments are required

— Or modeling using acceptable, simplifying assumptions

= Underlying physics highly complex
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Current Source Term Evaluation

Model developed over several decades with support

from DOE and NRC Spent Fuel Ratio (SFR)
Scales results for DUO,
. to SNF
Small-scale testing - Not definitively
Large-scale testing * Controlled energy measured

. experiments measuring * RF linearly scales with

Mockups of _sabotage respirable fractions SFR

scenarios with

truncated fuel

assemblies using DUO, Blowdown from cask
* Release fractions  Easily estimated from

directly measured initial and final cask

pressures
—> >
RF = RFrest| X | SFResp. | X | SFpress.! x | SFR
— /) —
h'd

-\
Release Fractions Scaling Factors
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Large-Scale Cask
Sabotage Testing

Sandoval, R.P, et al., “An Assessment of the Safety of Spent Fuel
Transportation in Urban Environs,” SAND82-2365, 1983.

GRS

fast closing slide

blastshield #1 blastshield #2

trajectory

cascade impactor for coarse particles

valve

Air tube leading to Berner impactor

armour plate 60 mm
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= DOE sponsored full-scale test of
obsolete truck cask (SAND82-2365)

» High energy density device (HED)
directed at cask

* 15x15 PWR truncated assembly with
DUO,
— Cask and fuel unpressurized
— ~3 g released in “respirable” range

= GRS sponsored full-scale test
mimicking CASTOR (Lange, et al.)
« 17x17 PWR assemblies with DUO,
pressurized to 40 bar
— First two tests (1 bar) released ~1 g
— Third test (0.8 bar) 0.35 g

Lange, F., et al., “Experiments to Quantify Potential Releases and Consequences from Sabotage Attack on
Spent Fuel Casks,” 13t Int. Sym. on Packaging and Transportation of Radioactive Materials, Chicago, IL, 2001.
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Bulk changes from irradiation

« Density decreases
— Porosity increases
— Pellet swells
* Grain size decreases
~20 um grains in fresh fuel
~0.5 um grains in high burnup
structure
High Burnup Structure (HBS)
~60 um thick rim
— Small volume fraction
* Rim burnup ~2x bulk burnup

| : 5 |0 » Possible to simulate properties
Fig. 11. SEM Fractograph of the 73 GWd/tU Sample Perlphery as f(l’) with current modeling tools

~HBS Rim

NOIROT et al., High Burnup Changes in UO2 Fuels Irradiated up to 83 GWd/t in M5® Claddings
NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.2 MARCH 2009 - SPECIAL ISSUE ON
THE WATER REACTOR FUEL PERFORMANCE MEETING 2008 6
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o ‘ ' ' ‘ = Brittle-ductile transition Tz ; = 1900 K
1400 4+ = Brittle fracture if T .tyre < Tgp
re———Brittle - intragranular fracture Ductilei—i_nle_l'granular—% ° Fractures through the CeramIC gralnS
1200} racture - .
< ogo>ag 0g>ags (intragranular)
3 1000 \ . * Argument for fractures independent of
& \ grain size
3 wor Stain rate ~ 8.2/h ‘ N\ il — Respirable generation for SNF and DUO,
g G e B K e . \ should be similar for same energy density
g T N (i.,e. SFR =1)
=) \ . .
AN Ductile fracture if T .ture > Tg.p
Tanstion or !  Fractures along grain boundaries
200 |- temperature ; - (intergranular)
. | 1 ITg.p = 1900 K « Size distribution of particles would be
1000 100 o et P 2500 similar to grain size distribution

— SNF would produce more respirable aerosols
than DUO, (i.e. SFR > 1)

A.W. Cronenberg, T.R. Yackle “ Intergranular fracture of
unrestructured fuel,” Journal of Nuclear Materials 84 (1979) 295-318.
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Schmidt, E.W., et al., “Final Report on Shipping Cask Sabotage
Source Term Investigation,” NUREG/CR-2472, 1981.

INL

Alvarez, J.L. and Kaiser, B.B.,
“Waste Forms Response
Project Correlation Testing,”
EGG-PR-5590, 1982.

SNL

Molecke, M.A., et al., “Spent
Fuel Sabotage Test Program,
Characterization of Aerosol
Dispersal: Interim Final
Report,” SAND2007-8070.

No definitive value to date
» Large degree of experimental scatter
Battelle Columbus Laboratories
« SFR=0.421to 0.71
— Analysis of BCL results by Sandoval (SAND82-2365)
- SFR=251to0 12
— Subsequent review by Luna (SAND99-0963)
— Current RF calculations assume SFR = 3
Idaho National Laboratory
« SFR=5.6
— Based on questionable extrapolation of wet sieve data
— Value used in previous analyses
« SFR=0.53
— Bulk aerosol measurements
Sandia National Laboratories
« Testing on different surrogate materials resulted in
similar respirable release fractions
— Provided confidence in using lower SFR estimate
— No SNF testing
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Current Modeling Approach

Model DUO, and SNF as continuum in shock physics code
* Interactions at the grain level not explicitly modeled

Same equation of state for DUO, and SNF
* Mie-Gruneisen

Differences in SNF explored by:

- Decreasing density (density ¥ as burnup T) along with the P-Alpha porous
material model

Quantify the average, internal energy density rise in the target
material

Aerosol generation estimated from empirical fit of DUO, and SNF
data

* Quantifies mass fraction less than 10 ym AED as a function of internal
energy density

* Low energy density and non-UO, samples discarded for these analyses
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Nuclear Energy Determines Release
>0 SN];)—I())(l)JSOzO%urve Fit A ;Nllj Samp(lle;é‘sl?;rggp . Empirical aerOSOI mOdeI
30 _—— yrz ilcticmx -an :Jl :EZEE
2o | oo bad @ A (9198  Percent of sample smaller than

<> Il\?IUl()zl?u(r;%%g;s L4 10 I.Jm AED after SUbjeCted tO
olecke — .

10| % Rubmann (1985) . sudden energy input

7 B/ ey .

5 « Additional surrogate data ignored

; for these analyses (CeO,,

2l SYNROC, concrete, and various

glasses)

1A .- . .
07 = Respirable fraction T as
05 energy density T
gj - Roughly square root dependence

| = All SNF data for relatively low

0.1

100 200 300 5007001000 2000 5000 10000 burnup

Energy Density (J/cc) « Authors unaware of any high

Alvarez, J.L. and Kaiser, B.B., EGG-PR-5590, 1982.
Molecke, M.A., et al., SAND2007-8070, 2008.

Ruhmann, H., et al., “Research Program on the Behavior of Burnt-Up Fuel under Strong
Mechanical Impacts,” Kraftwerk Union, Report R 917/85/002, (1985). 10

burnup data
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Shock Physics Modeling

Fuel Pellet Damage at 0.00e+00 secs.
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High velocity copper jet
impacts perpendicularly into
fuel segment

« 7 pellet segment of a 15x15
PWR fuel rod

Modeling with CTH

» Shock physics code developed at
SNL

— Explicit Eulerian code developed

Y (cm)

ergs/g
5x10°
! 4.5x10°
F o 4x10°
3.5¢10°
B 3x10°
B 2.5x10°
o8 2x10°

b 1.5x10°

N 1x10°
I 5x10°
0

for solving high strain transient
dynamics problems

« Explosions and high velocity
impact problems

— Mie-Gruneisen EOS

— P-Alpha crush model for
porous media

1"
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Porous Material Modeling (P-a)
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P-Alpha used to model
porous material behavior

e Q= psolV
P

Initially elastic when stress is
applied
Pores are crushed as stress
Is increased

* lrreversible process

» Plastic compression
Eventually all pores are
eliminated

* Material behaves as solid and
follows solid Hugoniot curve
(Mie Gruneisen)

12
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Energy Density (J/cc)

Internal Energy Density Results

2500
2000
A A A A
1500
1000 Porous
Density Burnup
(g/cc) (GWAd/MTHM)  Code
—O— 1049 0 CTH
500 — 1049 0 ALE3D
—8— 10.14 45 CTH
— 10.14 45 ALE3D
—A— 987 80 CTH
J — 987 80 ALE3D
0
0 10 20 30 40 50
t (us)

Internal energy density for central fuel pellet
only
More energy absorbed as porosity increases

* Additional work to compact material to solid
density

+ 6% 4 density = 33% T energy density
Simulations insensitive to choices in P-
Alpha model

« Varied initial and final crush pressures by 7.5x and
3x from baseline values, respectively
* Less than 1% change to energy density
Aerosol model is valid based on
TFracture <1900 K

* Results assume T, =300 K
— Max. energy density = 1680 J/cc
* For storage Tg,, <700 K
— Max. energy density = 1970 J/cc
* Energy density = 3700 J/cc to reach T, = 1900 K

13
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Spent Fuel Ratio Results

1.25

1.2

1.15

Spent Fuel Ratio (-)

1.05

1

O ALE3D
A CTH

0 20 40 60 80 100
Burnup (GWd/MTHM)

120

140

CTH results trend lower than

ALE3D

SFR = 1.20 for 80 GWd/MTHM
SFR = 1.15 for 60 GWd/MTHM

SFR effectively linear with
burnup (and density)

Calculated SFR at least 2.5x

smaller than previously

assumed
Density Burnup CTH |ALE3D

(g/cc) | (GWA/MTHM)| SFR | SFR
10.49 0 1.00 | 1.00
10.14 45 1.08 | 1.11
10.02 60 .11 | 1.15
9.87 80 1.13 | 1.20
9.50 127 1.22 -

14
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Rim Case Domains

Copper Jet 2

8.75 g/cm3
223 GWd/t

9.70 mm = Uniform Density

* One material

9.50 g/cm3
127 GWd/t

= Whole Rim
* Two materials
— Core 64 wt%
— Rim 36 wt%
* Two densities

Material 1

= Split Rim
* Three materials
— Core
— Front rim
— Back rim
* Two densities

15
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20 /\p = Deposited energy
ol s o . density

- L_/ aWed  Highest in rim

g o— O Avg _

2 1500 * Lowest in core

g <’> — Uniform in between

o] .

& 1000 / - = Weighted average
= ( Density ~ Burnup slightly lower than
(g/ce) (GWd/MTHM) Case i
500 9.50 127 Uniform the Unlform case

- 999 64 Core
-O0—- 8.75 225 Whole Rim
9.50 127 wt'd Avg
ok
0 10 20 30

? (ps)

16
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Split Rim Case

2500

2000

1500

Energy Density (J/cc)
=
()
(en)

500

? (ps)

LLWtd
Avg
: Porous
: Density Burnup
' (g/ce) (GWd/MTHM) Case
: 9.50 127 Uniform
| @~ 9.99 64 Core
.| —e— 875 225 Rim Front
v -®- 875 225 Rim Back
X 9.50 127 Wt'd Avg
10 20 30

= Partitioning of rim
gives more spatial
detail

* Overall similar response to
single rim case

* Highest in front rim
* Lower in back rim
* Lowest in core

= Weighted average

slightly lower than the
uniform case

17
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Rim Case Summary

= CTH Porous Rim Cases (9.50 g/cc average density)
« Extreme case (average burnup 127 GWd/MTHM)
* Front rim gives max SFR=1.27

« Wt'd avg rim and uniform cases similar
— SFR =~1.2 (by CTH, ALE3D probably higher)
— Rim inclusion did not increase SFR

Energy
Case |Pellet Mass| Density Burnup Density |Resp. | SFR
(2) (g/ce) (GWd/MTHM | (J/cc) | (%) | ()

No Rim

Rim 3.9 8.75 223 2105 | 2.03 |1.25

Wt avg 10.7 9.50 127 1858 [ 1.92 |1.19 b——>
Split Rim

Core 6.8 9.99 64 1717 | 1.86 | 1.15

Front rim 1.9 8.75 223 2170 | 2.06 | 1.27

Back rim 1.9 8.75 223 2039 | 2.01 |1.24

Wt avg 10.7 9.50 127 1858 | 1.92 | 1.19

Uniform | 107 | 950 | 127 | 1985 [1.98 |1.22
Whole Rim
Core 6.8 9.99 64 1717 | 1.86 | 1.15



2, U.S. DEPARTMENT OF

JENERGY

Nuclear Energy

Summary

= Large-scale sabotage testing scaled by Spent Fuel Ratio (SFR)
« All tests used DUO, surrogate
* Need SFR for source term analyses
* Previous testing efforts to define SFR were indeterminate
» Large uncertainties in SFR
= Modeling alternative to additional testing demonstrated
« Shock physics codes excellent for providing insight into SFR
* Preliminary numerical investigations indicate SFR = 1—

— Well within values defined by SFR test data - »(12<3<56

— Not confirmed by new test data
« Simulations of high burnup fuel (80 GWd/MTHM)
— Model also used for even higher porosity and radius dependent calculations
* Reducing SFR decreases calculated release

— Significant impact possible <

19




