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Problem Preliminary

. : Integration of Three Data Sources with Class Uncertainty
Background: * Platforms for sensor data collection are becoming —

Increasingly ubiquitous.

» People use data for decision making in many mission
domains including defense, intelligence, and secuirity.

SAR (texture)

Lidar (gradient)
Polarimetric

thical (color)v

» Accounting for uncertainty plays a critical role in high-
consequence decision making.

Problem: Existing data integration methods often ignore uncertainty,
leaving important information locked in the data.

Improve information extraction in multi-source settings by
analyzing uncertainty in data.

Questions: 1. Generality: Reference distributions differ from sensor to
sensor. What interlingua will support integration of
uncertainty across data sources?

Efficiency: What is the minimum information required to
estimate uncertainty distributions for a single source?

Propagation: No sensor is definitive; how combine and
propagate information through layers of analysis?

Value of Information: How does uncertainty in analytic
outputs relate to decision-making value? When should
we seek more data and which data will help most?

Approach

1. Preprocessing Green = Packed “ Blue = Loose Magenta =
a. Co-register samples from each source by geolocation. Dirt & Concrete Vegetatlon Dirt Slanted

b. Calculate local gradients from lidar. »= Color indicates class label, intensity indicates probability

c. Decompose SAR into surface, dihedral, volumetric, and helical responses. = Classes are unsupervised; Semantic labels applied post hoc
» Semantic associations apply to bottom row only

2. Data Analysis
a. Separate n pixels into k clusters via Gaussian mixture model (or similar)

Lwix(0,T|y) = HZkak Yi|6k)

=1 k=1
Perform hierarchical agglomeration to obtain classifications for labels /

= Shift in Analytic Philosophy
» From data-driven to decision-driven processing

Broad Mission Application — converting many weak indicators into
max L¢.(0,1ly) = H fi(yil0;) one strong indicator

» Cyber Security
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Bootstrap steps a. — d. to establish non-parametric
. N, 0 0.5 1.0
uncertainty distributions. P(C=x| D)
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Apply EM to estimate model parameters
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3. Integration (forthcoming) Sensor A Small Detailed Classifiers Low High

a. Use supervised data to establish conditional probability relationships sensor B Medium R edium Medium
. . Sensor C  Large Broad classifiers i Low
among unsupervised classes and semantic labels.

b. Marginalize across sensors to integrate multiple sources.

_ _ Seismic Monitoring
4. Value of Information (forthcoming)

. Deﬂned In terms of data’s capacity to reduce uncertainty and alter labels.

Provides basis for resource tasking under uncertainty
» Relax assumption that desired information is obtained from a collect.
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