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Problem Results

Embed Physical Symmetries

» Many physical systems have known invariance properties

» Applied concepts from group theory and representation theory to
create a basis of invariant inputs for the machine learning models

» Demonstrated 100 X reduction in training time versus brute force
approach that did not embed symmetry
Applied to cases in turbulence modeling and crystal elasticity
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Turbulent flows occur in many applications of interest at Sandia
High fidelity Direct Numerical Simulations (DNS) are
computationally expensive—not feasible for many flows
Reynolds Averaged Navier Stokes (RANS) turbulence models are
used to simulate these flows in a computationally tractable way
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Key Sandia applications in energy, safety, and security require
accurate turbulence models with quantified uncertainty
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Flag Regions of High RANS Uncertainty

» Developed machine learning classifiers to flag regions where
turbulence model assumptions are violated
» Inputs are local RANS flow variables

» Achieved 3 X more accurate error detection than previous state-of-
the-art

Approach
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Rule Extraction for Physical Intuition

» Computational Fluid Dynamics (CFD) simulations are being run on
bigger and bigger machines, and are generating more and more data

» What we need is a way to learn from all this data

» Machine learning models are often treated as “black boxes”
» Used rule extraction to regain physical intuition for improved
turbulence models from these complex data-driven models

» Machine learning is a set of data-driven algorithms for regression,
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» Random Forests are a supervised classification algorithm based on an
ensemble of decision trees
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» We use Random Forest classifiers trained on a database of flows for which
both high fidelity (DNS) as well as RANS results are available

» Scientific domain knowledge and machine learning should work
synergistically

Significance

» Machine learning enables the assessment of model form uncertainty
in turbulence models used for mission applications

» Rule extraction provides physical intuition for the development of
new turbulence models with improved accuracy

» Future work will develop data-driven model closures to achieve
predictive accuracy in turbulence simulations on Sandia applications
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