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Motivation: Semiconductor Plasmonics

 Plasmonics is a good way to enhance light matter interactions.

 Challenges:

 Dissipative loss; Operation bandwidth; Tunability
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Boltasseva & Atwater, Science (2011) Wang et. al., Nat. Nano. (2011)

 Potential Solution:

 Plasmons in doped semiconductors



Motivation: Transient Plasmonics

• Transient plasmonics: Ultrafast tuning of light.

 Physics:

• Inter-band excitation (carrier density modulation)

• Intra-band excitation (hot electron & band non-parabolicity)
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Inter-band excitation in Ga-ZnO ENZ layer

Kinsey et. al., Optica, 2, 616 (2015)

Intra-band excitation in ITO nano-rod array

Guo et. al., Nat. Photon, 10, 1038 (2016)



Transient THz GaAs Plasmonic Metasurfaces
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 Devices:

• 1-μm-thick GaAs film on sapphire substrate.

 Fabrication:

• MBE growth

• Flip-chip bonding

• Selective wet-etching of the substrate

 Benefit of no physical pattern:

• Non-destructive for pristine samples

• Dynamic tunability

• Reveal the ultrafast dynamics of 
plasmon formation;

• Demonstrate a wide-bandwidth
frequency tuning;

Okada et. al., Sci. Rep. (2011); 
Chatzakis et. al., Appl. Phys. Lett. (2013); 
Kamaraju et. al., Light Sci. App. (2014) 

Structured-optical pump THz probe (S-OPTP):



Measurement Schematics
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• Source: Ti-Sapphire Amplifier, 800 nm, 1 kHz, 6mJ,
~35 fs pulse duration.

• THz generation: Optical rectification in a 1-mm-thick
<110> ZnTe.

• THz detection: Electro-optical sampling in a 1-mm-
thick <110> ZnTe.

• Mask: 30um period, 50:50 duty cycle Cr mask.
• Imaging: 4-f imaging system with two best form

lenses (150 mm focal length).

• OPTP experiments: to ensure the entire THz transient to experience the same
optical pump delay, the delay line is located at the THz generation arm.

Beard et. al., Phys. Rev. B 62, 15764 (2000)



OPTP Measurements
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Pump fluence: 6 μJ/cm2

Prior to photoexcitation:
• Drude behavior

(free carrier absorption)

After photoexcitation:
• Interband process
• Intraband process



Physical Interpretation
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Within the ~500 fs electron-phonon cooling process:
• Plasma frequency increases;
• Plasma damping decreases. 

(1). Creation of non-equilibrium hot electron 
distribution by the optical pump;
(2). Hot electron thermalization (equilibrium
within themselves & Fermi Dirac distribution); 
<100 fs
(3). Electron-phonon cooling. ~500 fs

Processes involved:


p
 ne2 

0
m*



Physical Interpretation
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(1). Creation of non-equilibrium hot electron 
distribution by the optical pump;
(2). Hot electron thermalization (equilibrium
within themselves & Fermi Dirac distribution); 
<100 fs
(3). Electron-phonon cooling. ~500 fs

Processes involved:


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Processes ruled out:
• Velocity overshoot; (Photon energy insufficient)
• Gunn effect; (3 kV/cm intensity needed)
• Hot holes. (large effective mass & low mobility)



Localized Resonance (Electric Dipole)

9

• vary period

• vary duty cycle

Abs(E) :

Electrical dipole (localized):

L 


eff

2


a
1
 a

2


p


res

2
,

Novotny, Phys. Rev. Lett. 98, 266802 (2007)

L: length of the dipole antenna;
a1, a2: geometric parameters;
ωres: resonant frequency.

Plasmonic grating (non-local):

Chatzakis et. al., Appl. Phys. Lett. 103, 043101 (2013)

m, n: grating orders;
ε1, ε2 : permittivity of metal and surrounding dielectrics;
λsp: resonant wavelength.



Demonstration of THz Wave Modulation
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Pump fluence-dependent transmittance 
(Experiments)

Modulation from 0.5 THz to 1.7 THz!
• One of the widest dynamic modulation 

bandwidth demonstrated (to the best of 
our knowledge) 

Simulations agree with experiments
• Assuming gradient carrier density 

distributions in the GaAs layer.

GaAs



Outlook
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Previous work
-revisited

Chen et. al., Nature (2008)

Padilla et. al., PRL (2006)

• Optical excitation

• Electrical excitation

• Semiconductors serve as a 
variable conductor.

Future vision
-based on semiconductor plasmonics

• MOS transistor-type THz plasmonic modulator

• Nonlinear THz plasmonic 
response

Averitt et. al., PRL (2013)



Conclusions
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 Transient GaAs metasurface
– Demonstrated:

– Ultrafast dynamics of plasmon 
formation revealed;

– Wide frequency tuning range;

– Future: 

– Nonlinear THz response; 

– THz modulators; 

– Extension to the mid- & near- IR.

Email: yuayang@sandia.gov


