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Outline

= Approach to arms-control-treaty verification
= Task-based imaging
= List-mode processing
= Models that store non-sensitive information

" Linear models to classify items (using BeRP ball study)
= Channelized Hotelling observer
= Reducing each channel’s discrimination ability
= Penalizing discrimination on nonsensitive information

= Pretendium item discrimination



Verification task

Is it really a warhead?

~8 kg HDPE

) 30cm
Pretendium HDPE




“Traditional” Template Matching
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Our proposal

Trusted object

Hypothetical
observer stores
info sufficient for
confirmation but
not sensitive

Yellow Access Before & After

Tested object [green [ Full Access

Testing data is processed event by
event, only updating test statistic.

Data not aggregated

Think snapchat!




Verification Task

Hypothesis tests can’t be used with list-mode data.

~8 kg HDPE

Is it really a warhead?

10 cm

/ 30cm
Pretendium




Verification Task

~8 kg HDPE

Is it really a warhead?

10 cm

T

~8 kg HDPE

10 cm

Is it warhead A or warhead B?

7 30cm ‘
Pretendium HDPE




Task performance of observer models
are assessed and compared
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ROC curve plots the sensitivity vs. the false-positive fraction
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Figure of Merit

Observer models evaluated by comparison of area under
ROC curve
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List-mode Processing
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Output running sum is the likelihood of a signal being
present, which is thresholded to make a decision.
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List-mode Processing
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Output running sum is the likelihood of a signal being
present, which is thresholded to make a decision.
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List-mode Processing
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Output running sum is the likelihood of a signal being
present, which is thresholded to make a decision.
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List-mode Processing
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Nuisance parameters

Nuisance parameter: Any variable that affects the data but is
not of interest to task.

= Relevant examples:

= Source material age. Affects detected count rate and gamma energy
spectra.

= Disk orientation
= Disk location in polyethylene
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Importance of Nuisance Parameters

® Nuisance parameters must be taken into account for results
to generalize

® Orientation as a nuisance parameter

Performance of observer
without nuisance parameters
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MacGahan, C. J., M. A. Kupinski, N. R. Hilton, E. M. Brubaker, and W. C. Johnson (2016). Development of an Ideal Observer
that Incorporates Nuisance Parameters and Processes List Mode Data. JOSAA, 33(4), pp. 689-697. 15



Outline

" Linear models to classify items (using BeRP ball study)
= Channelized Hotelling observer
= Reducing each channel’s discrimination ability
= Penalizing discrimination on nonsensitive information

= Pretendium item discrimination
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Linear Template Observers

Projection data g
(sensitive count map)

Weights W for each pixel

Scalar test
W, statistic

» Hotelling weights maximize separation of test-statistic
distributions for two classes

« Take into account randomness in objects.

» Generally sensitive

s |z
=k
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Linear template observers

= Series of weights W act on binned testing data g,., , result is
scalar that is thresholded to make a decision.

ltest = WTgtesta ltest § Uthresh

= Hotelling observer is the ideal set of weights W defined as:

K K
W — Kg_lAg Kg: 1; 2

Ag =82 —81

= Averages are over all randomness (Poisson noise, object
variability)
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Channelized Hotelling Observer

Projection data g
(sensitive count map)

=

Channelize g into smaller
vector v with matrix T.
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v combined with optimal
weights W, to yield test
statistic t.
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Channelized Hotelling

= Channelize vector g(Px1) with operator T(QxP) into much
smaller vector v(Qx1) with Q values.

v=Tg

= Optimal set of weights for these channelized values are a
function of T:

1 A —
W, =K, Av
" |nner product of weights and channelized vector

WV Vtest § tthresh

20




Optimizing T

« T can be optimized to maximize SNR? of test statistic

distributions for best performance.
» Gradient descent with backtrack

foni (T) = SN R*(T)

probability

10
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BeRP ball location discrimination example

= The goal in this toy problem is to classify an item at one of
two locations
= T(TAI) is a BeRP ball at (0,0)
= F (spoof) is BeRP ball at (2,2)
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Imaging System

= ORNL/SNL fast neutron coded-aperture imager developed for arms
control treaty verification.

= Image plane consists of 16 organic scintillator pixelated block
detectors

= Each block consists of a 10x10 array of 1 cm. pixels.
= PSD and pixel id accomplished by 4 photomultiplier tubes.



Hotelling observer — location discrimination

= T-BeRP ball image at (0,0)
= 5M counts

= F-BeRP ball image at (20mm,
20mm)

= 5M counts

= Hotelling weights.




CHO example optimization

channel 1, SNR?=0.61978  channel 2, SNR?=0.57607

Each channel

> 30}
corresponds to a 40 :
template. 10 20 30 40 10 20 30 40
X Pixels X Pixels
The optimally channel 3, SNR?=0.13544  channel 4, SNR?=1.6637
weighted sum of - :
channels

corresponds to the
Hotelling weights
(SENSITIVE)

X Pixels X Pixels




Outline

" Linear models to classify items (using BeRP ball study)

= Reducing each channel’s discrimination ability
= Penalizing discrimination on nonsensitive information

= Pretendium item discrimination
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Nonsensitive channels

= Can we develop a channelizing matrix where each channel
has poor performance in the discrimination task, but
optimally combined the model performs well?

L
Jobj (T) :SNR[QT,F] (T) —n Z SNR[QT,F] (17)
[=1

= Above objective function accomplishes this.
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Results for nonsensitive channel penalty

Optimally weighted sum of these
channels is equivalent to the

Hotelling weights.....

Ch. 1, SNR?=4.222¢-05 Ch. 2, SNR?=0.0032693

10 20 30 40 10 20 30 40
X Pixels X Pixels

Ch. 3, SNR?=0.0025699 Ch. 4, SNR?=1.5643e-05

20 |
30
- & 40 A8 i
10 20 30 40 10 20 30 40
X Pixels X Pixels

But an SVD of the channelizing
matrix reveals the Hotelling

weights.

A, =0.80231 A, =0.54949

40 b 40 e =
20 40 20 40
X Pixels X Pixels
A 3= 0.5061 A A= 0.014782

1 > 30

20 40
X Pixels X Pixels




Results for nonsensitive channel penalty

Because this routine emphasizes the relationship between channels, removing
just a small percentage drastically reduces performance.

L | Lyon | SNR? for L,,,, channels % Performing Poorly (total
SNR? < 0.1)
4 |3 0.269 88
10 | 9 0.7105 50
10 | 7 0.0195 98
25 | 24 0.975 18
25 | 22 0.291 46
25 | 18 0.0314 08

Host could give monitor roughly 70% of the channels (to help in verification
and identifying spoofs)
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Outline

" Linear models to classify items (using BeRP ball study)

|
= Penalizing discrimination on nonsensitive information

= Pretendium item discrimination
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Non-sensitive model

= Optimal T inherently contains information on geometry/isotopic
composition of items.

= |deally, the host could be given the channelizing matrix,
channelized values and test statistics for its measured TAls to the

monitor.

= Since the monitor has the model, it could measure its own items,
trying to replicate the test-statistic distribution of the TAls.

= The ideal model would return the same test statistic for any TAls
that have sensitive construction parameters (mass, size) within
some tolerance. 31




BeRP ball location discrimination example

* The goal in this toy problem is to classify an item at one of
two locations
= T(TAI)is a BeRP ball at (0,0)
= F (spoof) is BeRP ball at (20,20)

" Treat x location of TAl as sensitive. Want to penalize ability to
discriminate:

= T (TAI) is a BeRP ball at (0,0)
= T, (TAI)is a BeRP ball at (20,0) (SIMULATED)
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Standard Optimization

Area under ROC curve (AUC) is a measure of test-statistic distribution
separation

BeRP Ball Location Discrimination Performance
1Optimizing (Omm,0mm) vs. (20mm,20mm)

0.9
0.8
O
2 —Test (0,0) vs. (20,20)
0.7 —Test (0,0) vs. (20,0)
—Test (0,0) vs. (0,20)
Test (0,0) vs. (10,0)
0.6
I
[
051 | | | |
0 1000 2000 3000 4000 5000

Mean Signal Counts
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Effect of penalty term
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As 1]is increased, the resulting channelizing Hotelling observer (while no
longer optimal) can’t distinguish between the source at (Omm,0mm) and
source at (20mm,0mm)

SNR?
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Performance Change

 Ability to differentiate objects based on change in x decreases

BeRP Ball Location Discrimination Performance
Optimizing (Omm,0mm) vs. (20mm,20mm)
1 Penalizing (Omm,0mm) vs. (20mm,0mm)
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Performance Change

 Ability to differentiate objects based on change in x decreases

BeRP Ball Location Discrimination Performance

Optimizing (Omm,0mm) vs. (20mm,20mm)
1 Penalizing (Omm,0mm) vs. (20mm,0mm)
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Operating acquisition time chosen to correspond to
900 signal counts.

Desired Outcome

Mean and variance of test statistic
distributions when imaging BeRP
ball at (0,0) and (20,0) can’t be
discriminated after 1,000
measurements at 900 signal counts
each
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Sensitive Information Removal

= As etaincreases, W,'T is no longer optimal.

10 20 30 40
X Pixels

T =0
W, T equal to Hotelling weights

Y Pixels
[\3 —
(a») (a»]

w
o

40
10 20 30 40

X Pixels

=50
W IT corresponds to vertical shift.
No longer x information in template
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Outline

= Linear models to classify items (using BeRP ball study)

= Pretendium item discrimination




Task

= Monitor needs to differentiate:
= T: Cylindrical Pretendium
= F:Square Pretendium

" Host wants to prevent dissemination of diameter of pretendium
ring in object T up to tolerance of 30%. Penalizes ability to
distinguish

= T: Cylindrical Pretendium, 20cm diameter
= T,: Cylindrical Pretendium, 14cm diameter
= T,: Cylindrical Pretendium, 26cm diameter
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Task — Discriminate pretendium shape

= Binary discrimination differentiating moderated flat cylinder
from rectangular prism
= 15 cm of polyethylene (~6 path lengths for neutrons, ~2 for gammas)
= Self shielding reduces gamma flux out of objects.

= Minimal difference in detected energy spectra, use gamma ray or
neutron imager

~8 kg HDPE

«  20cm

oem  i23kgn f2em | f

30 cm
Pretendium HDPE
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Acquire data

= Host takes calibration data on the TAl and designated spoof.
= QObserver model will be built on this data.

Cylindrical Pretendium Square Pretendium

10 20 30 40 10 20 o 40
X.Pixels X Pixels
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New objective function

fobj (T) :SNR[QT,F] (T)—
1 (SNBZ2,)(T) + SNRE. 1,)(T))

This penalizes ability to discriminate test-statistic distributions for items with
slightly different diameters.
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Procedural outline

=  Perform a detector calibration measurement on items T and F.
= Long acquisition time
= Try to capture impact of nuisance parameters
= Penalized items T, and T, would need to be simulated.
= Simulate detected energy in each pixel
= Need to simulate with same nuisance parametersas T
= Convert detected energy for T, and T, to light output/PMT signal (SNL code)

= Choose optimal acquisition time (point on AUC curve)
= Take independent measurements on all of the items.
= Find optimal point where AUC of discriminated pair=1
= Check that penalization was effective.
= May need to include more penalized items in optimization routine
= |mplement channelized weights through electronic board or some other
procedure

= |f all channelized values are between 0 and 1, could use attenuating material
43



Questions?
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Data definition

" List-mode data A, :

= Estimated energy, pixel, and particle type (photon or neutron) for
event n. Define N to be total number of detected events.

= Data {4, } binned into data vector g (P x 1).

N
9p — Z fp(Ap)
n=1

" gis binned detector data —image, spectra or both.



