
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

DARMA: Distributed Asynchronous Resilient

Models and Applications

Janine C. Bennett, Jeremiah J. Wilke, David S. Hollman,
Nicole Slattengren, Hemanth Kolla, Francesco Rizzi, Keita
Teranishi, Robert L. Clay

CIS External Review

Sandia National Laboratories

June 7, 2016

SAND2016-5212PE

Extreme-scale high performance computing (HPC)
architectures introduce programming challenges

System Change Programming Challenge

Increased node-level parallelism Expressing/managing node-level & hybrid parallelism

Diverse target architectures Performance portability across systems

Decreased system reliability Resilience/Fault mitigation

Increased system noise Increased need for effective load-balancing strategies

Deeper memory hierarchies Management of memory hierarchies/locality

Increased system scale Increased workflow complexity

2

HPC’s role in stockpile stewardship shapes Sandia’s NNSA/ASC
programming model investments

3

Programming Challenge

Expressing/managing node-level
& hybrid parallelism

Performance portability across
systems

Resilience/Fault tolerance

Increased need for effective load-
balancing strategies

Management of memory
hierarchies/locality

Increased workflow complexity

Acronyms
National Nuclear Security Administration (NNSA) � Advanced Simulation and Computing (ASC) � Advanced Technology Development & Mitigation (ATDM)
Computational Systems & Software Environment (CSSE) � Lab Directed Research and Development (LDRD) � Advanced Scientific Computing Research (ASCR)

Project

Kokkos v1/
Kokkos v2

FY07-FY14/
FY10-FY16

O(450) K/year/
O(1)M/year

ATDM (CSSE,
LDRD, ASCR)

C++ many-core performance portability library providing data
structure and parallel execution abstractions

HPC’s role in stockpile stewardship shapes Sandia’s NNSA/ASC
programming model investments

4

Programming Challenge

Expressing/managing node-level
& hybrid parallelism

Performance portability across
systems

Resilience/Fault tolerance

Increased need for effective load-
balancing strategies

Management of memory
hierarchies/locality

Increased workflow complexity

Acronyms
National Nuclear Security Administration (NNSA) � Advanced Simulation and Computing (ASC) � Advanced Technology Development & Mitigation (ATDM)
Computational Systems & Software Environment (CSSE) � Lab Directed Research and Development (LDRD) � Advanced Scientific Computing Research (ASCR)

Project

Kokkos v1/
Kokkos v2

FY07-FY14/
FY10-FY16

O(450) K/year/
O(1)M/year

ATDM (CSSE,
LDRD, ASCR)

C++ many-core performance portability library providing data
structure and parallel execution abstractions

AMT Resilience
/DHARMA

FY12-FY14 O(200-400)
K/year

CSRF/CSSE

Structural simulation-based resilience research focused on
asynchronous many-task runtimes

HPC’s role in stockpile stewardship shapes Sandia’s NNSA/ASC
programming model investments

5

Project

Kokkos v1/
Kokkos v2

FY07-FY14/
FY10-FY16

O(450) K/year/
O(1)M/year

ATDM (CSSE,
LDRD, ASCR)

C++ many-core performance portability library providing data
structure and parallel execution abstractions

AMT Resilience
/DHARMA

FY12-FY14 O(200-400)
K/year

CSRF/CSSE

Structural simulation-based resilience research focused on
asynchronous many-task runtimes

DARMA FY15-FY16 1.6 M/year ATDM

C++ embedded domain specific language (EDSL) and
specification for expressing deferred, asynchronous work

Acronyms
National Nuclear Security Administration (NNSA) � Advanced Simulation and Computing (ASC) � Advanced Technology Development & Mitigation (ATDM)
Computational Systems & Software Environment (CSSE) � Lab Directed Research and Development (LDRD) � Advanced Scientific Computing Research (ASCR)

Programming Challenge

Expressing/managing node-level
& hybrid parallelism

Performance portability across
systems

Resilience/Fault tolerance

Increased need for effective load-
balancing strategies

Management of memory
hierarchies/locality

Increased workflow complexity

FY15 shift from CSSE to ATDM triggered significant changes
in DARMA team’s research focus

 No longer resilience-centric

 AMT models remain a focus

 Data-flow task-graph encodes
information that supports dynamic
runtime optimizations and mitigation of
programming challenges

 Complementary to (and interoperable
with) Kokkos compile-time performance
portability library

6

Programming Challenge

Expressing/managing node-level
& hybrid parallelism

Performance portability across
systems

Resilience/Fault tolerance

Increased need for effective load-
balancing strategies

Management of memory
hierarchies/locality

Increased workflow complexity

Acronyms
National Nuclear Security Administration (NNSA) � Advanced Simulation and Computing (ASC) � Advanced Technology Development & Mitigation (ATDM)
Computational Systems & Software Environment (CSSE) � Lab Directed Research and Development (LDRD) � Advanced Scientific Computing Research (ASCR)

Shift in focus motivated FY15 L2 milestone: Assess leading
AMT runtimes to inform ATDM’s technical roadmap

7

 Broad survey of existing AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Assessed programmability, performance, mutability

+ Empirical studies highlighted performance potential

- Not yet production-ready for ASC needs

- Requirements gaps

- Deficiencies in existing application
programming interfaces (APIs)

 Study highlighted need for AMT best practices

DARMA: a C++ embedded domain specific language (DSL) for
the expression of deferred, asynchronous work

 A vehicle for community-based resolution to
issues raised in the FY15 study

 Insulate applications from runtime system
idiosyncrasies

 Improve AMT runtime programmability
 Co-develop front end API

 Application and runtime system teams

 Synthesize application co-design activities into
runtime system requirements

 Facilitate AMT design space exploration,
accelerating development of AMT best practices

8

Coarse-grained task-
based intermediate

representation

Application
code

Runtime System

Translation Layer
(C++ template

metaprogramming)

Front end API

Back end API

DARMA’s translation layer maps simple application-level
semantics into backend runtime system calls

9

Coarse-grained task-
based intermediate

representation

Application
code

Runtime System

Translation Layer
(C++ template

metaprogramming)

Front end API

Back end API

 Back end API calls implicitly encode data-task
dependencies for runtime system

 Dependency information enables runtime to
make dynamic decisions

 Data staging

 Work scheduling

 Relatively execution model agnostic

 Runtimes must:

 Support efficient SPMD (single program multiple
data) launch

 Preserve data-flow dependencies

 Supports runtime system buildout with a variety of
existing AMT runtime system technologies

C++ embedded task annotations express deferred work
while maintaining sequential semantics

 Work executes asynchronously after
all dependencies are met

 DARMA derives dependencies
implicitly using AccessHandles

 C++ features enable preservation of
sequential semantics
 Lambdas, reference counted pointers

 Deferred work can migrate after
launch when beneficial

10

// .. CODE ..
auto my_handle<int> =

initial_access(“a_key”);
create_work([=] {

// dependencies are derived
// implicitly based off the use of
// handles
my_handle.set_value(37);

}

// .. CODE ..
create_work([=] {

// sequential semantics let you
// reason about code in sequential
// order within rank – even with
// deferred work
my_handle.set_value(48);

}

// .. CODE ..

DARMA maintains the notion of a rank

11

int darma_main(int argc, char** argv)
{

darma_init(argc, argv);
const int me = darma_spmd_rank();
const int size = darma_spmd_size();

// .. CODE ..

darma_finalize();
}

 Convenience mechanism for initial
problem launch and distribution

 Enables locality preservation and
performance for SPMD codes

 Maintains MPI-like semantics for
ease of integration with existing
applications

Coordination semantics are used to communicate
between ranks

 Key-value store abstraction and
coordination semantics

 publish/fetch data using key

 No direct address, otherwise
analogous to send/recv

 Promotes deferred execution, task
migration, resilience strategies

 Enables data-driven collectives to be
expressed

12

int darma_main(int argc, char** argv)
{

darma_init(argc, argv);
const int me = darma_spmd_rank();
const int size = darma_spmd_size();

// Neighbors rank id
size_t nbr = (me == 0) ? size-1 : me-1;

// Create a handle
auto my_handle = init_access<float>(me);

// Do some work that sets handle value

// Publish handle
my_handle.publish(n_readers=1);

// Fetch neighbor’s handle value
auto val = read_access<float>(nbr);

// .. CODE ..
darma_finalize();

}

After only 8 months DARMA is already garnering active
community engagement

 Formal specification facilitates collaborations

 Initial specification was co-developed with ATDM
application partners

 Features are being added incrementally for agile
community development feedback cycles

 Specification feedback process is underway with
external runtime and application partners

13

http://darma.sandia.gov

http://darma.sandia.gov/
http://darma.sandia.gov/

Multiple DARMA-compliant runtime activities are
underway leveraging existing AMT runtime technologies

Reference node-level
implementation

14

ATDM computer science
component teams are
leveraging Charm++

HPX-5

Habanero-UPC++

OCR

Active university-led efforts Shortlist of others we would like to engage

Legion

Uintah

CHAI+RAJA

Sandia-led efforts

We have aggressive timelines for feature specification and
AMT runtime design exploration activities

Planned specification features

 Collectives (6/16)

 Interoperability with MPI (9/16)

 Expressive abstract machine
model (9/16)

 Fine-grained deferred parallel
patterns (9/16)

 Data subsetting/slicing interface
(9/16)

 Programmer-directed
optimization/load balancing hooks
(12/16)

Runtime buildout activities

 Sandia ATDM/Charm++ initial
implementation by 9/16

 ASC/ATDM Level 2 milestone
in 9/17

 Continued outreach with
existing runtime teams

 Full commitment to Exascale
Computing Project research
efforts

15

Takeaway Messages

 Sandia is taking a holistic approach to mitigating programming
challenges for next generation platforms
 Complementary run-/compile-time, node-/system-level research

 In a short timeframe Sandia has re-focused our run-time/
system-level research efforts:
 Developing infrastructure and tools to support community-based

resolution to address requirements gaps and deficiencies

 Already seeing community impact through breadth of
collaborations underway

16

BACKUP SLIDES

17

DARMA Team and Interactions

18

Jeremiah Wilke
David Hollman
Nicole Slattengren
Jonathan Lifflander
Hemanth Kolla
Francesco Rizzi
Keita Teranishi
Janine Bennett

Thomas Sterling

Tim Mattson
Rob Van Der Wijngaart

Jeff Keasler
Dave Richards

Vivek Sarkar

Sanjay Kale
Nikhil Jain

Alex Aiken
Sean Treichler

Martin Berzins
Alan Humphrey
Todd Harman

ATDM CS Components
and Applications

FY15 L2 Milestone

Runtime System Buildout
DARMA Specification

Legend

Publications/Presentations/Outreach Activities

Co-organized Community Events:

 ISC16 Workshop on Building a European/American Community for the Development of Dynamic Runtimes in Extreme-Scale Systems

 HPDAV 16 Panel on Programming Data Analysis and Visualization at the Extreme-Scale

 SC15 Panel Asynchronous Many-Task Programming Models for Next-Generation Platforms

 SC14 BOF Asynchronous Many-Task Programming Models for Next-Generation Platforms

Reports:

 DARMA 0.3.0-alpha Specification, Jeremiah Wilke, David Hollman, Nicole Slattengren, Hemanth Kolla, Francesco Rizzi, Janine Bennett.
Sandia Technical Report SAND2016, Sandia National Laboratories, 2016.

 ASC ATDM Level 2 milestone #5325: Asynchronous Many-Task runtime system analysis and assessment for next generation platforms.
Janine C. Bennett, Robert Clay, et al. Sandia Technical Report SAND2015-8312, Sandia National Laboratories, 2015.

Presentations:

 The DARMA Approach to Asynchronous Many-Task Programming. Janine C. Bennett, Jeremiah Wilke, et. al. Presented at ECP Review
2016, Sandia National Laboratories, 2016.

 A Comparative Analysis of Asynchronous Many-Task Programming Models for Next Generation Platforms. Janine C. Bennett, Hemanth
Kolla, et. al. Presented at SIAM CSE 2015, MS 129 DAT-Based Efficient Scalable and Portable PDE Software, 2015.

Conference Publications:

 Enabling Runtime/Application Co-Design through Common Concurrency Concepts. Jeremiah J. Wilke, Janine C. Bennett, Robert Clay.
Proceedings of Runtime Systems for Extreme Scale Programming Models and Architectures SC15 Workshop, 2015.

 Lessons Learned from Porting the MiniAero Application to Charm++. David S. Hollman, Janine C. Bennett, et. al. Presented at the 13th
Annual Workshop on Charm++ and its Applications, 2015.

 Evolving the Message Passing Programming Model via a Fault-Tolerant, Object-oriented Transport Layer. Jeremiah J. Wilke, Keita
Teranishi, et al. Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale, FTXS 2015. pp. 41-46, ACM, 2015.

 Extreme-Scale Viability of Collective Communication for Resilient Task Scheduling and Work Stealing. Jeremiah J. Wilke, Janine C.
Bennett, et al. Proceedings of the 4th Workshop on Fault Tolerance for HPC at eXtreme Scale, FTXS 2014. pp. 756-761, 2014.

 Coordination Languages and MPI Perturbation Theory: The FOX Tuple Space Framework for Resilience. Jeremiah J. Wilke. Proceedings of
IPDPS Workshops. pp. 1208-1217, 2014. 19

https://share.sandia.gov/darma/_assets/documents/FTXS_15.bib
https://share.sandia.gov/darma/_assets/documents/FTXS_14.bib
https://share.sandia.gov/darma/_assets/documents/FTXS_15.bib
https://share.sandia.gov/darma/_assets/documents/Charm++Workshop2015-presentation.bib
https://share.sandia.gov/darma/_assets/documents/RESPA_2015.bib
https://share.sandia.gov/darma/_assets/documents/ECP-Review-2016-DARMA.bib
https://share.sandia.gov/darma/_assets/documents/ECP-Review-2016-DARMA.bib
https://share.sandia.gov/darma/_assets/documents/SC15-AMT-Panel.bib

DARMA design and implementation details

 Mixed imperative/declarative style of programming
 Sequential imperative semantics in large blocks that do not execute

immediately

 SPMD is still the dominant form of parallelism

 C++-embedded task annotations allow work to be deferred
and performed asynchronously
 Declarative description of coarse grained chunks that the runtime can

schedule and run when dependencies are met

 Task parallelism is achieved through permissions/access
qualifiers on data
 Enables runtime to reason about what can run in parallel and make

intelligent staging decisions

20

The Ontology of DARMA: Axioms/assumptions derived
from L2 milestone and co-design activities

21

 SPMD is the dominant parallelism

 There will too much compute (parallelism) available in the
hardware for basic data parallelism to fill

 Extra asynchrony should not complicate reasoning about
application correctness (intuitive semantics, debugging tools)

 There exist many applications/algorithms with dynamic load
balance, dynamic sparsity, or complex workflow coupling
whose development would be greatly accelerated by a more
productive programming model

 The traditional MPI abstract machine model (uniform compute
elements, flat memory spaces) will get further and further
away from actual system architecture

Keep simple things simple, keep tractable things tractable,
make difficult things tractable

 Simple/tractable

 SPMD launch and initial problem decomposition/distribution

 Collectives

 Basic checkpoint/restart fault recovery supported

 Application-specific data structures/layouts

 Difficult

 Express/mix all forms of parallelism (data, pipeline, task)

 Dynamic load balancing, work stealing

 Data staging (software-managed cache)

 Performance portability across execution spaces

 Macro data-flow parallelism (parallelism within a task)

ASC/ATDM subprogram is enabling new decision-support
capabilities for NNSA ASC nuclear weapons applications

23

Electro-magnetic plasma in
hostile environment

Hypersonic Re-entry

 Two production prototype applications

 New code-base suitable for future ASC applications

 Component software design

 Agility, reuse, and reduced cost

 Advanced computational science capabilities

 Embedded geometry and meshing

 Embedded UQ, optimization, and analytics for
decision-support

 Flexible, robust and dynamic multiscale & multi-
physics

Acronyms
National Nuclear Security Administration (NNSA) � Advanced Simulation and Computing (ASC) � Advanced Technology Development & Mitigation (ATDM)

Key performance findings confirm AMT runtime potential
for addressing next generation platform challenges

 Empirical studies show an AMT runtime
can mitigate performance heterogeneity
inherent to the machine itself

 MPI and AMT runtimes perform
comparably under balanced conditions

 Summary of previous experiments show
strengths of AMT runtimes for dynamic
applications

24
1 4 16 64 256 1024 4096

Nodes

10− 1

100

M
ea

n
w
al

l
ti
m

e
p
er

ti
m

es
te

p
(s

)

MiniAero-MPI test runs on Cielo

1 4 16 64 256 1024 4096

Nodes

10− 1

100

M
ea

n
w
al

l
ti
m

e
p
er

ti
m

es
te

p
(s

)

MiniAero-Charm++ test runs on Cielo

1 4 16 64 256 1024 4096

Nodes

10− 1

100

M
ea

n
w
al

l
ti
m

e
p
er

ti
m

es
te

p
(s

)

MiniAero-Uintah test runs on Cielo Weak Scaling
32.8K cells/ node

65.5K cells/ node

131K cells/ node

262K cells/ node

Strong Scaling
32.8K cells

65.5K cells

131K cells

262K cells

524K cells

1.05M cells

2.10M cells

4.19M cells

8.39M cells

16.8M cells

33.6M cells

67.1M cells

134M cells

268M cells

537M cells

1.07B cells

2.15B cells

Key programmability and mutability findings show AMT
runtimes are not yet ready for production use

 Requirements gaps

 Deficiencies in existing application
programming interfaces (APIs)

 Highlights need for development
of community best practices
 Accelerate adoption of runtimes

 Provide concise application-informed
requirements to researchers and
vendors providing lower-level
components of software stack

25

