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Extreme-scale high performance computing (HPC) 
architectures introduce programming challenges

System Change Programming Challenge

Increased node-level parallelism Expressing/managing node-level & hybrid parallelism

Diverse target architectures Performance portability across systems

Decreased system reliability Resilience/Fault mitigation

Increased system noise Increased need for effective load-balancing strategies

Deeper memory hierarchies Management of memory hierarchies/locality

Increased system scale Increased workflow complexity
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HPC’s role in stockpile stewardship shapes Sandia’s NNSA/ASC 
programming model investments 
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Programming Challenge

Expressing/managing node-level 
& hybrid parallelism

Performance portability across 
systems

Resilience/Fault tolerance

Increased need for effective load-
balancing strategies

Management of memory 
hierarchies/locality

Increased workflow complexity

Acronyms
National Nuclear Security Administration (NNSA) � Advanced Simulation and Computing (ASC) � Advanced Technology Development & Mitigation (ATDM) 
Computational Systems & Software Environment (CSSE) � Lab Directed Research and Development (LDRD) � Advanced Scientific Computing Research (ASCR)

Project
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structure and parallel execution abstractions
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DARMA FY15-FY16 1.6 M/year ATDM

C++ embedded domain specific language (EDSL) and
specification for expressing deferred, asynchronous work
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FY15 shift from CSSE to ATDM triggered significant changes 
in DARMA team’s research focus

 No longer resilience-centric

 AMT models remain a focus

 Data-flow task-graph encodes 
information that supports dynamic
runtime optimizations and mitigation of 
programming challenges

 Complementary to (and interoperable 
with) Kokkos compile-time performance 
portability library
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Shift in focus motivated FY15 L2 milestone: Assess leading 
AMT runtimes to inform ATDM’s technical roadmap 
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 Broad survey of existing AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Assessed programmability, performance, mutability

+ Empirical studies highlighted performance potential

- Not yet production-ready for ASC needs

- Requirements gaps

- Deficiencies in existing application 
programming interfaces (APIs)

 Study highlighted need for AMT best practices



DARMA: a C++ embedded domain specific language (DSL) for 
the expression of deferred, asynchronous work

 A vehicle for community-based resolution to 
issues raised in the FY15 study

 Insulate applications from runtime system 
idiosyncrasies

 Improve AMT runtime programmability 
 Co-develop front end API 

 Application and runtime system teams

 Synthesize application co-design activities into 
runtime system requirements

 Facilitate AMT design space exploration, 
accelerating development of AMT best practices
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DARMA’s translation layer maps simple application-level 
semantics into backend runtime system calls 
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Coarse-grained task-
based intermediate 

representation

Application
code

Runtime System

Translation Layer
(C++ template 

metaprogramming)

Front end API

Back end API

 Back end API calls implicitly encode data-task 
dependencies for runtime system

 Dependency information enables runtime to 
make dynamic decisions 

 Data staging 

 Work scheduling

 Relatively execution model agnostic

 Runtimes must: 

 Support efficient SPMD (single program multiple 
data) launch

 Preserve data-flow dependencies

 Supports runtime system buildout with a variety of 
existing AMT runtime system technologies



C++ embedded task annotations express deferred work 
while maintaining sequential semantics

 Work executes asynchronously after 
all dependencies are met

 DARMA derives dependencies 
implicitly using AccessHandles

 C++ features enable preservation of 
sequential semantics
 Lambdas, reference counted pointers

 Deferred work can migrate after 
launch when beneficial
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// .. CODE ..
auto my_handle<int> =

initial_access(“a_key”);
create_work([=] {

// dependencies are derived
// implicitly based off the use of  
// handles
my_handle.set_value(37);  

} 

// .. CODE ..
create_work([=] {

// sequential semantics let you 
// reason about code in sequential
// order within rank – even with
// deferred work
my_handle.set_value(48);

}   

// .. CODE ..



DARMA maintains the notion of a rank
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int darma_main(int argc, char** argv) 
{

darma_init(argc, argv);
const int me = darma_spmd_rank();
const int size = darma_spmd_size();

// .. CODE ..

darma_finalize();
}

 Convenience mechanism for initial 
problem launch and distribution

 Enables locality preservation and 
performance for SPMD codes

 Maintains MPI-like semantics for 
ease of integration with existing 
applications



Coordination semantics are used to communicate 
between ranks

 Key-value store abstraction and 
coordination semantics

 publish/fetch data using key

 No direct address, otherwise 
analogous to send/recv

 Promotes deferred execution, task 
migration, resilience strategies

 Enables data-driven collectives to be 
expressed 
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int darma_main(int argc, char** argv) 
{

darma_init(argc, argv);
const int me = darma_spmd_rank();
const int size = darma_spmd_size();

// Neighbors rank id
size_t nbr = (me == 0) ? size-1 : me-1; 

// Create a handle
auto my_handle = init_access<float>(me);

// Do some work that sets handle value

// Publish handle
my_handle.publish(n_readers=1);

// Fetch neighbor’s handle value
auto val = read_access<float>(nbr);

// .. CODE ..
darma_finalize();

}



After only 8 months DARMA is already garnering active 
community engagement

 Formal specification facilitates collaborations

 Initial specification was co-developed with ATDM 
application partners

 Features are being added incrementally for agile 
community development feedback cycles

 Specification feedback process is underway with 
external runtime and application partners
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http://darma.sandia.gov
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Multiple DARMA-compliant runtime activities are 
underway leveraging existing AMT runtime technologies

Reference node-level 
implementation 
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ATDM computer science 
component teams are 
leveraging Charm++

HPX-5

Habanero-UPC++

OCR 

Active university-led efforts Shortlist of others we would like to engage

Legion

Uintah

CHAI+RAJA

Sandia-led efforts



We have aggressive timelines for feature specification and 
AMT runtime design exploration activities 

Planned specification features

 Collectives (6/16)

 Interoperability with MPI (9/16)

 Expressive abstract machine 
model (9/16)

 Fine-grained deferred parallel 
patterns (9/16)

 Data subsetting/slicing interface 
(9/16)

 Programmer-directed 
optimization/load balancing hooks 
(12/16)

Runtime buildout activities

 Sandia ATDM/Charm++ initial 
implementation by 9/16

 ASC/ATDM Level 2 milestone 
in 9/17

 Continued outreach with 
existing runtime teams

 Full commitment to Exascale
Computing Project research 
efforts
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Takeaway Messages

 Sandia is taking a holistic approach to mitigating programming 
challenges for next generation platforms
 Complementary run-/compile-time,  node-/system-level research 

 In a short timeframe Sandia has re-focused our run-time/ 
system-level research efforts:
 Developing infrastructure and tools to support community-based 

resolution to address requirements gaps and deficiencies

 Already seeing community impact through breadth of 
collaborations underway
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BACKUP SLIDES
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DARMA Team and Interactions
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Publications/Presentations/Outreach Activities

Co-organized Community Events:

 ISC16 Workshop on Building a European/American Community for the Development of Dynamic Runtimes in Extreme-Scale Systems  

 HPDAV 16 Panel on Programming Data Analysis and Visualization at the Extreme-Scale

 SC15 Panel Asynchronous Many-Task Programming Models for Next-Generation Platforms

 SC14 BOF Asynchronous Many-Task Programming Models for Next-Generation Platforms

Reports:

 DARMA 0.3.0-alpha Specification, Jeremiah Wilke, David Hollman, Nicole Slattengren, Hemanth Kolla, Francesco Rizzi, Janine Bennett.  
Sandia Technical Report SAND2016, Sandia National Laboratories, 2016. 

 ASC ATDM Level 2 milestone #5325: Asynchronous Many-Task runtime system analysis and assessment for next generation platforms. 
Janine C. Bennett, Robert Clay, et al. Sandia Technical Report SAND2015-8312, Sandia National Laboratories, 2015. 

Presentations:

 The DARMA Approach to Asynchronous Many-Task Programming. Janine C. Bennett, Jeremiah Wilke, et. al. Presented at ECP Review 
2016, Sandia National Laboratories, 2016.

 A Comparative Analysis of Asynchronous Many-Task Programming Models for Next Generation Platforms. Janine C. Bennett, Hemanth
Kolla, et. al. Presented at SIAM CSE 2015, MS 129 DAT-Based Efficient Scalable and Portable PDE Software, 2015.

Conference Publications:

 Enabling Runtime/Application Co-Design through Common Concurrency Concepts. Jeremiah J. Wilke, Janine C. Bennett, Robert Clay. 
Proceedings of Runtime Systems for Extreme Scale Programming Models and Architectures SC15 Workshop, 2015.

 Lessons Learned from Porting the MiniAero Application to Charm++. David S. Hollman, Janine C. Bennett, et. al. Presented at the 13th 
Annual Workshop on Charm++ and its Applications, 2015.

 Evolving the Message Passing Programming Model via a Fault-Tolerant, Object-oriented Transport Layer. Jeremiah J. Wilke, Keita 
Teranishi, et al. Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale, FTXS 2015. pp. 41-46, ACM, 2015.

 Extreme-Scale Viability of Collective Communication for Resilient Task Scheduling and Work Stealing. Jeremiah J. Wilke, Janine C. 
Bennett, et al. Proceedings of the 4th Workshop on Fault Tolerance for HPC at eXtreme Scale, FTXS 2014. pp. 756-761, 2014.

 Coordination Languages and MPI Perturbation Theory: The FOX Tuple Space Framework for Resilience. Jeremiah J. Wilke. Proceedings of 
IPDPS Workshops. pp. 1208-1217, 2014. 19
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DARMA design and implementation details

 Mixed imperative/declarative style of programming
 Sequential imperative semantics in large blocks that do not execute 

immediately

 SPMD is still the dominant form of parallelism

 C++-embedded task annotations allow work to be deferred 
and performed asynchronously 
 Declarative description of coarse grained chunks that the runtime can 

schedule and run when dependencies are met

 Task parallelism is achieved through permissions/access 
qualifiers on data 
 Enables runtime to reason about what can run in parallel and make 

intelligent staging decisions
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The Ontology of DARMA: Axioms/assumptions derived 
from L2 milestone and co-design activities
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 SPMD is the dominant parallelism 

 There will too much compute (parallelism) available in the 
hardware for basic data parallelism to fill

 Extra asynchrony should not complicate reasoning about 
application correctness (intuitive semantics, debugging tools)

 There exist many applications/algorithms with dynamic load 
balance, dynamic sparsity, or complex workflow coupling 
whose development would be greatly accelerated by a more 
productive programming model

 The traditional MPI abstract machine model (uniform compute 
elements, flat memory spaces) will get further and further 
away from actual system architecture



Keep simple things simple, keep tractable things tractable, 
make difficult things tractable

 Simple/tractable

 SPMD launch and initial problem decomposition/distribution

 Collectives

 Basic checkpoint/restart fault recovery supported

 Application-specific data structures/layouts

 Difficult

 Express/mix all forms of parallelism (data, pipeline, task)

 Dynamic load balancing, work stealing

 Data staging (software-managed cache)

 Performance portability across execution spaces

 Macro data-flow parallelism (parallelism within a task)



ASC/ATDM subprogram is enabling new decision-support 
capabilities for NNSA ASC nuclear weapons applications

23

Electro-magnetic plasma in 
hostile environment 

Hypersonic Re-entry

 Two production prototype applications

 New code-base suitable for future ASC applications

 Component software design

 Agility, reuse, and reduced cost

 Advanced computational science capabilities

 Embedded geometry and meshing

 Embedded UQ, optimization, and analytics for 
decision-support

 Flexible, robust and dynamic multiscale & multi-
physics

Acronyms
National Nuclear Security Administration (NNSA) � Advanced Simulation and Computing (ASC) � Advanced Technology Development & Mitigation (ATDM)



Key performance findings confirm AMT runtime potential 
for addressing next generation platform challenges 

 Empirical studies show an AMT runtime 
can mitigate performance heterogeneity 
inherent to the machine itself

 MPI and AMT runtimes perform 
comparably under balanced conditions

 Summary of previous experiments show 
strengths of AMT runtimes for dynamic 
applications
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MiniAero-Uintah test runs on Cielo Weak Scaling
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65.5K cells

131K cells

262K cells

524K cells

1.05M cells

2.10M cells
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Key programmability and mutability findings show AMT 
runtimes are not yet ready for production use

 Requirements gaps

 Deficiencies in existing application 
programming interfaces (APIs)

 Highlights need for development 
of community best practices
 Accelerate adoption of runtimes

 Provide concise application-informed 
requirements to researchers and 
vendors providing lower-level 
components of software stack
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