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 Petascale reactive multiphase flow and transport code 
 Open source license (GNU LGPL 2.0) 
 Object-oriented Fortran 2003/2008 

 Pointers to procedures 
 Classes (extendable derived types with  
                     member procedures) 

 Founded upon PETSc parallel framework 
 Parallel communication through MPI 
 Parallel I/O through binary HDF5 
 Unstructured domain decomposition through METIS/ParMETIS (Cmake) 

 Demonstrated performance 
 Maximum # processor cores: 262,144  (Jaguar supercomputer) 
 Maximum problem size 3.34 billion degrees of freedom 
 Scales to over 10K cores 
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Application of PFLOTRAN 
 Nuclear waste disposal 

 Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM 
 DOE Used Fuel Disposition Program 
 SKB Forsmark Spent Fuel Nuclear Waste Repository (Sweden, Amphos21) 

 Climate: coupled overland/groundwater flow; CLM 
 Next Generation Ecosystem Experiments (NGEE) Arctic 
 DOE Earth System Modeling (ESM) Program 

 Biogeochemical transport modeling 
 U(VI) fate and transport at Hanford 300 Area 
 Hyporheic zone biogeochemical cycling 

 Columbia River, WA, USA 
 East River, CO, USA 

 CO2 sequestration 
 Enhanced geothermal energy 
 Radioisotope tracers 
 Colloid-facilitated transport 3 

Dipankar Dwivedi, LBNL, 2016 

East River, CO 



Numerical Methods 
 Spatial discretization 

 Finite volume (2-point flux default) 
 Structured and unstructured grids 

 Time discretization: backward Euler 
 Nonlinear solver 

 Newton-Raphson 
 Line search/damping with custom convergence criteria 

 Linear solver: direct (LU) or iterative (BiCGStab) 
 Multi-physics coupling 

 Flow and transport/reaction:  sequential 
 Transport and reaction:   global implicit 
 Geomechanics and flow/transport:  sequential 
 Geophysics and flow/transport:  sequential 
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Deep Borehole 
Waste Disposal 

Emily Stein, SNL, 2015 



PFLOTRAN Computing Capability 
 High-Performance Computing (HPC) 

 Increasingly mechanistic process models 
 Highly-refined 3D discretizations 
 Massive probabilistic runs 

 Open Source Collaboration 
 Leverages a diverse scientific community 
 Sharing among subject matter experts and 

stakeholders from labs/universities 

 Modern Fortran (2003/2008) 
 Domain scientists remain engaged 
 Modular framework for customization 

 Leverages Existing Capabilities 
 Meshing, visualization, HPC solvers, etc. 
 Configuration management, testing, and QA 
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Data Assimilation 

Xingyuan Chen, PNNL, 2011 



PFLOTRAN Support Infrastructure 

 Mercurial: distributed source control management tool 
 Bitbucket: online PFLOTRAN repository 

 hg clone https://bitbucket.org/pflotran/pflotran-dev 
 Source tree 
 Commit logs 
 Wiki 

 Installation instructions 
 Quick guide 
 FAQ (entries motivated by questions on mailing list) 

 Pull requests 
 Issue tracker 

 Buildbot: automated building and testing (regression and unit) 
 Google Groups: pflotran-users and pflotran-dev mailing lists 
 Google Analytics: tracks behavior on Bitbucket 
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Discrete Fracture Networks 

Satish Karra, LANL, 2015 

https://bitbucket.org/pflotran/pflotran-dev


PFLOTRAN Bitbucket Wiki 
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PFLOTRAN Bitbucket Commits 
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PFLOTRAN Buildbot 
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Google Analytics 
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Hits on PFLOTRAN Bitbucket site 
in 2015 



PFLOTRAN: Parallel Performance 

 Scalability is good below ~10K processes 
 Above ~10K cores, parallel performance degrades in the 

solvers and I/O 
 Parallel solvers 

 Breakdown in parallel preconditioners within Newton-Krylov solvers 
 Increasing communication cost (i.e. global reduction) 

 Parallel I/O 
 Bottlenecks in collective parallel I/O 

 Future challenges 
 Transition to parallelism through accelerators (e.g. GPUs) 
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Solver Scalability 
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1 Billion DOF Transport 270 Million DOF Flow 

BCGStab w/ block Jacobi 
R. Mills, 2008 

BCGStab w/ block Jacobi 
Sripathi & Mahinthakumar, 2009 

Cray XT4 



PFLOTRAN Performance on Jaguar (XT4) 
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 Overall 60% efficient 
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   (1-2% of overall time) 

 75% efficient      
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 64% efficient      
(wall clock) 

270 Million Flow DOFs 



PFLOTRAN Performance on Jaguar 
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Processor Cores 4000 8000 

Problem Size (dofs) 64.8 million 129.6 million 

Problem Size /      
Processor Core 16200 16204 

Krylov Iterations / 
Newton Iterations 418.4 462.6  (10.6% difference) 

Nonlinear Solver   
Wall Clock Time (sec)  2531 2844  (12.4% difference) 
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Processor Cores 4000 8000 

Problem Size (dofs) 64.8 million 129.6 million 

Problem Size /      
Processor Core 16200 16204 

Krylov Iterations / 
Newton Iterations 418.4 462.6  (10.6% difference) 

Nonlinear Solver   
Wall Clock Time (sec)  2531 2844  (12.4% difference) 

Breakdown in “weak” scalability 
Global reduction communication overhead 
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Increased communication  
as # cores increases 
(fixed problem size per core) 

Increased  
communication  
as problem size per  
core decreases 
(fixed problem size) 

2M dofs 
17M dofs 
134M dofs 

B. Lee, 2009 



Scalable Parallel I/O through HDF5 
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Scalable Parallel I/O through SCORPIO 
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SCORPIO: A Scalable Two-Phase Parallel I/O Library With Application To A Large Scale 
Subsurface Simulator  

Sreepathi et al., 2013 



PFLOTRAN Performance: Accelerators 

 In 2011 timeframe, PFLOTRAN was slated as one of six Tier 1 
apps at the Oak Ridge Leadership Computing Facility to be 
ported from Jaguar to Titan for acceptance of Titan from Cray. 
 “The proposal is to do a one-time modification of Pflotran source code 

for the future. This would make the code high performing and flexible 
in supporting a variety of highly parallel processors and different 
accelerator programming models.” - Cray 

 The plan was to begin with point-wise kernels and then move 
on to parallelize the global solves across the grid. 

 The chemical reaction kernel within PFLOTRAN was 
refactored to accommodate GPUs through OpenMP/CUDA 
directives instrumented by Cray/NVIDIA engineers. 
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PFLOTRAN Performance: Accelerators 

Before: 
  allocate(auxvar%total(reaction%naqcomp,option%nphase)) 
 

After: 
  allocate(auxvar%total(chunk_size,num_threads, & 
                        reaction%naqcomp,option%nphase)) 
do i = 1, ncomp 
  icomp = reaction%eqcplxspecid(i,icplx) 
  auxvar%total(ichunk,ithread,icomp,iphase) = & 
    auxvar%total(ichunk,ithread,icomp,iphase) + & 
    reaction%eqcplxstoich(i,icplx)* & 
    auxvar%sec_molal(ichunk,ithread,icplx) 
enddo 
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PFLOTRAN Performance: Accelerators 

 Final Speedup 
 ~14× for an exaggerated biogeochemical system composed of ~30 

chemical species. 
 <4× on a more realistic biogeochemical system (10-15 species) 
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Tp = 0.2 T1 
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Amdahl’s Law 



Conclusion 

 Presentation support provided by the IDEAS (Interoperable 
Design of Extreme-scale Application Software) Project funded 
by the United States Department of Energy Office of Science 
Advanced Scientific Computing Research and Biological and 
Environmental Research Programs 
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PFLOTRAN Multi-Physics Capability 
 Flow 

 Single phase, variably-
saturated  

 Multiphase gas-liquid 
 Interchangeable constitutive 

models and equations of 
state 

 Energy 
 Thermal conduction and 

convection 

 Multi-Component Transport 
 Advection 
 Hydrodynamic dispersion 

 
 

 Chemical Reaction 
 Aqueous speciation 

 Ion activity models 

 Mineral precipitation-
dissolution 

 Sorption 
 Isotherm-based 
 Ion exchange 
 Surface complexation 

– Equilibrium 
– Kinetic / multirate kinetic 

 Microbiological 
 Biomass 
 Inhibition 

 Radioactive decay with 
daughter products 
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Governing Equations  
Multiphase Air-Water-Energy 
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Mass Conservation 

Energy Conservation 

Darcy Flux 

Aqueous Diffusion 

Gas Diffusion 



Governing Equations  
Biogeochemical Transport 
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Mass Conservation 
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