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Problem Description

Prediction of plasma processes at moderate to high densities

• Multifluid plasma equations – Electrons, ions and neutrals

– Six-dimensional Boltzmann equations too high of dimensionality 

– Particle methods too expensive due to plasma frequency

– Sets of 5 or 13 coupled PDEs with stiff source terms need to be solved

• Equations need to be composible and maintainable 

Analysis Beyond Forward Simulation

• Forward solves are not enough – we want to explore complex solution spaces:

– Simultaneous analysis and design adds requirements (typically 
sensitivities)

– Do not burden analysts/physics experts with analysis algorithm 
requirements: i.e. programming sensitivities for implicit solvers, 
optimization, stability, bifurcation analysis and UQ

Engine must be flexible, extensible, maintainable and EFFICIENT!
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Directed Acyclic Graph-based Assembly

Template-based Generic Programming



Electron Fluid Plasma Model

• Using 3D all Hex mesh

• 32 nodal + 12 edge + 6 face = 50 DOFs per 

element
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Drekar drives Panzer
requirements and 

design goals

Panzer provides
Drekar flexible 

infrastructure and core 
technologies 

Drekar: Algorithms research application

• Targets coupled multi-physics

• Large scale simulation  (>100k cores)

• Advanced algorithm demonstration

Panzer: Multi-physics assembly engine

• Finite element focused (currently)

• Embedded analysis (AD, Sensitivities)

• Technology sharing and deployment

A co-dependent development relationship



Discretizations & Algorithms

Drekar/Panzer: Capabilities

Applications

Uncertainty Quantification

PDE Constrained 
Optimization

IMEX

Magnetohydrodynamics

Turbulent CFD

Compatible Discretizations
Algebraic Multigrid

(>100k cores)

Block 
Preconditioning



Lightweight DAG-based 
Expression Evaluation

• Decompose a complex model into a 
graph of simple kernels (functors)

– Decomposition is NOT unique

• Supports rapid development, separation 
of concerns and extensibility.

• A node in the graph evaluates one or 
more fields:

– Declare fields to evaluate

– Declare dependent fields

– Function to perform evaluation

• Separation of data (Fields) and kernels 
(Expressions) that operate on the data

– Fields are accessed via multidimensional array 
interface (shards or kokkos)



DAG Evaluation

• The problem domain is broken into worksets
– Smaller number of elements which fit into cache or 

other memory structures

– The entire DAG is evaluated for a single workset

– Each math kernel can be threaded over the 
workset elements

• Worksets are filled with a gather operation

• The workset’s contributions are accrued in a 
matrix with a scatter operation

• All intermediate calculations are independent 
of if they are computing a Jacobian or 
residual or sensitivity  
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Parallelization Strategies

• MPI – Domain decomposition

– This is the traditional approach

– Not covered in this talk

• Threading – On node parallelization

– More scalable for local cores

– Extensible to GPUs/Cuda

– Threads team up to accelerate a kernel

• Kernel parallelization

– Different kernels at the same time

– Asynchronous Many Tasking (AMT)



What is Kokkos?
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Multi-Core Many-Core APU CPU+GPU

Drekar Trilinos
SPARC

Applications & Libraries

Kokkos
performance portability for C++ applications

Albany
EMPIRE

LAMMPS

Cornerstone for performance portability across next generation HPC 
architectures at multiple DOE laboratories, and other organizations. 



Abstractions
Patterns, Policies, and Spaces

• Parallel Pattern of user’s computations
– parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)

• Execution Policy tells how user computation will execute

– Static scheduling, dynamic scheduling, thread-teams, ... (extensible)

• Execution Space tells where computations will execute

– Which cores, numa region, GPU, ... (extensible)

• Memory Space tells where user data resides

– Host memory, GPU memory, high bandwidth memory, ... (extensible)

• Layout (policy) tells how user array data is laid out

– Row-major, column-major, array-of-struct, struct-of-array …  (extensible)

• Differentiating: Layout and Memory Space
– Versus other programming models (OpenMP, OpenACC, …)

– Critical for performance portability …



Threading 
Traditional Architectures

• The gather, math routines and scatter 
operations were all threaded

• MPI only (left) was compared to 
Kokkos::OpenMP (right) on 16000 elements

Run on a dual 16 core Haswell with hyperthreading.  Left result uses one socket for 1 to 32 cores and MPI across sockets.  MPI 
results show the average time across MPI ranks.  156k total degrees of freedom.  Time is for Jacobian assembly only.



Threading 
Modern Architectures

• Kokkos allows one to migrate to new 
machines and backends

– Only recompilation is required to move to Intel’s 
Knights Corner (left) or Nvidia K80 via Cuda (right)

– Larger worksets mean more parallelism (center)
Used 8000 for workset size



Summary
Threading Results 



Beyond Threading

• Threading accelerates each individual math 
kernel

– Eventually there is insufficient work in a single 
kernel to use all the threads efficiently

• Task parallelism

– Chunks of threads solve different kernels

– The wider the graph, the more task parallelism

– Asynchronous Many Task (AMT) is an active 
research area in scheduling these tasks

• HPX, DHARMA, Charm++, Legion, …



Task Parallelism 
Single Fluid

Real DAG much more complex than the 
previous toy example

Theoretical speed up for this DAG

1 Thread/Kernel 8 Threads/Kernel 16 Threads/Kernel

Jacobian 3.5 4.5 4.9

Residual 3.4 3.4 3.5



Summary 
Next Steps

• Assembly performance can be improved with 
both threading and task parallelism 

– Threading shows up-to 64x speed up

– Need to demonstrate these two approaches together

• Cuda parallelism performance lower than 
expected

– Not enough parallelism per workset

• Need bigger workset, however, limited memory

– Need to implement hierarchical parallelism

• Kokkos makes thread parallelism easier

– Need to incorporate Kokkos further


