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Results	
  
•  Moving data is more expensive than computing 

with it, and the problem is getting worse 

•  Data-intensive tasks are becoming more of a 
bottleneck for scientific computing applications 

 
•  The overall goal of this Truman project is to 

address this problem for several fundamental 
computations within scientific computing 

•  This poster focuses on one particular problem: 
sparse matrix-matrix multiplication (SpGEMM) in 
the setup phase of algebraic multigrid (AMG) 

•  AMG setup is bottlenecked by SpGEMM, SpGEMM 
is bottlenecked by interprocessor communication 

•  Kernel computation is triple product: Ai = Pi
T Ai-1 Pi  

•  Key idea is to choose the correct algorithm for each 
SpGEMM to minimize communication 

Significance	
  
•  New algorithm for SpGEMM implemented in Trilinos 

and Muelu for algebraic multigrid preconditioning 

•  Using outer-product algorithm for PT(AP) resulted in    
16% improvement in overall setup for Nalu problem 

 
•  57 citations for 14 Truman project publications, 

including 1 best paper award and 1 survey article 

•  Communication-efficient algorithms demonstrated for 
other computations, including dense matrix 
multiplication, nonnegative matrix factorization, and 
Tucker tensor decomposition 
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Algebraic Multigrid (AMG)

AMG is used to solve Ax = b where A is large and sparse
think of a discretized elliptic PDE operator

AMG consists of two phases
setup: create a sequence of successively coarser grids
solve: iteratively solve original problem using all grids
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Sparse Matrix Multiplication

Compute C = A · B where A and B are sparse

Row-Wise Algorithm: C (i , :) = A(i , :) · B

=
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Outer-Product Algorithm: C (k) += A(:, k) · B(k , :)
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Row-wise Algorithm 

Outer-Product Algorithm 

Communication Cost Analysis

Consider a model problem:

fine grid is 2D or 3D regular grid of dimension n

operator A is 9-point or 27-point stencil of dimension N = nD

interpolation matrix P is defined for ideal coarsening

parallel distribution is based on regular squares/cubes

Row-Wise Outer-Product
Ratio

2D 3D

AP = A
f

· P 2(5/3)D�1 2(7/3)D�1 0.7 0.5

A
c

= PT · (AP) 2(7/3)D�1 2 2.3 5.4

Table entry gives maximum per-processor communication cost

divided by the size of the processor’s fine grid halo
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Fig. 7. Speedups of the outer-product algorithm over the row-wise algorithm for fluid-flow
problems as observed on Sky Bridge. The number of fine grid points per core is approximately 70K
for all problems.

communication compared to the row-wise algorithm for R · (AP ). In the largest edge
discretization, the row-wise algorithm communicates 2.3⇥ as many rows and 2.3⇥
as many total bytes. In the largest element discretization, those ratios are 7.9⇥ (for
rows) and 3.7⇥ (for data). Note that the edge discretization involves connections
among degrees of freedom of the unstructured grid similar to a 7-point stencil on a
structured grid, and the element discretization is more similar to a 27-point stencil.
The communication ratios reflect this similarity (see Table 3).

Figure 7 shows the relative performance of the outer-product algorithm for R ·
(AP ) as compared to the row-wise approach, which includes the cost of the redistri-
bution of R. The largest speedup of 2.5⇥ is attained for the element discretization
problem running on 1024 nodes (16,384 cores).

In Figure 8 we show the time breakdown of the R · (AP ) multiplication for the
element discretization. This plot matches that of Figure 5 for the model 3D 27-point
problem. In this case, the reduction in communication for the actual multiplication
is 2.2⇥ on 1024 nodes (note that the reduction in maximum data communicated
by any processor is a factor of 3.7). As in the case of the 3D 27-point problem,
we see that the reduced communication cost of the matrix multiplication as well as
the avoidance of the explicit redistribution of P contribute to the overall speedup,
despite the fact the the outer-product algorithm requires a slightly more expensive
local matrix multiplication and a local merge step.

We present absolute times for all of the key operations in computing the triple
product for the element discretization in Figure 9. As observed for the model prob-
lems, the A · P multiplication has the largest cost and is bottlenecked by local com-
putation. Because that operation requires less communication than R · (AP ) (using
the row-wise algorithm), we expect that in more communication-bound situations,
the cost of the second multiply will be slower and the benefit from the outer-product
algorithm will be more pronounced.

7. Conclusions. In this paper, we consider the three SpMM operations within
the Galerkin triple product of smoothed aggregation AMG. Our overall conclusion is

•  Theoretical analysis of model 2D/3D problems 
concludes that row-wise algorithm should be 
used for AP and outer-product algorithm should 
be used for PT(AP) 

•  Experimental analysis of model problems (using 
Trilinos) confirms superiority of outer-product 
algorithm for PT(AP), up to 2.8x speedup 

•  Experimental analysis of application problems 
(from Nalu) demonstrates up to 2.5x speedup 
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Fig. 4. Speedups of the outer-product algorithm over the row-wise algorithm for model problems
as observed on Edison. The number of fine grid points per core is approximately 100K for all
problems except those labeled “(small)”, which have approximately 20K per core.

ening, the inaccuracy of the ratio of number of rows communicated is due to a slight
ine�ciency in our outer-product implementation; while we do not expect much of a
performance improvement, we plan to update our implementation for use in future
applications. Recall that the number of rows communicated during the row-wise al-
gorithm corresponds to the processor’s fine grid halo (with respect to R in row-wise
distribution), while that of the outer-product algorithm corresponds to the proces-
sor’s coarse grid halo (with respect to R in column-wise distribution). The di↵erence
in ratios between rows and actual data demonstrates that the number of nonzeros
per row communicated is greater for the outer-product algorithm than the row-wise
algorithm, but overall the outer-product algorithm provides a net reduction.

To demonstrate more clearly the di↵erences in the two approaches to computing
R ·(AP ), we present a time breakdown plot in Figure 5 for the 3D 27-point problem at
various numbers of processors. Recall that the row-wise approach requires a redistri-
bution of R, in this case an explicit transpose of P . The transpose operation consists
of a transpose of local data (“Local Transpose”), a communication phase to achieve
row-wise distribution (“Communication (TransP)”), and then a merge phase to unify
the local matrix data structure (“Local Merge (TransP)”). The row-wise algorithm for
R·(AP ) consists of a communication phase (“Communication (RAP)”) followed by the
actual multiplication (“Local Multiply”). The outer-product algorithm consists of a
local transpose of P to obtain R in column-wise distribution (“Local Transpose”), the
matrix multiplication (“Local Multiply”), a communication phase to achieve row-wise
distribution of Ac (“Communication (RAP)”), and finally a merge phase to finish re-
ducing the final result (“Local Merge (RAP)”). The communication costs include the
time to pack and unpack messages into bu↵ers and convert between local and global
information, all of which is proportional to the amount of data being communicated.

Note that both approaches share the local transpose and local multiply, shown at
the bottom of the plots, and we expect those costs to be nearly equal. The two main
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