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Deterministic and Stochastic Inverse 
Problems 



Inversion and Prediction 
Inference for a deterministic model
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Defining the Problem 
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Compact parameter

domain ⇤ ⇢ Rn
Model giving u(�) Quantities of

interest (QoI)

• Assume Q(�) is a measurable mapping

• Define the space of QoI: D = Q(�) ⇢ Rd

We can often observe Q(�) and need to use these observations

to infer information about �



Deterministic Inverse Problems 

Q̂

Given a vector of deterministic observations,

ˆQ, find � 2 ⇤ such

that Q(�) = ˆQ

Solutions are often non-unique

A unique solution can be found by imposing more structure,

e.g. regularization

⇤



Stochastic Inverse Problems 

Solutions are often non-unique

A unique solution can be found by imposing more structure,

e.g. prior information

Given a probability density on observations, ⇡obs

D , find a probability

density on ⇤ such that the propagation of the parameter density

through the model matches the density on the observations.

⇡obs

D

⇤



A Consistent Bayesian Formulation 



Stochastic Inverse Problems 
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Natural to start with measurable sets

For measurable A 2 BD (Borel �-algebra on D), define

Q�1(A) = {� 2 ⇤ | Q(�) 2 A}



Stochastic Inverse Problems 

We need to define a probability measure, P⇤, such that

P
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D (A)
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Stochastic Inverse Problems 

We need to define a probability measure, P⇤, such that

P
⇤

(Q�1(A)) = P obs

D (A)
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But how should we define P⇤(B) for B 2 B⇤?



Stochastic Inverse Problems 
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We define a prior probability measure: P prior

⇤

We apportion probability to B based on P prior

⇤

P post

⇤

(B) = P obs

D (Q(B))
P prior

⇤

(B)

P prior

⇤

(Q�1(Q(B))



Stochastic Inverse Problems 
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More concisely,

P post

⇤

(B) = P prior

⇤

(B)
P obs

D (Q(B))

PQ(prior)

D (Q(B))

where PQ(prior)

D is the push-forward measure induced by the prior

and the model



An Assumption on the Prior 

We need to make an assumption on the prior to prove that the posterior

solves the stochastic inverse problem.

We assume that the push-forward measure induced by the model and

the prior dominates the observed measure:

0  P obs

D (A)  CPQ(prior)

D (A), 8A 2 BD

In other words, we assume that if we observe an event with positive

probability, then we can also predict that event with positive probability.

Since D = Q(⇤), this is an assumption only on the prior.

Analogous to choosing the prior to be as general as possible

More precisely, there exists C > 0 such that



Mathematical Properties 

Theorem

Most of the requirements are trivial to show.

Just need to prove P post

⇤ (⇤) = 1.

This follows easily from the fact that we define D = Q(⇤).

Assume Q : ⇤ ! D is measurable. Given probability measures

P prior

⇤ and P obs

D that are absolutely continuous with respect to

the volume measures µ⇤ and µD respectively, the posterior

measure, P post

⇤ , is a probability measure.



Mathematical Properties 

Theorem

Assume Q : ⇤ ! D is measurable. Given probability measures

P prior

⇤ and P obs

D that are absolutely continuous with respect to

µ⇤ and µD respectively, the posterior probability density

satisfies the consistency requirement.

P post

⇤ (Q�1(A)) = P obs

D (A)

Recall that this means for any A 2 BD we have

i.e., propagating the posterior though the model gives the observed data.

We also show that the posterior is absolutely continuous with

respect to µ⇤ which implies there exists a density, ⇡post

⇤ .



Mathematical Properties 

Theorem

Assume Q : ⇤ ! D is measurable and piecewise continuous. Given

probability measures P prior

⇤ and P obs

D that are absolutely continuous

with respect to µ⇤ and µD respectively (and these volume measures

are absolutely continuous with respect to Lebesgue measures). Then

wherever the posterior probability density is non-zero, it is given by

⇡post

⇤ (�) = ⇡prior

⇤ (�)
⇡obs

D (Q(�))

⇡Q(prior)

D (Q(�))
, � 2 ⇤

Both ⇡prior

⇤ and ⇡obs

D are assumed to be given.

We only need to calculate ⇡Q(prior)

D .

This is the forward propagation of the prior through the model.



Algorithms 

Algorithm 1 Computing the Push-Forward of the Prior

Given a set of samples from the prior density: �i, i = 1, . . . ,M
Evaluate the model and compute the QoIs: qi = Q(�i)

Use the set of QoIs and use a standard technique, such as a kernel density

method, to estimate ⇡Q(prior)

D (q)

Algorithm 2 Contructing the Posterior Density

Given the ⇡Q(prior)

D (q) from Algorithm 1

Select a set of samples in ⇤: �p, p = 1, . . . , P
Evaluate the model and compute the QoIs: qp = Q(�p)

Compute the posterior density at each �p:

⇡post

⇤ (�p) = ⇡prior

⇤ (�p)
⇡obs

D (qp)

⇡Q(prior)

D (qp)
.

Use ⇡post

⇤ (�p) to construct an approximation of the posterior density



Algorithms 
Algorithm 3: Generating samples from the posterior

Given the ⇡Q(prior)

D (q) from Algorithm 1;

Select a set of samples in ⇤: �p, p = 1, . . . , P ;

Evaluate the model and compute the QoIs: qp = Q(�p);

Compute the posterior density at each �p:

⇡post

⇤ (�p) = ⇡prior

⇤ (�p)
⇡obs

D (qp)

⇡Q(prior)

D (qp)
.

Estimate M = max⇤

⇣
⇡prior

⇤ (�)/⇡post

⇤ (�)
⌘
;

for p = 1, . . . , P do

Generate a random number, ⇠p, from a uniform distribution on [0, 1];

Compute the ratio: ⌘p = M
⇡post

⇤ (�p)

⇡prior

⇤ (�p)
;

if ⌘p > ⇠p then

Accept �p;

else

Reject �p;

end

end



A Simple Example 
Consider a 2-component nonlinear system of equations with two parameters

�1x
2
1 + x

2
2 = 1

x

2
1 � �2x

2
2 = 1

The quantity of interest is the second component, i.e., q(�) = x2.

The parameter ranges are given by

�1 2 [0.79, 0.99], �2 2 [1� 4.5
p
0.1, 1 + 4.5

p
0.1]

Assume that we observe q ⇠ N(0.3, 0.0252)

We consider two di↵erent priors on ⇤, uniform and Beta(2, 5).

We show that both the push-forward densities induced by the posteriors

match the observed density.

We use 100,000 samples from each prior and a standard kernel

density approach to compute the push-forward densities



A Simple Example: Uniform Prior 

The three distributions on D
(⇡obs

D , ⇡Q(prior)

D and ⇡Q(post)

D )

The posterior (⇡post

⇤ )

Samples from the

posterior (⇡post

⇤ )



A Simple Example: Beta Prior 

The three distributions on D
(⇡obs

D , ⇡Q(prior)

D and ⇡Q(post)

D )

The posterior (⇡post

⇤ )

Samples from the

posterior (⇡post

⇤ )



Comparison with Existing Approaches 



Comparison With Existing Approaches 

Measure-Theoretic Approach [Butler et al SINUM 2012]

• Both approaches are consistent with the model and the data.

• Make di↵erent assumptions and produce di↵erent densities

– unless the solution is unique

• Di↵erent computational considerations

• With our consistent Bayesian approach, it is easier to

– Leverage advanced approaches for forward propagation of uncertainty

– Generate samples from the posterior



Comparison With Existing Approaches 

Classical/Statistical Bayesian Approach [Kennedy and O’Hagan, JRSS 2001]

Assume that observational data, q 2 D are noisy

q = Q(�) + ⌘,

where ⌘ is a random variable with mean zero and density ⇢.

Gives the likelihood function

⇡(q|�) = ⇢(q �Q(�)).

Using Bayes theorem we can express the posterior density as

⇡̃post

⇤ (�|q) = ⇡prior

⇤ (�)
⇡(q|�)

R
⇤

⇡(q|�)⇡prior

⇤ dµ⇤

,

The posterior density is not guaranteed to be consistent



An Analytical Example 

q(�) = �p, p > 0.

Let ⇤ = [0, 1] and consider the simple nonlinear map

Here, p, is not uncertain and is used to vary the nonlinearity of the map.

We set D = Q(⇤) = [0, 1] and assume the observed density is given by

⇡obs

D (q) =
1

�
p
2⇡

e�
(q�q̂)2

2�2 ,

where q̂ and � are also assumed to be given.

Regardless of the choice of p and the prior density, we can easily calculate

⇡Q(prior)

D (q) =
1

p
q1/p�1⇡prior

⇤ (q1/p).



An Analytical Example 

We can also calculate the posterior density

and the push-forward of the posterior density

⇡Q(post)

D (q) =
1

�
p
2⇡

e�
(q�q̂)2

2�2 ,

which is identical to the observed density on the data.

⇡post

⇤ (�) = p�p�1

1

�
p
2⇡

e�
(�p�q̂)2

2�2 .



An Analytical Example 

For the classical/statistical Bayesian approach, we use an observed

value of q̂ and assume ⌘ ⇠ N(0,�2
).

We can calculate the posterior density from the classical Bayesian approach

⇡̃post

⇤ (�) = ⇡prior

⇤ (�)
1

C

1

�
p
2⇡

e�
(�p�q̂)2

2�2 ,

C =

Z

⇤

1

�
p
2⇡

e�
(�p�q̂)2

2�2 ⇡prior

⇤ (�)dµ⇤.

Compare this with the consistent posterior

⇡post

⇤ (�) = p�p�1

1

�
p
2⇡

e�
(�p�q̂)2

2�2 .

The two posteriors are identical if ⇡prior

⇤ = 1 and p = 1 (linear map)



An Analytical Example 

0 0.2 0.4 0.6 0.8 1
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�

Statistical Bayes

Consistent Bayes

Observed

0 0.2 0.4 0.6
0

2

4

q

For p = 5 q̄ = 0.25 and � = 0.1, we plot the two posterior

densities (left) and compare the push-forward densities

from the posteriors with the observed density (right).



Computational Considerations 



Density Estimation 
Our approach relies estimating ⇡Q(prior)

D .

Various approaches for multi-variate density estimation exist,

but all su↵er from the curse of dimensionality in some way.

For example, the error in kernel density estimators decays at

O(N�1/(2⌫+d))

where d is the dimension of D and ⌫ is the order of the kernel (typically 2)

• Don’t worry about accuracy (not very appealing)

• Come up with a better approach for density estimation (open research

question)

• Take a large number of samples

Leaves us with three options:



Large Scale Nonlinear Multi-Physics Simulations 

Flow	in	Nuclear	Reactor	(Turbulent	CFD)	 Tokamak	Equilibrium	(MHD)	

Mul#-scale	materials	modeling	Fully-coupled	conjugate	heat	transfer	

The	number	of	high-fidelity	model	evalua#ons	is	limited.	



Utilizing Surrogate Models 

u = M(�)

We use a small number of model evaluations to approximate the

response surface.

Examples include regression, polynomial chaos, stochastic collocation,

pseudospectral projection, Gaussian processes, etc.



Utilizing Surrogate Models 

(⇥,F , P )

� : ⇥ � �N
i=1Ii

F⇤(�)

We can estimate the push-forward density using samples of the surrogate

Assuming the number of samples of the surrogate is not limited,

the accuracy of the posterior is dominated by the accuracy of the

surrogate model.

Let Qs(�) denote the surrogate approximation of the QoI



An Assumption on the Prior and the Surrogate 

More precisely, there exists C > 0 such that

We need to make an assumption on the prior and the surrogate to prove

that the posterior solves the stochastic inverse problem.

We assume that the push-forward measure induced by the surrogate model

and the prior dominates the observed measure:

0  P obs

D (A)  CPQs(prior)

D (A), 8A 2 BD

In other words, we assume that if we observe an event with positive

probability, then we can also predict that event

(using the surrogate model) with positive probability.

Since D = Q(⇤) 6= Qs(⇤), this is an assumption on the prior

and the surrogate.



Utilizing Surrogate Models 

Theorem

Recall that this means for any A 2 BD we have

P post

⇤ (Q�1

s (A)) = P obs

D (A)

Assume Qs : ⇤ ! D is measurable. Given probability measures

P prior

⇤ and P obs

D that are absolutely continuous with respect to

µ⇤ and µD respectively, the posterior probability density

calculated from the surrogate model satisfies the consistency

requirement.

i.e., propagating the posterior though the surrogate model gives the

observed data density.



Utilizing Surrogate Models 

The only issue is that typically

Q�1
s (A) 6= Q�1(A)

Q�1

(A)

Q�1

s (A)

�
1

�
2

A

Q(�)

⇡
o
b
s

D

The surrogate model needs to be accurate while utilizing a minimal

number of model evaluations



Generalized Sparse Grid Approximations 

Polynomial chaos using sparse grid approximations has proven to be

very e↵ective for a range of problems.

Several appealing properties

• Comparable accuracy with tensor

product grids

• Number of points grows slower with

dimension

• Enables either local or dimensional

adaptivity

• Easy to incorporate goal-oriented

error indicators [Jakeman, W. JCP 2015]



Example: Gaussian Peaks Problem 

Peaks	func#on	 Distribu#on	on	data	
with	samples	

Contours	in	input	space	
corr.	to	samples	

We let ⇤ = [0, 1]2 and consider a map composed of the sum of 4

Gaussian peaks

The prior is uniform over ⇤.

The goal is to investigate how the accuracy of the surrogate model

a↵ects the posterior



Example: Gaussian Peaks Problem 
Level 2 (17 pts) Level 3 (49 pts) Level 4 (97 pts) Level 5 (161 pts)

Qs(�)

⇡post

⇤ (�)

Samples

from

posterior

⇡obs

D (q) and

⇡Q(post)

D (q)



Adaptive Surrogates: Peaks Problem 

Figure: Convergence of the posterior to the “true” posterior

computed using an overkill solution. We compare isotropic sparse

grid refinement with local adaptivity driven by the hierarchical

surplus for the forward map.



Summary and Future Work 
• We	have	developed	a	Bayesian	approach	to	solve	stochas:c	
inverse	problems		

• Our	approach	is	consistent	with	the	model	and	the	data	
– The	push-forward	of	the	posterior	probability	density	through	the	model	
produces	the	observed	density	on	the	QoI	

• Provides	a	unifica#on	of	Bayesian	methodologies,	measure-
theore#c	approaches,	and	forward	UQ.	

• We	can	leverage	advanced	approaches	for	forward	UQ	such	as	
adap#ve	response	surface	approxima#ons	

• Current/future	work	
– BeWer	adap#ve	strategies	based	on	the	informa#on	gained	in	the	posterior	
– Op#mal	experimental	design	
– Inference	for	predic#on	



Thank you for your attention! 
Questions? 

 
Email: tmwilde@sandia.gov 
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Deterministic Inverse Problems 

Given a vector of deterministic observations,

ˆQ, find � 2 ⇤ such

that Q(�) = ˆQ

Solutions are often non-unique

A unique solution can be found by imposing more structure,

e.g. regularization

Q̂



Stochastic Inverse Problems 
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1.5. Defining the Solution of the Inverse Problem 33

Figure 1.12. Left: The probability densities ρD(d) and ρM(m) respectively
represent the information on observable parameters (data) and the prior information on
model parameters. As the prior information on model parameters is, by definition, inde-
pendent of the information on observable parameters (measurements), the joint probabil-
ity density in the space D ×M representing both states of information is ρ(d, m) =
ρD(d) ρM(m) . Center: "(d, m) represents the information on the physical correla-
tions between d and m , as predicted by a (nonexact) physical theory. Right: Given
the two states of information represented by ρ(d, m) and "(d, m) , their conjunction is
σ (d, m) = k ρ(d, m)"(d, m) / µ(d, m) and represents the combination of the two states
of information. From σ (d, m) it is possible to obtain the marginal probability densities
σM(m) =

∫
dd σ (d, m) and σD(d) =

∫
dm σ (d, m) . By comparison of the posterior

probability density σM(m) with the prior one, ρM(m) , we see that some information has
been gained on the model parameters thanks to the data ρD(d) and the theoretical infor-
mation "(d, m) .

1.5.2 Resolution of Inverse Problems
Equation (1.83) solves a very general problem. Inverse problems correspond to the particular
case where the spaces D and M have fundamentally different physical meaning and where
we are interested in translating information from the data space D into the model space
M . Let us make the usual assumptions in this sort of problem.

First, as discussed in section 1.3, it is assumed that a reasonable approximation for
representing the physical theory relating the model parameters m to the observable param-
eters d can be written under the form of a probability density for d given any possible m
(equation (1.61)):

"(d, m) = θ(d | m) µM(m) , (1.86)

where, as usual, µM(m) is the homogeneous probability density over the model space
manifold M . Second, the prior information in the joint manifold D×M takes the special
form

ρ(d, m) = ρD(d) ρM(m) , (1.87)

which means that information in the space of observable parameters (data) has been ob-
tained (from measurements) independently of the prior information in the model space (see
section 1.4). In particular, the homogeneous limit of this last equation is

µ(d, m) = µD(d) µM(m) . (1.88)

Solutions are often non-unique

Given a vector of stochastic observations, P obs

D , find P post

⇤ such

that PQ(post)

D (B) = P obs

D (B) for any B 2 BD

A unique solution can be found by imposing more structure,

e.g. a prior



Stochastic Inverse Problems 

Solutions are often non-unique

Given a vector of stochastic observations, P obs

D , find P post

⇤ such

that PQ(post)

D (B) = P obs

D (B) for any B 2 BD

A unique solution can be found by imposing more structure,

e.g. a prior

Peaks	func#on	 Distribu#on	on	data	
with	samples	

Contours	in	input	space	
corr.	to	samples	


