

Multimodal Data Integration Under Uncertainty

Sandia National Laboratories

D.J. Stracuzzi, M.G. Peterson, M.G. Chen, S.M. Dauphin, and R. Riley
Sandia National Laboratories, New Mexico 87185

Problem

Background:

- Platforms for sensor data collection are becoming increasingly ubiquitous.
- People use data for decision making in many mission domains including defense, intelligence, and security.
- Accounting for uncertainty plays a critical role in high-consequence decision making.

Problem: Existing data integration methods often ignore uncertainty, leaving important information locked in the data.

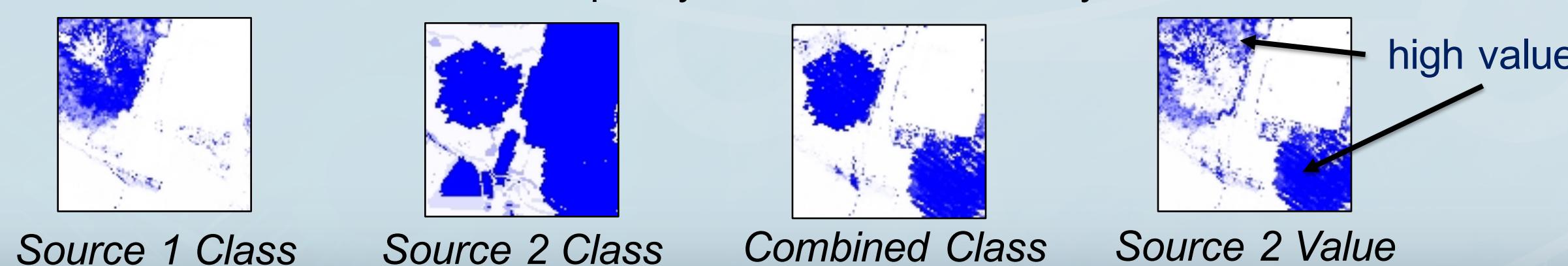
Goal: Improve information extraction in multi-source settings by analyzing uncertainty in data.

Questions:

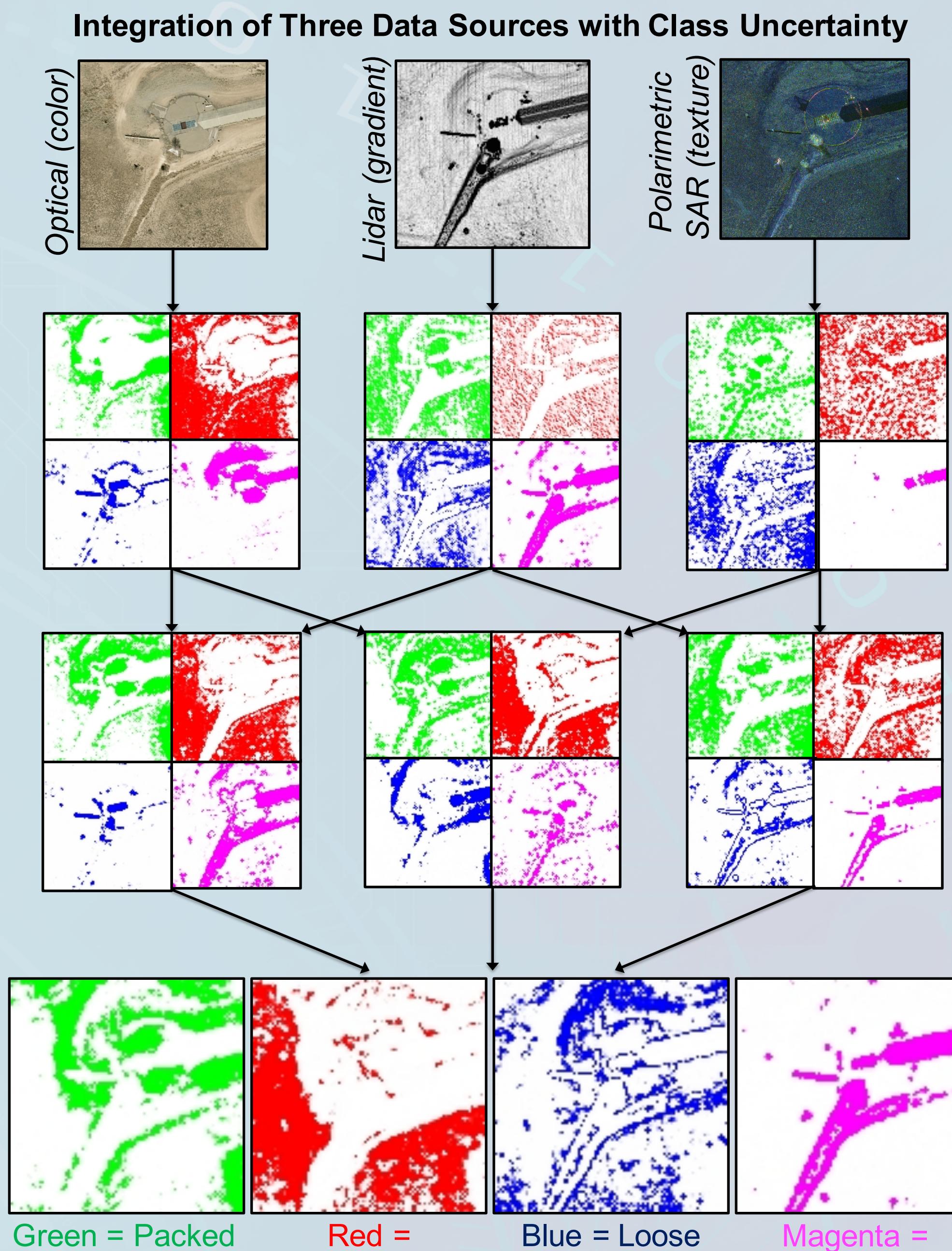
- Generality:* Reference distributions differ from sensor to sensor. What interlingua will support integration of uncertainty across data sources?
- Efficiency:* What is the minimum information required to estimate uncertainty distributions for a single source?
- Propagation:* No sensor is definitive; how combine and propagate information through layers of analysis?
- Value of Information:* How does uncertainty in analytic outputs relate to decision-making value? When should we seek more data and which data will help most?

Approach

- Preprocessing**
 - Co-register samples from each source by geolocation.
 - Calculate local gradients from lidar.
 - Decompose SAR into surface, dihedral, volumetric, and helical responses.
- Data Analysis**
 - Separate n pixels into k clusters via Gaussian mixture model (or similar)
$$\mathcal{L}_{MIX}(\theta, \tau | \mathbf{y}) = \prod_{i=1}^n \sum_{k=1}^G \tau_k f_k(\mathbf{y}_i | \theta_k)$$
 - Perform hierarchical agglomeration to obtain classifications for labels /
$$\max \mathcal{L}_{CL}(\theta, \mathbf{l} | \mathbf{y}) = \prod_{i=1}^n f_{l_i}(\mathbf{y}_i | \theta_{l_i})$$
 - Apply EM to estimate model parameters
 - Use Bayesian Information Criterion to select model.
 - Bootstrap steps a. – d. to establish non-parametric uncertainty distributions.
- Integration (forthcoming)**
 - Use supervised data to establish conditional probability relationships among unsupervised classes and semantic labels.
 - Marginalize across sensors to integrate multiple sources.
- Value of Information (forthcoming)**
 - Defined in terms of data's capacity to reduce uncertainty and alter labels.



Preliminary Results



- Color indicates class label, intensity indicates probability
- Classes are unsupervised; Semantic labels applied post hoc
- Semantic associations apply to bottom row only

Significance

- Shift in Analytic Philosophy**
 - From data-driven to decision-driven processing
- Broad Mission Application** – converting many weak indicators into one strong indicator
 - Cyber Security**: A diagram showing a sequence of data from a sensor, through three detectors (Detector A, B, C), to a final probability distribution for Class X, Class Y, and Class Z.
 - Remote Sensing**: A table comparing three sensors based on Position Uncertainty, Characterization Uncertainty, Temporal Resolution, and Geospatial Resolution.
 - Seismic Monitoring**: A photograph of a seismic monitoring station with a large roll of seismic data.
- Provides basis for resource tasking under uncertainty**
 - Relax assumption that desired information is obtained from a collect.