Sandia
National
Laboratories

Exceptional

service
in the
national

interest

SAND2016- 5212PE

DARMA: Distributed Asynchronous Resilient
Models and Applications

Ja

nine C. Bennett, Jeremiah J. Wilke, David S. Hollman,

Nicole Slattengren, Hemanth Kolla, Francesco Rizzi, Keita
Teranishi, Robert L. Clay

CIS External Review
Sandia National Laboratories
June 7, 2016

=% U.S. DEPARTMENT OF

. ‘

7 VA J)
ENERGY # Vi

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Extreme-scale high performance computing (HPC))
architectures introduce programming challenges e

System Change Programming Challenge

Increased node-level parallelism Expressing/managing node-level & hybrid parallelism

Diverse target architectures Performance portability across systems

Resilience/Fault mitigation

Increased need for effective load-balancing strategies

Decreased system reliability

Increased system noise

Deeper memory hierarchies Management of memory hierarchies/locality

Increased system scale Increased workflow complexity

Scientific Grand Challenges
R ooz

ARCHITECTUF
(Low Capacity, High Bandwidth) o LABORATORY

(High Capacity,

3D Stacked
Low Bandwidth)

Memory

) _(
Thin Cores / Accelerators
Fat
Core
Fat
Core
X«

Inte ted NIC
nf:lfgroaﬁ?Chip Coherence Domain
Communication

| 4
Core

HPC's role in stockpile stewardship shapes Sandia’s NNSA/ASG) sa,
programming model investments st

Kokkos v1/ FYO7-FY14/ 0O(450) K/year/ ATDM (CSSE, Expressing/managing node-level
Kokkos v2 FY10-FY16 O(1)M/year LDRD, ASCR) & hybrid parallelism
C++ many-core performance portability library providing data Performance portability across
structure and parallel execution abstractions systems

Resilience/Fault tolerance

Increased need for effective load-
balancing strategies

Management of memory
hierarchies/locality

Increased workflow complexity

Acronyms
National Nuclear Security Administration (NNSA) & Advanced Simulation and Computing (ASC) B Advanced Technology Development & Mitigation (ATDM)
Computational Systems & Software Environment (CSSE) B Lab Directed Research and Development (LDRD) & Advanced Scientific Computing Research (ASCR) 3

HPC’s role in stockpile stewardship shapes Sandia’s NNSA/ASQm St
programming model investments st

Kokkos v1/ FYO7-FY14/ 0O(450) K/year/ ATDM (CSSE, Expressing/managing node-level
Kokkos v2 FY10-FY16 O(1)M/year LDRD, ASCR) & hybrid parallelism
C++ many-core performance portability library providing data Performance portability across
structure and parallel execution abstractions systems
AMT Resilience FY12-FY14 0O(200-400) CSRF/CSSE Resilience/Fault tolerance
/DHARMA K/yea r

Increased need for effective load-
Structural simulation-based resilience research focused on balancing strategies

asynchronous many-task runtimes
Management of memory

hierarchies/locality

Increased workflow complexity

Acronyms
National Nuclear Security Administration (NNSA) B Advanced Simulation and Computing (ASC) @ Advanced Technology Development & Mitigation (ATDM)
Computational Systems & Software Environment (CSSE) @l Lab Directed Research and Development (LDRD) B Advanced Scientific Computing Research (ASCR) 4

HPC’s role in stockpile stewardship shapes Sandia’s NNSA/ASQm St
programming model investments st

Programming Challenge

Kokkos v1/ FYO7-FY14/ 0O(450) K/year/ ATDM (CSSE, Expressing/managing node-level
Kokkos v2 FY10-FY16 O(1)M/year LDRD, ASCR) & hybrid parallelism
C++ many-core performance portability library providing data Performance portability across
structure and parallel execution abstractions systems
AMT Resilience FY12-FY14 0O(200-400) CSRF/CSSE Resilience/Fault tolerance
/DHARMA K/year

Increased need for effective load-
Structural simulation-based resilience research focused on balancing strategies

asynchronous many-task runtimes
Management of memory

DARMA FY15-FY16 1.6 M/year ATDM hierarchies/locality

C++ embedded domain specific language (EDSL) and Increased workflow complexity
specification for expressing deferred, asynchronous work

Acronyms
National Nuclear Security Administration (NNSA) B Advanced Simulation and Computing (ASC) @ Advanced Technology Development & Mitigation (ATDM)
Computational Systems & Software Environment (CSSE) @l Lab Directed Research and Development (LDRD) B Advanced Scientific Computing Research (ASCR) 5

FY15 shift from CSSE to ATDM triggered significant changes) e,
in DARMA team’s research focus -

= No longer resilience-centric Programming Challenge

Expressing/managing node-level

= AMT models remain a focus 2 hobrid parallelism
= Data-flow task-graph encodes Performance portability across
information that supports dynamic systems
runtime optimizations and mitigation of Resilience/Fault tolerance

Increased need for effective load-

programming challenges
balancing strategies

. .
C(?mplementary to'(anc'zl interoperable Management of memory
with) Kokkos compile-time performance hierarchies/locality
portability library Increased workflow complexity

Acronyms
National Nuclear Security Administration (NNSA) & Advanced Simulation and Computing (ASC) B Advanced Technology Development & Mitigation (ATDM)

Computational Systems & Software Environment (CSSE) B Lab Directed Research and Development (LDRD) & Advanced Scientific Computing Research (ASCR) 6

Shift in focus motivated FY15 L2 milestone: Assess leading () i,
AMT runtimes to inform ATDM's technical roadmap o

= Broad survey of existing AMT runtime systems |

SANDIA REPORT

= Deep dive on Charm++, Legion, Uintah

ofe oy ASC ATDM Level 2 Milestone #5325:
= Assessed programmability, performance, mutability Asynhvanous Many-Task Runims System
Generation Platforms

+ Empirical studies highlighted performance potential
- Not yet production-ready for ASC needs
- Requirements gaps

- Deficiencies in existing application
programming interfaces (APIs) BT R

@ Sandia National Laboratories

= Study highlighted need for AMT best practices —

DARMA: a C++ embedded domain specific language (DSL) for
the expression of deferred, asynchronous work

Sandia
National
Laboratories

Application

A vehicle for community-based resolution to code

issues raised in the FY15 study
L : { Front end API J
Insulate applications from runtime system
idiosyncrasies Translation Layer
. . |

Improve AMT runtime programmability & m;g;gggfnfﬁfng)

= Co-develop front end API [Back end AP J

= Application and runtime system teams

Synthesize application co-design activities into
runtime system requirements

Coarse-grained task-
based intermediate
representation

Facilitate AMT design space exploration,
accelerating development of AMT best practices

‘ Runtime System }

8

DARMA's translation layer maps simple application-level () iz,
semantics into backend runtime system calls

Laboratories

= Back end API calls implicitly encode data-task

Application
dependencies for runtime system PP

code
= Dependency information enables runtime to

make dynamic decisions { Front end AP J

= Data stagin :
sing Translation Layer
= Work scheduling & (C++ template

metaprogramming)

Back end API J

= Relatively execution model agnostic [

= Runtimes must:

= Support efficient SPMD (single program multiple

Coarse-grained task-
data) launch

based intermediate

" Preserve data-flow dependencies representation

= Supports runtime system buildout with a variety of
existing AMT runtime system technologies ‘ Runtime System }

9

C++ embedded task annotations express deferred work
while maintaining sequential semantics

Sandia
|I1 National

Laboratories

Work executes asynchronously after
all dependencies are met

DARMA derives dependencies
implicitly using AccessHandles

C++ features enable preservation of
sequential semantics

= |ambdas, reference counted pointers

Deferred work can migrate after
launch when beneficial

/I .. CODE ..
auto my_handle<int> =
initial_access(“a_key”);
create_work([=] {
/I dependencies are derived
/I implicitly based off the use of
/I handles
my_handle.set_value(37);

—

/I .. CODE ..

create_work([=] {
/I sequential semantics let you
/] reason about code in sequential
/I order within rank — even with
/I deferred work
my_handle.set_value(48);

}

/l.. CODE ..

Sandia
DARMA maintains the notion of a rank i) fatonat

= Convenience mechanism for initial int darma_main(int argc, char** argv)
. {
problem launch and distribution darma_init(argc, argv):
.] const int me = darma_spmd_rank();
= Enables locality preservation and const int size = darma_spmd_size();
performance for SPMD codes /I .. CODE ..
= Maintains MPI-like semantics for darma_finalize();

}

ease of integration with existing
applications

Coordination semantics are used to communicate) e,
Laboratories
between ranks

= Key-value store abstraction and
coordination semantics

= publish/fetch data using key

= No direct address, otherwise
analogous to send/recv

int darma_main(int argc, char** argv)

{
darma_init(argc, argv);
const int me = darma_spmd_rank();
const int size = darma_spmd_size();

/I Neighbors rank id
size_tnbr = (me == 0) ? size-1 : me-1;

/Il Create a handle

= Promotes deferred execution, task

migration, resilience strategies

Enables data-driven collectives to be
expressed

auto my_handle = init_access<float>(me);
/I Do some work that sets handle value

/[Publish handle
my_handle.publish(n_readers=1);

/I Fetch neighbor’s handle value
auto val = read_access<float>(nbr);

/I .. CODE ..
darma_finalize();

12

After only 8 months DARMA is already garnering active) i
community engagement shortoes

= Formal specification facilitates collaborations]

SANDIA REPORT

SAND2016-

= |nitial specification was co-developed with ATDM
. . DARMA 0.3.0-alpha Specification
a p p | | C at I O n p a rt n e rS doreiah L Wik, Davd. Holman, Niso L Sitonren, Homarth Ko, Fancesco iz, Jariea

Propared by
Sandia Natonal Lasoraores
Altuarmon, New Mexico 57185 70 Livermors, Caltorna S4550

" Features are being added incrementally for agile e
community development feedback cycles

= Specification feedback process is underway with
external runtime and application partners

http://darma.sandia.gov

http://darma.sandia.gov/
http://darma.sandia.gov/

Multiple DARMA-compliant runtime activities are)
underway leveraging existing AMT runtime technologies o

. ATDM Applications
Sandla'/Ed Eﬁorts ATDM App Components

System Portability across runtime |

Refe re N Ce n O d e' | eve | - implementations, (coarse

o 2 and fine-grained) task
. . c 5 scheduling and data
implementation 3 monsgementoolies | ponnispl

g = _.'% Fine-grained data "~ okkos | Translation Layer

o] = e
5 o]
= Node memory spaces Translation Layer |
Data Management (movement/staging) Work Management (scheduling, work stealing)

ATDM computer science (g s Oate Warehousestim | | 1| pets i || sode i mem

_g A”D:asgg;c:nd Lunasa Kelpie | OpenMP, pthreads, CUDA, Qthreads
CO m p O n e nt te a m S a re g Arbitration Mem allocator Obj. mgmt. Kokkos translation layer back end targets

o

> Services

1 o l OpBox Async Operations I Network Portability
| harme++
eve ragl ng C a rm+ ‘ NNTI (libfabric) | \ Converse ‘

e

% /o NIC M Hi h CPUC Accelerat

° Subsystem lemory Hierarchy ores ccelerators

T

Active university-led efforts Shortlist of others we would like to engage
HPx-5 [8 o Lodemes
Habanero-UPC++ Uintah p

% (nteD CHAI+RAJA | 5

3 —

We have aggressive timelines for feature specification and () s,
AMT runtime design exploration activities

Laboratories

Planned specification features Runtime buildout activities

= Collectives (6/16) = Sandia ATDM/Charm++ initial

= |nteroperability with MPI (9/16) implementation by 9/16

= Expressive abstract machine = ASC/ATDM Level 2 milestone
model (9/16) in 9/17

= Fine-grained deferred parallel = Continued outreach with

patterns (9/16)
= Data subsetting/slicing interface

existing runtime teams

" Full commitment to Exascale

(9/16) Computing Project research
= Programmer-directed efforts

optimization/load balancing hooks

(12/16)

15

Sandia
Takeaway Messages L f

= Sandia is taking a holistic approach to mitigating programming
challenges for next generation platforms

= Complementary run-/compile-time, node-/system-level research

= |n ashort timeframe Sandia has re-focused our run-time/
system-level research efforts:

= Developing infrastructure and tools to support community-based
resolution to address requirements gaps and deficiencies

= Already seeing community impact through breadth of
collaborations underway

BACKUP SLIDES

17

DARMA Team and Interactions) i

Laboratories
@ ATDM CS Components
and Applications
Jeremiah Wilke
David Hollman , Martin Berzins
Nicole Slattengren Alan Humphrey
Jonathan Lifflander " Todd Harman
Hemanth Kolla & .

Francesco Rizzi _— A[(Alex A'k?n

Keita Teranishi 3 Sean Treichler

\JC
Janine Bennett
E Thomas Sterling

Tim Mattson (In ,:

Rob Van Der Wijngaart

SN

@ Vivek Sarkar

H Sanjay Kale
Nikhil Jain

tel.
.Jeff Keasler Legend
Dave Richards <+————— FY15 L2 Milestone

+«——— DARMA Specification
+————— Runtime System Buildout

18

Sandia
Publications/Presentations/Outreach Activities i) Nmat

Co-organized Community Events:

. ISC16 Workshop on Building a European/American Community for the Development of Dynamic Runtimes in Extreme-Scale Systems
. HPDAV 16 Panel on Programming Data Analysis and Visualization at the Extreme-Scale

. SC15 Panel Asynchronous Many-Task Programming Models for Next-Generation Platforms

. SC14 BOF Asynchronous Many-Task Programming Models for Next-Generation Platforms

Reports:

= DARMA 0.3.0-alpha Specification, Jeremiah Wilke, David Hollman, Nicole Slattengren, Hemanth Kolla, Francesco Rizzi, Janine Bennett.
Sandia Technical Report SAND2016, Sandia National Laboratories, 2016.

= ASC ATDM Level 2 milestone #5325: Asynchronous Many-Task runtime system analysis and assessment for next generation platforms.
Janine C. Bennett, Robert Clay, et al. Sandia Technical Report SAND2015-8312, Sandia National Laboratories, 2015.

Presentations:

. The DARMA Approach to Asynchronous Many-Task Programming. Janine C. Bennett, Jeremiah Wilke, et. al. Presented at ECP Review
2016, Sandia National Laboratories, 2016.

. A Comparative Analysis of Asynchronous Many-Task Programming Models for Next Generation Platforms. Janine C. Bennett, Hemanth
Kolla, et. al. Presented at SIAM CSE 2015, MS 129 DAT-Based Efficient Scalable and Portable PDE Software, 2015.

Conference Publications:

. Enabling Runtime/Application Co-Design through Common Concurrency Concepts. Jeremiah J. Wilke, Janine C. Bennett, Robert Clay.
Proceedings of Runtime Systems for Extreme Scale Programming Models and Architectures SC15 Workshop, 2015.

= Lessons Learned from Porting the MiniAero Application to Charm++. David S. Hollman, Janine C. Bennett, et. al. Presented at the 13th
Annual Workshop on Charm++ and its Applications, 2015.

. Evolving the Message Passing Programming Model via a Fault-Tolerant, Object-oriented Transport Layer. Jeremiah J. Wilke, Keita
Teranishi, et al. Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale, FTXS 2015. pp. 41-46, ACM, 2015.

= Extreme-Scale Viability of Collective Communication for Resilient Task Scheduling and Work Stealing. Jeremiah J. Wilke, Janine C.
Bennett, et al. Proceedings of the 4th Workshop on Fault Tolerance for HPC at eXtreme Scale, FTXS 2014. pp. 756-761, 2014.

. Coordination Languages and MPI Perturbation Theory: The FOX Tuple Space Framework for Resilience. Jeremiah J. Wilke. Proceedings of
IPDPS Workshops. pp. 1208-1217, 2014. 19

-

https://share.sandia.gov/darma/_assets/documents/FTXS_15.bib
https://share.sandia.gov/darma/_assets/documents/FTXS_14.bib
https://share.sandia.gov/darma/_assets/documents/FTXS_15.bib
https://share.sandia.gov/darma/_assets/documents/Charm++Workshop2015-presentation.bib
https://share.sandia.gov/darma/_assets/documents/RESPA_2015.bib
https://share.sandia.gov/darma/_assets/documents/ECP-Review-2016-DARMA.bib
https://share.sandia.gov/darma/_assets/documents/ECP-Review-2016-DARMA.bib
https://share.sandia.gov/darma/_assets/documents/SC15-AMT-Panel.bib

Sandia
DARMA design and implementation details) e

= Mixed imperative/declarative style of programming

= Sequential imperative semantics in large blocks that do not execute
immediately

= SPMD is still the dominant form of parallelism

= C++-embedded task annotations allow work to be deferred
and performed asynchronously
= Declarative description of coarse grained chunks that the runtime can
schedule and run when dependencies are met
= Task parallelism is achieved through permissions/access
qualifiers on data

= Enables runtime to reason about what can run in parallel and make
intelligent staging decisions

20
-

Sandia

The Ontology of DARMA: Axioms/assumptions derived i) Natoral
from L2 milestone and co-design activities

= SPMD is the dominant parallelism

= There will too much compute (parallelism) available in the
hardware for basic data parallelism to fill

= Extra asynchrony should not complicate reasoning about
application correctness (intuitive semantics, debugging tools)

= There exist many applications/algorithms with dynamic load
balance, dynamic sparsity, or complex workflow coupling
whose development would be greatly accelerated by a more
productive programming model

= The traditional MPI abstract machine model (uniform compute
elements, flat memory spaces) will get further and further
away from actual system architecture

21

Keep simple things simple, keep tractable things tractable, () iz,
make difficult things tractable

Laboratories

= Simple/tractable
= SPMD launch and initial problem decomposition/distribution
= Collectives
= Basic checkpoint/restart fault recovery supported
= Application-specific data structures/layouts

= Difficult

= Express/mix all forms of parallelism (data, pipeline, task)
= Dynamic load balancing, work stealing

= Data staging (software-managed cache)

= Performance portability across execution spaces

= Macro data-flow parallelism (parallelism within a task)

ASC/ATDM subprogram is enabling new decision-support () i,
capabilities for NNSA ASC nuclear weapons applications o

= Two production prototype applications

= New code-base suitable for future ASC applications
= Component software design

= Agility, reuse, and reduced cost
= Advanced computational science capabilities
= Embedded geometry and meshing

= Embedded UQ, optimization, and analytics for
decision-support

= Flexible, robust and dynamic multiscale & multi- Electro-magnetic plasma in
physics hostile environment

Acronyms
National Nuclear Security Administration (NNSA) & Advanced Simulation and Computing (ASC) B Advanced Technology Development & Mitigation (ATDM)

23
-

Key performance findings confirm AMT runtime potential A e,
for addressing next generation platform challenges

MiniAero-Charm++ Load Balancing
with increasing load imbalance introduced on Shepard

= Empirical studies show an AMT runtime
can mitigate performance heterogeneity
inherent to the machine itself

= MPI and AMT runtimes perform
comparably under balanced conditions

Wall time (s)

= Summary of previous experiments show
strengths of AMT runtimes for dynamic
applications

Load Balancer
% DummyLB

0 5 10 15
System Load Imbalance (number of nodes at low frequency)

MiniAero-MPI test runs on Cielo MiniAero-Charm++ test runs on Cielo MiniAero-Uintah test runs on Cielo Weak Scaling
—— 32.8K cells/ node

— 65.5K cells/ node
131K cells/ node
— 262K cells/ node

Strong Scaling
O-O 32.8K cells
0O-0 65.5K cells

A——e— i — ——

__—e—¢

Meen wall time per timestep (s)
Meen wall time per timestep (s)
Meen wall time per timestep (s)

64 256 1024 4096
Nodes

64 256 1024 4096
Nodes Nodes

64 256 1024 4096

cells
= 2.15B cell
cells 24

Key programmability and mutability findings show AMT) i
runtimes are not yet ready for production use o

= Requirements gaps ——

SANDIA REPORT

SAND2015-8312

= Deficiencies in existing application
programming interfaces (APlS) ASC ATDM Level 2 Milestone #5325:

Asynchronous Many-Task Runtime System
Analysis and Assessment for Next
Generation Platforms

Janine Bennett (Pl), Robert Clay (PM), Gavin Baker, Marc Gamell, David Hollman, Samuel Knight,
Hemanth Kolla, Gregory Sjaardema, Nicole Slattengren, Keita Teranishi, Jeremiah Wilke
(DHARMA Programming Model and Runtime System Research),

Matt Bettencourt, Steve Bova, Ken Franko, Paul Lin (Applications),

= Highlights need for development

Laxmikant Kale, Nikhil Jain, Eric Mikida (Charm++)
University of linois, Urbana Champaign

of community best practices A R———

Stanford University

Martin Berzins, Todd Harman, Alan Humphrey, John Schmidt, Dan Sunderland (Uintah)
University of Utah

= Accelerate adoption of runtimes P

Los Alamos National Laboratory

Martin Schulz, Abhinav Bhatele, David Boehme, Peer-Timo Bremer, Todd Gamblin (Tools)

= Provide concise application-informed R

requirements to researchers and e < A e

vendors providing lower-level B A
components of software stack () sencia Netional taboratores

