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Deterministic and Stochastic Inverse
Problems
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Inversion and Prediction

Prediction Space

Observation Space

Pre jon
Fu onals

Focus of this
presentation

Space of Data and Parameters
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Defining the Problem

A\ | 4 (spatial avera@
A2 mean stress
A= | . U(AN)) = <
: - - Qu(A) time averages
_)\N ] \_ _etc... Y,
Compact parameter Model giving u( Quantities of
domain A C R” interest (Qol)

e Assume Q(\) is a measurable mapping

e Define the space of Qol: D = Q(\) C R

We can often observe QQ(\) and need to use these observations

= Sedes
to infer information about \ > (=) s




Deterministic Inverse Problems

Given a vector of deterministic observations, Q, find A € A such

that Q(\) = Q

Solutions are often non-unique

A unique solution can be found by imposing more structure,
e.g. regularization
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Stochastic Inverse Problems

Given a probability density on observations, 7%, find a probability
density on A such that the propagation of the parameter density
through the model matches the density on the observations.

Solutions are often non-unique

A unique solution can be found by imposing more structure,

e.g. prior information / Nootel
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A Consistent Bayesian Formulation
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Stochastic Inverse Problems

Natural to start with measurable sets

//'\

< Q14

obs
D

LA
Al Q(XN)

For measurable A € Bp (Borel o-algebra on D), define
QT (A)={reA| QM) €4}




Stochastic Inverse Problems
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< Q14

obs
D

LA
29 Q(N)

We need to define a probability measure, Py, such that
PA(QH(A)) = Pp(A)




Stochastic Inverse Problems
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obs
D

L4 ]
A1 Q)

We need to define a probability measure, Py, such that
PA(QH(A)) = Pp(A)

But how should we define Py(B) for B € By?
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Stochastic Inverse Problems

o @—1@\/ 2n
S

B
_/ \
| Q(B)

A Q)
We define a prior probability measure: P}X)rior

We apportion probability to B based on P}\)rior

P (B) = PE(Q(B)) —srh— )

P/I\)rior(Q—l (Q(B))/
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Stochastic Inverse Problems

o @—1@\/ %{9

R

| Q(B)
M Q)
More concisely,
oS rior PObS(Q(B))
PE™(B) = PP (B)— D
Pp (Q(B))

where P2®"°") is the push-forward measure induced by the priord

and the model , :
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An Assumption on the Prior

We need to make an assumption on the prior to prove that the posterior
solves the stochastic inverse problem.

We assume that the push-forward measure induced by the model and
the prior dominates the observed measure:

More precisely, there exists C' > 0 such that

0 < P3(A) < CPEPT)(4) VA € Bp

In other words, we assume that if we observe an event with positive
probability, then we can also predict that event with positive probability.

Since D = Q(A), this is an assumption only on the prior.

Analogous to choosing the prior to be as general as possible _—




Mathematical Properties

Assume () : A — D is measurable. Given probability measures

PR and P2 that are absolutely continuous with respect to

the volume measures pua and pup respectively, the posterior
post - “1e

measure, P, , is a probability measure.

Most of the requirements are trivial to show.

Just need to prove Py**"(A) = 1.

This follows easily from the fact that we define D = Q(A).
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Mathematical Properties

Assume () : A — D is measurable. Given probability measures
PR and P2 that are absolutely continuous with respect to
A and pp respectively, the posterior probability density
satisfies the consistency requirement.

Recall that this means for any A € Bp we have
PR&HQ(A4) = PR(A)

1.e., propagating the posterior though the model gives the observed data. «

We also show that the posterior is absolutely continuous with

respect to pa which implies there exists a density, 75"
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Mathematical Properties

Assume () : A — D is measurable and piecewise continuous. Given

probability measures Py"°" and P2 that are absolutely continuous
with respect to pua and pup respectively (and these volume measures
are absolutely continuous with respect to Lebesgue measures). Then
wherever the posterior probability density is non-zero, it is given by

obs
post \) = prior A\ 7-‘-2)(62()‘)) : )\EA
RO = ) i oo

Both 78" and m%>* are assumed to be given.

We only need to calculate Wg(prior).

This is the forward propagation of the prior through the model
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Algorithms

Algorithm 1 Computing the Push-Forward of the Prior

Given a set of samples from the prior density: \;, ¢=1,..., M
Evaluate the model and compute the Qols: ¢; = Q(\;)

Use the set of Qols and use a standard technique, such as a kernel density

method, to estimate Wg(prior)(q)

Algorithm 2 Contructing the Posterior Density
g(prlor) (Q)

Given the w from Algorithm 1

Select a set of samples in A: \,, p=1,...,P
Evaluate the model and compute the Qols: ¢, = Q()\,)
Compute the posterior density at each \,:

oS rior WObS q
R On) = 7).
Tp dp

Use m2°°"()\,) to construct an approximation of the posterior densit




Algorithms

Algorithm 3: Generating samples from the posterior

Given the m from Algorithm 1;

Select a set of samples in A: \,, p=1,...,P;
Evaluate the model and compute the Qols: ¢, = Q(\,);
Compute the posterior density at each Aj:

g(prlor) (q)

0s rior WObS(Q )
T (Ap) = mh " (Ap) WQ(frior)zzq )
D p

Estimate M = maxp (Wﬁrior()\) / WROSt()\)>;

forp=1,...,P do
Generate a random number, &,, from a uniform distribution on [0, 1];

.. - WROSt()\p) ;
Compute the ratio: n, = M

if n, > &, then
‘ Accept \p;
else
| Reject Ap;
end

end




A Simple Example

Consider a 2-component nonlinear system of equations with two parameters

)\1:15% +:U§ — v |

2 — ozs = 1

The quantity of interest is the second component, i.e., g(\) = xs.

The parameter ranges are given by
A1 €10.79,0.99], X € [1—4.5v0.1,1+4.5v0.1]

Assume that we observe ¢ ~ N(0.3,0.025%)
We consider two different priors on A, uniform and Beta(2,5).

We show that both the push-forward densities induced by the posteriors
match the observed density.

We use 100,000 samples from each prior and a standard kernel v

density approach to compute the push-forward densities/,ﬁ




A Simple Example: Uniform Prior

Approximation of the Posterior Samples Generated from the Posterior
16 .
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A Simple Example: Beta Prior

Approximation of the Posterior X 1D- 6. Samples Generated from the Posterior
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Comparison with Existing Approaches
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Comparison With Existing Approaches

Measure-Theoretic Approach [Butler et al SINUM 2012]

e Both approaches are consistent with the model and the data.
e Make different assumptions and produce different densities

— unless the solution is unique

e Different computational considerations
e With our consistent Bayesian approach, it is easier to
— Leverage advanced approaches for forward propagation of uncertainty
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Comparison With Existing Approaches

Classical /Statistical Bayesian Approach [Kennedy and O’Hagan, JRSS 2001]

Assume that observational data, ¢ € D are noisy
q = Q)+,

where 1 is a random variable with mean zero and density p.

Gives the likelihood function
m(q|A) = plg — Q(N)).

Using Bayes theorem we can express the posterior density as

~post pI‘lOI‘ (Q|)\)
A A ;

The posterior density is not guaranteed to be consistent
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An Analytical Example

Let A = [0, 1] and consider the simple nonlinear map
g(A) = AF, p>0.
Here, p, is not uncertain and is used to vary the nonlinearity of the map.

We set D = Q(A) = [0, 1] and assume the observed density is given by

1 (q—q)?

obs L — =

D (Q) o € 202,
o\ 27

where ¢ and o are also assumed to be given.

Regardless of the choice of p and the prior density, we can easily calculate

rior 1 i rior
R RO RSO

p
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An Analytical Example

We can also calculate the posterior density

1 _ (P2
e 202

T (A) = pAP! o

and the push-forward of the posterior density

1 _ (a—@)*
e 202

m5 P (q) =

9
o\ 27

which is identical to the observed density on the data.




An Analytical Example

For the classical /statistical Bayesian approach, we use an observed
value of ¢ and assume n ~ N (0, 0?).

We can calculate the posterior density from the classical Bayesian approach

1 1 (P —g)?
20‘2

i e ’
C o217

ﬁ_Rost ()\) - 7_(_Rrior ()\)

1 WP—@)?
C:/A ™ 2r mh T (A)dpa.

o\ 2T

Compare this with the consistent posterior

D _ s\2
WROSt()\) = pAP! : 6_%
o\ 2T
The two posteriors are identical if 75" =1 and p = 1 (linear map)
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An Analytical Example

| | |
6l === Statistical Bayes 4 a
m—— Consistent Bayes i
----- Observed A :
\‘ |
4 | |‘ T :
L *
2|
|
- -
0 === ‘ 0
0 0.2 04 06 0.8

0.6

For p=5 ¢ =0.25 and 0 = 0.1, we plot the two posterior
densities (left) and compare the push-forward densities
from the posteriors with the observed density (right).
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Computational Considerations
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Density Estimation

Our approach relies estimating ﬂg(prior).

Various approaches for multi-variate density estimation exist,
but all suffer from the curse of dimensionality in some way.

For example, the error in kernel density estimators decays at

O(N—l/(Zu—i—d))

where d is the dimension of D and v is the order of the kernel (typically 2)

Leaves us with three options:

e Don’t worry about accuracy (not very appealing)

e Come up with a better approach for density estimation (open research
question)

e Take a large number of samples
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Large Scale Nonlinear Multi-Physics Simulations

_ENSTROPHY
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Multi-scale materials modeling

The number of high-fidelity model evaluations is limited. () i




Utilizing Surrogate Models

We use a small number of model evaluations to approximate the
response surface.

Examples include regression, polynomial chaos, stochastic collocation,
pseudospectral projection, Gaussian processes, etc.
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Utilizing Surrogate Models

We can estimate the push-forward density using samples of the surrogate

(Q, F,P)
A:Q— IO I
FA(A)

Assuming the number of samples of the surrogate is not limited,
the accuracy of the posterior is dominated by the accuracy of the
surrogate model.

Let Qs(A) denote the surrogate approximation of the Qol
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An Assumption on the Prior and the Surrogate

We need to make an assumption on the prior and the surrogate to prove
that the posterior solves the stochastic inverse problem.

We assume that the push-forward measure induced by the surrogate model
and the prior dominates the observed measure:

More precisely, there exists C' > 0 such that
0 < P(A) < CPE2P")(4) VA € Bp

In other words, we assume that if we observe an event with positive
probability, then we can also predict that event
(using the surrogate model) with positive probability.

Since D = Q(A) # Qs(A), this is an assumption on the prior
and the surrogate.




Utilizing Surrogate Models

Assume ()5 : A — D is measurable. Given probability measures
Py and P2P® that are absolutely continuous with respect to
ua and pup respectively, the posterior probability density
calculated from the surrogate model satisfies the consistency
requirement.

Recall that this means for any A € Bp we have
PR Q51 (A)) = PR™(4)

i.e., propagating the posterior though the surrogate model gives the

observed data density.
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Utilizing Surrogate Models

//'\

< Q1A

obs
D

Q)

Al Q)

The only issue is that typically
Q:'(4) #Q7(4)

The surrogate model needs to be accurate while utilizing a minimal
number of model evaluations
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Generalized Sparse Grid Approximations

Polynomial chaos using sparse grid approximations has proven to be
very effective for a range of problems.

Several appealing properties

-:'oo ®-0i-9- 0 ‘ *:--0-i0 -9 ooq:---

¢ e ¢
e Comparable accuracy with tensor S5 SRS YOI TS SRS MOON M
product grids IS 25U RPN OO SO PO TP NSRS S 38
LA A S S S S
e Number of points grows slower with g e
; : : IR JSUPUN SOUUOOOE OVOONS SOOI SOV SO S SO, 2

e Enables either local or dimensional ; : ;
o e B P SRR T S SR AR
adaptivity : ; ¢
. ¢ e e i LIS SURNE o« i o ee

e LFasy to incorporate goal-oriented : i ’
;o '."r: ------- CIRRR YRS §----oi--- ®-i-e-- :00:

error indicators [Jakeman, W. JCP 2015] L
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Example: Gaussian Peaks Problem
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We let A = [0,1]? and consider a map composed of the sum of 4

Gaussian peaks

The prior is uniform over A.

The goal is to investigate how the accuracy of the surrogate model

affects the posterior




Example: Gaussian Peaks Problem
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Adaptive Surrogates: Peaks Problem
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Figure: Convergence of the posterior to the “true” posterior

computed using an overkill solution. We compare isotropic sparse 4
grid refinement with local adaptivity driven by the hierarchical

surplus for the forward map. / ﬁ’&ém




Summary and Future Work

* We have developed a Bayesian approach to solve stochastic
inverse problems

* Our approach is consistent with the model and the data

— The push-forward of the posterior probability density through the model
produces the observed density on the Qol

* Provides a unification of Bayesian methodologies, measure-
theoretic approaches, and forward UQ.

* We can leverage advanced approaches for forward UQ such as
adaptive response surface approximations

* Current/future work
— Better adaptive strategies based on the information gained in the posterior
— Optimal experimental design
— Inference for prediction




Thank you for your attention!
Questions?

Email: tmwilde@sandia.gov
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Deterministic Inverse Problems

Given a vector of deterministic observations, Q, find A € A such
that Q(\) = @

Solutions are often non-unique

A unique solution can be found by imposing more structure

e.g. regularization / Soni
National
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Stochastic Inverse Problems

d

p(d,m)

VAN

Pp(d)
op(d)

Py Oplm) N A

Given a vector of stochastic observations, P28, find PXOSt such
that PEP°*)(B) = PPs(B) for any B € Bp
Solutions are often non-unique

A unique solution can be found by imposing more structure

€.g. a prior / Natoral
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Stochastic Inverse Problems
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Given a vector of stochastic observations, P, find Py*" such
that P2®*Y(B) = Pes(B) for any B € Bp
Solutions are often non-unique

A unique solution can be found by imposing more structure,
e.g. a prior '




