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Shock Isolation/Mitigation

 General principle for shock mitigation:

Maximize energy absorption, 
Minimize transmitted force and acceleration

 Area under the stress-strain curve prior to densification (time 
domain)

 What about the frequency-domain?
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 When silicone foam is used as a shock or vibration pad:
 Stress-state is triaxial

 Lateral confinement

 Experiences preloads due to manufacture/assembly process



Shock Isolation/Mitigation
 Foams and rubbers are primary materials used as 

shock isolators and mitigators

 Foams and rubbers have different properties that 
affect performance
 Nonlinear stress-strain response

 Strain-rate effects

 Stress-state effects

 Example
 It might be desirable to completely isolate a 

battery so that external accelerations, 
vibrations, and frequencies do not damage the 
battery

 No other signals must be passed through the 
shock isolation material 

 Goal is complete isolation using Silicone Foam
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Blood et al. Whole body vibration exposures in metropolitan bus 
drivers: a comparison of three seats. J Sound Vib, 2010

Vibration isolation: 
bus driver seat



Previous Work
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 B. Song, K. Nelson. (2015) Dynamic 
Characterization of Frequency Response of 
Shock Mitigation of a Polymethylene
Diisocyanate (PMDI) Based Rigid Polyurethane 
Foam. Latin American Journal of Solids and 
Structures 12(9):1790-1806

 Cutoff frequency was independent of 
specimen thickness

 Cutoff frequency was dependent on impact 
speed

 Cutoff frequency ~1.5 kHz

 Above 1.5 kHz, almost 100% of the energy 
was dissipated

 Below 1.5 kHz, dissipation was down to 
~83%

 PMDI foam is a good shock mitigation 
material



Material and experimental plan

 Open Cell Silicone foam

 Density: 608 ± 21.85 kg/m3

 Diameter: 25.37 ± 0.08 mm to match bars

 Thickness: 5.33 ± 0.006 mm

 Average cell size: ~0.5 mm
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0.100 mmMagnification 150 x

 Pre-strains
 0% (non-strained)

 13%

 23.3%

 33.5%



Kolsky Compression Bar with Pre-load 
Capability

 Kolsky compression bar with passive confinement tube

 Pre-strain is applied to the specimen via the transmission bar

 Laser is used to measure displacement during pre-straining
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Confinement Tube

 Silicone foam specimen is held under passive confinement

 Tube material is 4340 steel

 Force generated during pre-strain at the highest level is ~50 N
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Tapered Tungsten Striker

 Tapered striker was used to 
increase the range of 
frequency content

 Taper + impedance mismatch 
causes long unloading tail

 Increases the maximum 
frequency content from 15 to 
23 kHz

 No pulse shaper or grease was 
used
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Frequency Domain Energy Dissipation

 Time domain bar strain signals have the Fourier transform

 � � , �,	and � are the magnitude, frequency, and phase of the Fourier 
transform

 The energy spectrum density for each signal is 

 Energy dissipation ratio as a function of frequency is 
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 Time-domain strain histories
 Strain history is taken out until 

pulse overlap occurs on the 
transmission bar

 Trans pulse does not decrease 
because the foam is not stiff 
enough to push the bars back 
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Experimental Results

 Frequency-domain energy 
behavior
 Reflected energy is higher at 4-

7 kHz => discontinuities in 
energy dissipation ratio

 What causes this? Frequency 
shift?



Energy Dissipation Ratio
 Energy Dissipation Ratio

 Silicone Foam sample pre-
strained to 33.5%

 Initial energy dissipation ratio 
was 0.995

 Cutoff frequency of 2.65 kHz

 After the cutoff frequency, 
energy dissipation stabilizes at 
nearly 1 (total dissipation)
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Different Pre-Strains

 Stress-time histories vary due 
to small differences in pre-
strain and/or specimen 
geometry
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 Energy dissipation ratio for 
all pre-strain levels are close 
to 1 



Energy Dissipation Ratio

 Zooming in, a dependency on pre-strain may exist

 With increasing pre-strain, energy dissipation ratio is lower

 Still, the lowest recorded dissipation ratio was 0.985

 Cutoff frequency may increase with increasing pre-strain, but 
it is difficult to tell
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Higher Velocity
 If the rubber dissipates 100% of the energy at all pre-strains, 

what’s the point?

 Silicone rubber might not isolate the same amount of energy 
at higher velocity
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Energy Dissipation with Repeated Loading

 How does the foam behave 
when subjected to repeated 
loading?

 Same sample, 7 total loadings

 Stress history is repeatable

 Silicone foam dissipated 
nearly all of loading energy

 Dissipation ratio of 1 ± 0.05%
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Conclusion

 Passive confinement Kolsky compression bar

 Silicone foam compressed at elevated strain rate, different pre-
strains

 Frequency domain energy dissipation behavior

 Foam dissipated more than 98% of input energy at all pre-strains 
(low impact speed)

 Effect of pre-strain level on the energy dissipation is indicated, 
but more study is needed at higher pre-strains or velocities
 There appears to be an effect at higher velocities at the same pre-strain

 Stress-time and energy dissipation in frequency domain were 
repeatable on a single sample loaded seven times
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