

Exceptional service in the national interest

Quasi-Isentropic Compression of Free-Machining (C36000) Brass

Paul E. Specht and Seth Root

Sandia National Laboratories, NM USA

PETER 2016 New Models in Hydrocodes
Le Grand Large, St. Malo, France
Session 1B: Experimental Methods and Results
Wednesday, June 1st, 2016 12:00

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for Unlimited Release, SAND2015-XXXXP.

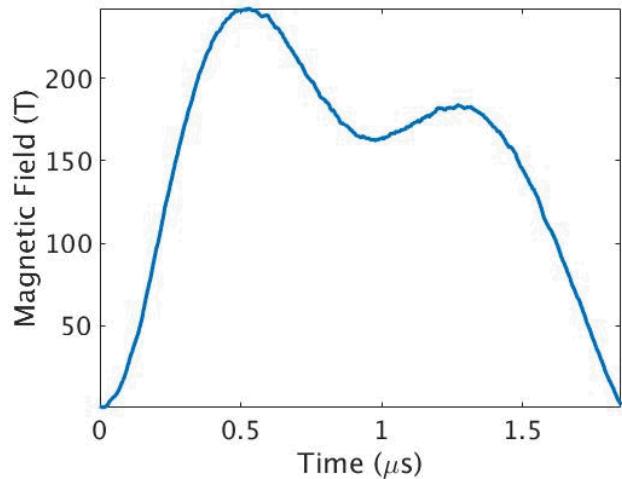
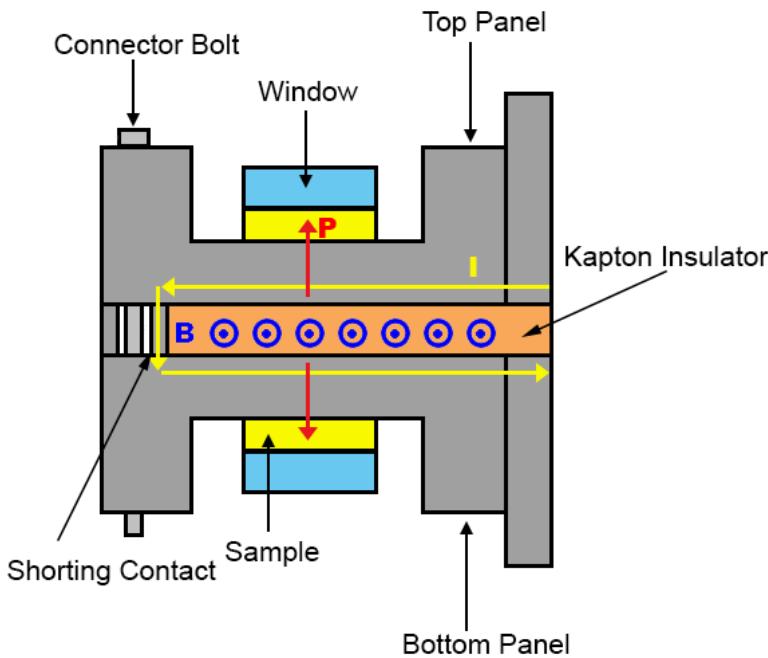
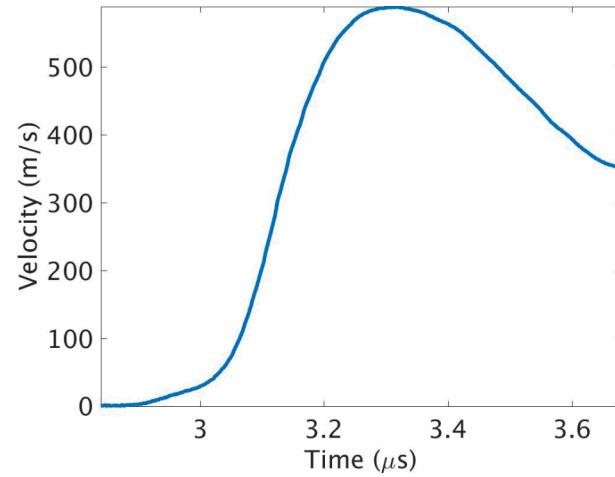
Quasi-Isentropic Compression

- Quasi-isentropic compression provides access to a different portion of the equation of state (EOS) than the Hugoniot
 - Reach high pressure states with lower temperature increase
 - Quasi-isentropic because not completely reversible
 - Effects from plastic work exist, but are small
 - Achieved through ramp loading
 - Pulsed power, Laser drives, graded density impactors
- Ramp loading provides a continuous measurement of the quasi-isentrope
 - Multiple experiments are not necessary like determining a Hugoniot
- Sample unloading also provides a measurement of the shear strength of the material

Magnetic Compression

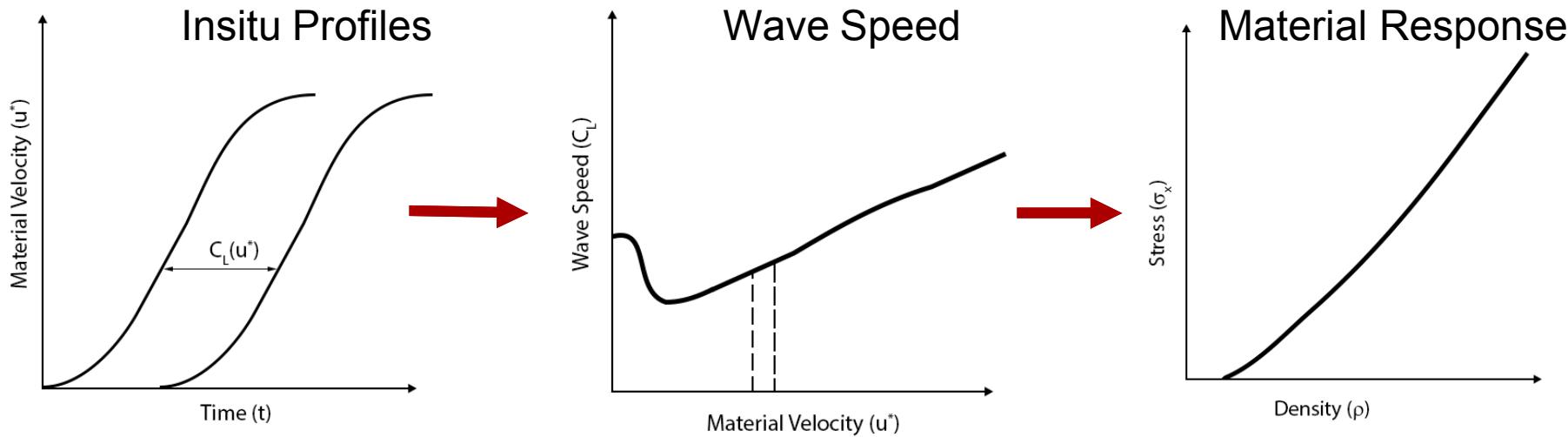
- Current flow generates a magnetic field between the top and bottom panels
- The resulting Lorenz force, $\mathbf{F} = \mathbf{J} \times \mathbf{B}$, compresses the sample [1]

$$P = k_e \frac{B^2}{2\mu} = k_e \frac{\mu}{2} \left(\frac{I}{w} \right)^2$$



Quasi-Isentrope Determination

- Quasi-isentrope is easily determined with Lagrangian, or insitu, material velocities at two locations in the sample [2]
 - Direct Lagrangian analysis
 - $d\nu = -\frac{-du^*}{\rho_0 C_L(u^*)}$ $d\sigma_x = \rho_0 C_L(u^*) du^*$
 - Assumes simple, steady waves



Quasi-Isentrope Determination

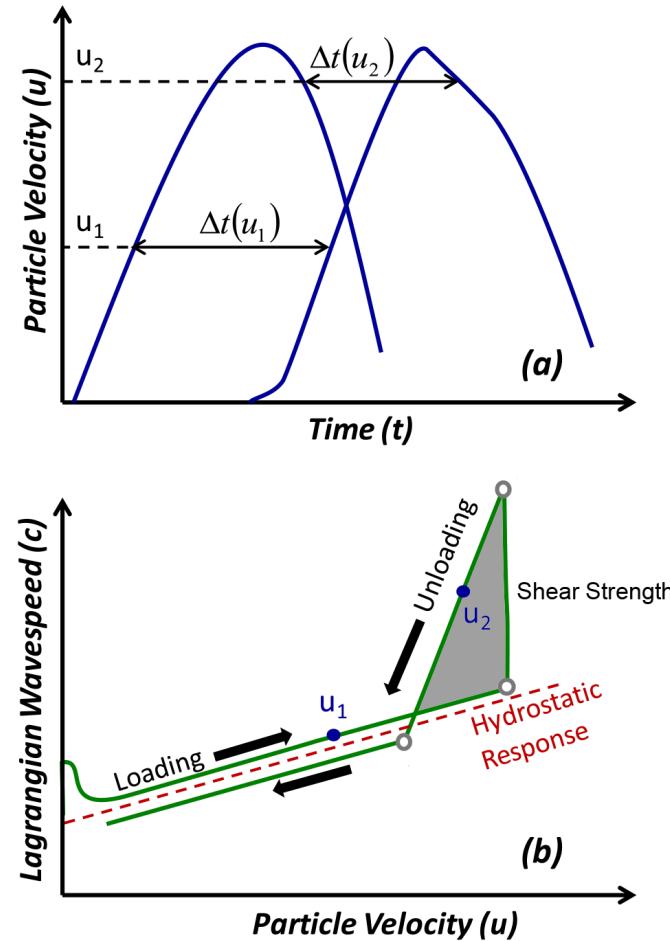
- Quasi-isentrope is easily determined with Lagrangian, or insitu, material velocities at two locations in the sample [2]
 - Direct Lagrangian Analysis
 - $d\nu = -\frac{-du^*}{\rho_0 C_L(u^*)} \quad d\sigma_x = \rho_0 C_L(u^*) du^*$
 - Assumes simple, steady waves
- Usually velocimetry measurements are at window interfaces
 - Need to be mapped to insitu profiles
- There are two mapping methods
 - Inverse Lagrangian analysis (ILA) [2]
 - Iterative method of characteristics approach
 - Transfer function method [3]
 - Iterative approach using MHD simulations and Fourier transforms

Insitu Velocity Determination

- Inverse Lagrangian analysis (ILA) [2]
 - Iterative method of characteristics approach
 - Requires two samples of differing thicknesses
 - Only applicable over the difference in thickness between samples
 - Only applicable over sample loading
 - Non-uniqueness of the mapping and significant elastic-plastic effects
- Transfer function method [3]
 - Iterative approach using MHD simulations and Fourier analysis
 - Requires on sample
 - Dependent on EOS standards
 - Assumes hydrocodes accurately represent the physics
 - Enables mapping through release
 - Shear strength measurement

Shear Strength Measurement

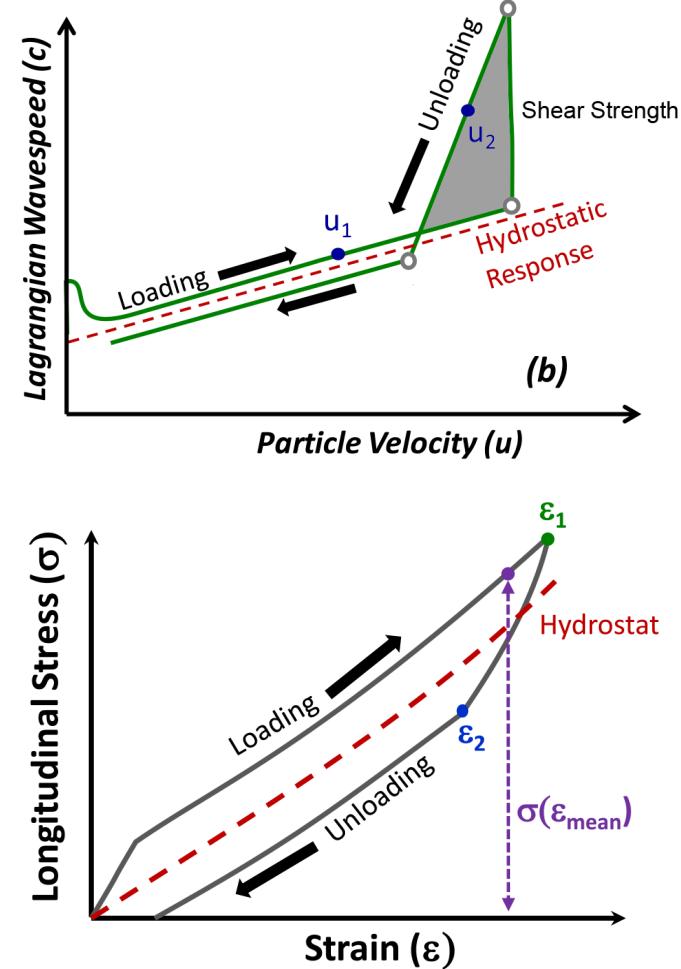
- Upon unloading the material experiences an initial elastic then plastic release
- In Lagrangian coordinates [3]
 - $d\sigma_x = \rho_0 C_L(u^*) du^*$ $d\varepsilon = \frac{du^*}{C_L(u^*)}$
- The longitudinal plastic stress relates to the shear stress [3]
 - $\sigma_x(\varepsilon) = P(\varepsilon) + \frac{4}{3}\tau(\varepsilon)$
- A correction is applied to account for attenuation



From Brown et al., J. Appl. Phys. **114**, 223518 (2013).

Shear Strength Measurement

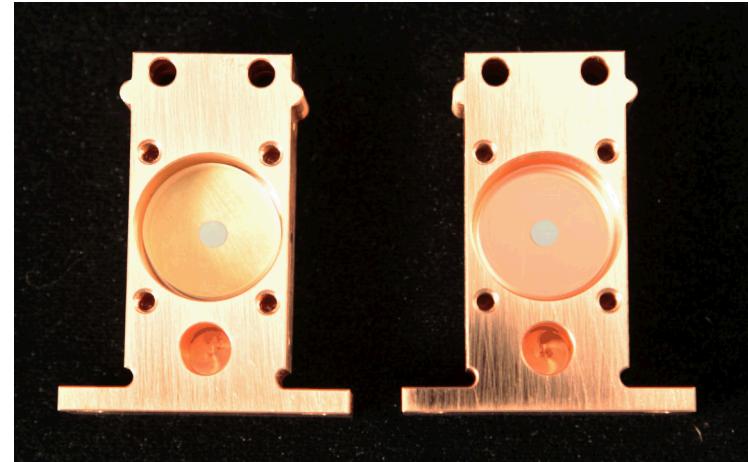
- Upon unloading the material experiences an initial elastic then plastic release
- In Lagrangian coordinates [3]
 - $d\sigma_x = \rho_0 C_L(u^*) du^*$ $d\varepsilon = \frac{du^*}{C_L(u^*)}$
- The longitudinal plastic stress relates to the shear stress [3]
 - $\sigma_x(\varepsilon) = P(\varepsilon) + \frac{4}{3}\tau(\varepsilon)$
- A correction is applied to account for attenuation
- Compare results at mean stress or strain



From Brown et al., J. Appl. Phys. **114**, 223518 (2013).

Experimental Parameters

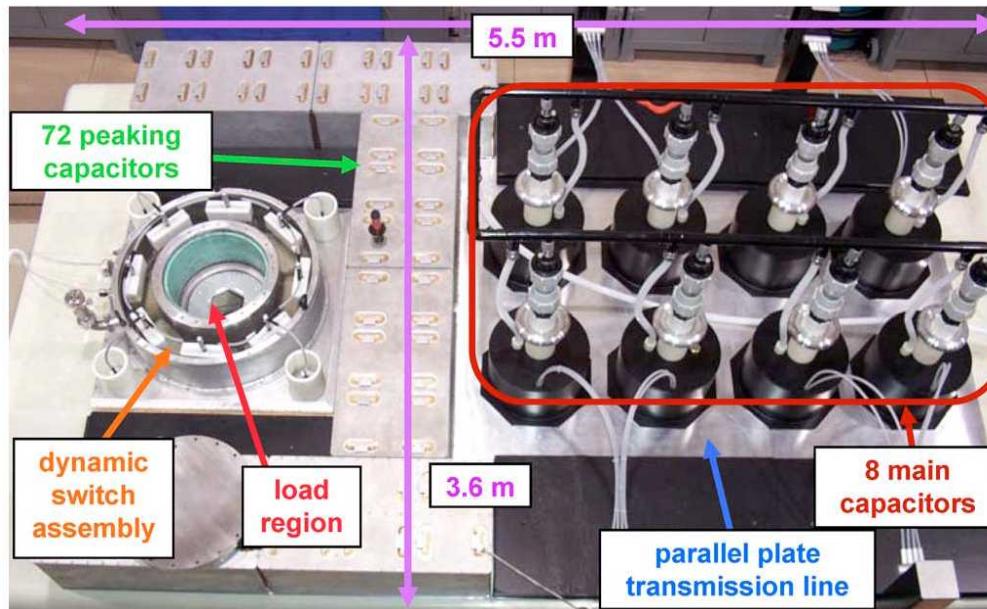
- Experiments were preformed on free machining brass (C36000)
 - 61.5% Cu, 35.5% Zn, 3% Pb
 - Density 8.45 g/cm³
- Six experiments
 - 2 dual sample and 4 single sample
 - Pressures ranged from 5 to 14 GPa
 - Used copper panels, LiF windows
 - Both have well know EOS
 - Window interface velocities were obtained using a dual VPF VISAR
- Performed on VELOCE pulsed power machine



Representative sample panels
Single - 1

VELOCE Pulsed Power Machine

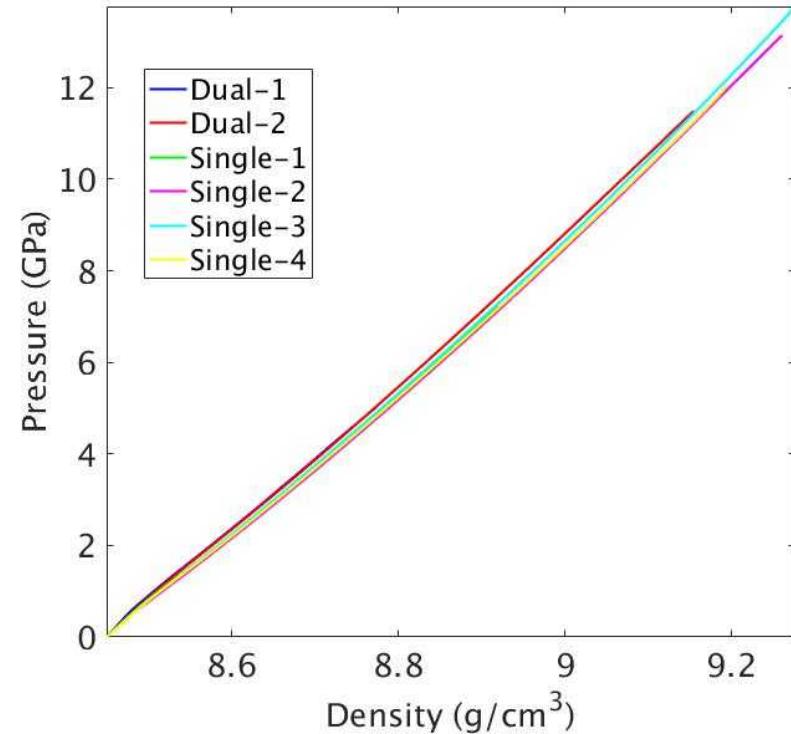
- VELOCE [1] is a compact pulsed power machine located at the Dynamic Integrated Compression Experimental (DICE) facility at Sandia National Laboratories
 - 3 MA of current
 - Rise times from 440 to 550 ns
 - Pressures from 5 -20 GPa



From T. Ao et al., Rev. Sci. Instrum. 79, 013903 (2008).

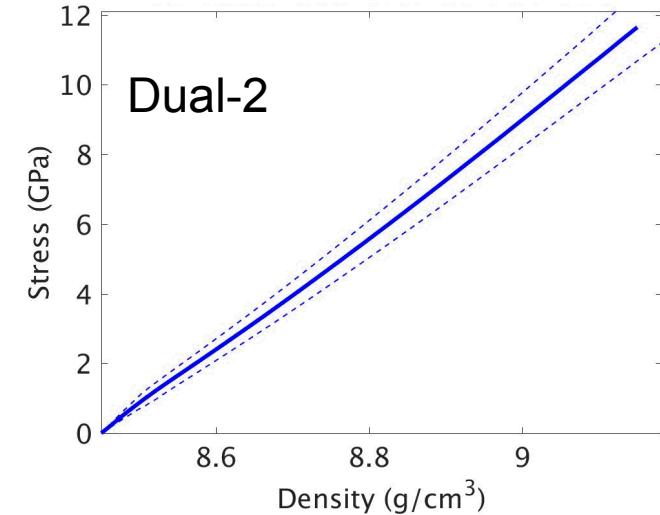
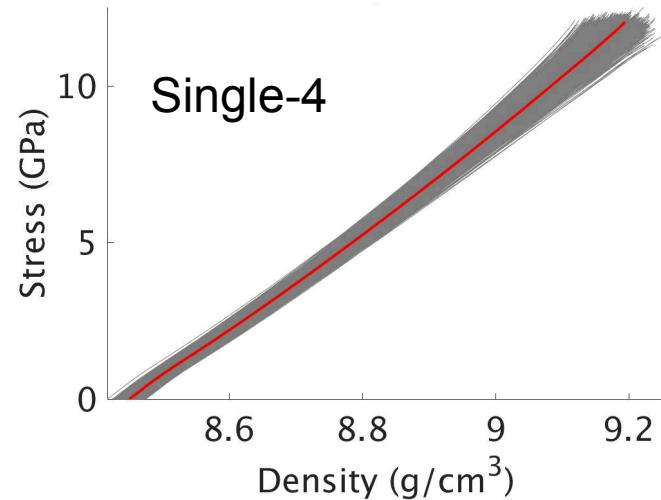
Experimental Quasi-Isentrope

- Dual sample experiments were analyzed with CHARICE [4]
- Single sample experiments were analyzed with an in-house MATLAB code
- The experimental quasi-isentropes are consistent across configurations
- Contain an initial elastic region
 - Generates entropy, but not enough to invalidate the analysis method [4]



Quasi-Isentrope Error Estimations

- Dual sample experiments
 - Experimental uncertainties are propagated through the inverse Lagrangian analysis
- Single sample experiments
 - A Monte Carlo approach was used
 - All experimental errors are assumed uncorrelated and normally distributed
 - 2000 variations of the results are run and the material response from each extracted
- Results presented are typical of all experiments



Quasi-Isentrope Fit

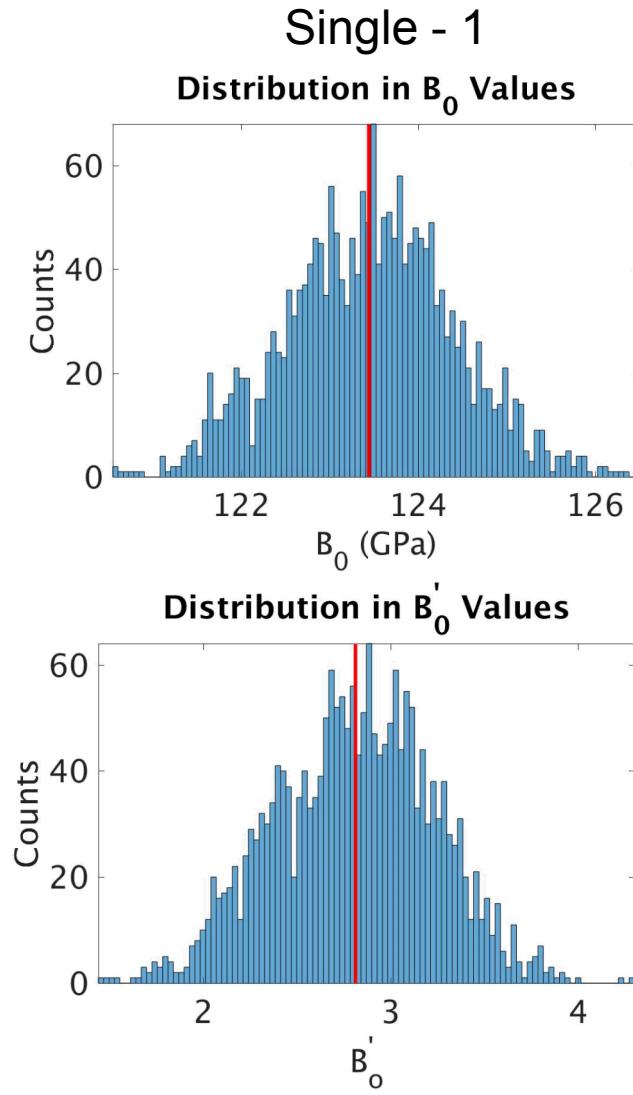
- The quasi-isentrope can be fit to a Vinet EOS [5]

- $$P = \left[3B_0 \frac{(1-x)}{x^2} \right] \exp[\eta(1-x)]$$

- $$x = \left(\frac{V}{V_0} \right)^{1/3} \quad \eta = \frac{3}{2}(B'_0 - 1)$$

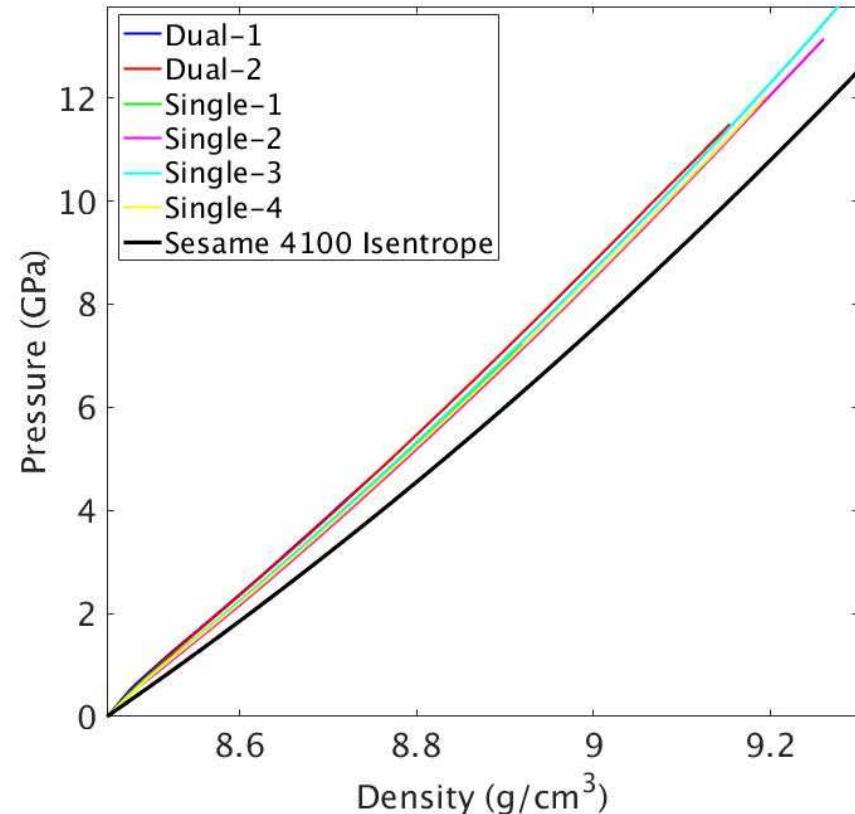
- Error determinations
 - Single sample: fit the bounds
 - Dual sample: distribution from iterations

Experiment	B_0 (GPa)	B'_0
Dual - 1	139.4 ± 11.6	2.62 ± 0.62
Dual - 2	130.2 ± 16.0	2.91 ± 1.16
Single - 1	123.5 ± 1.8	2.81 ± 0.35
Single - 2	116.8 ± 2.8	4.62 ± 0.40
Single - 3	120.1 ± 1.2	4.38 ± 0.21
Single - 4	118.6 ± 5.9	4.29 ± 1.00



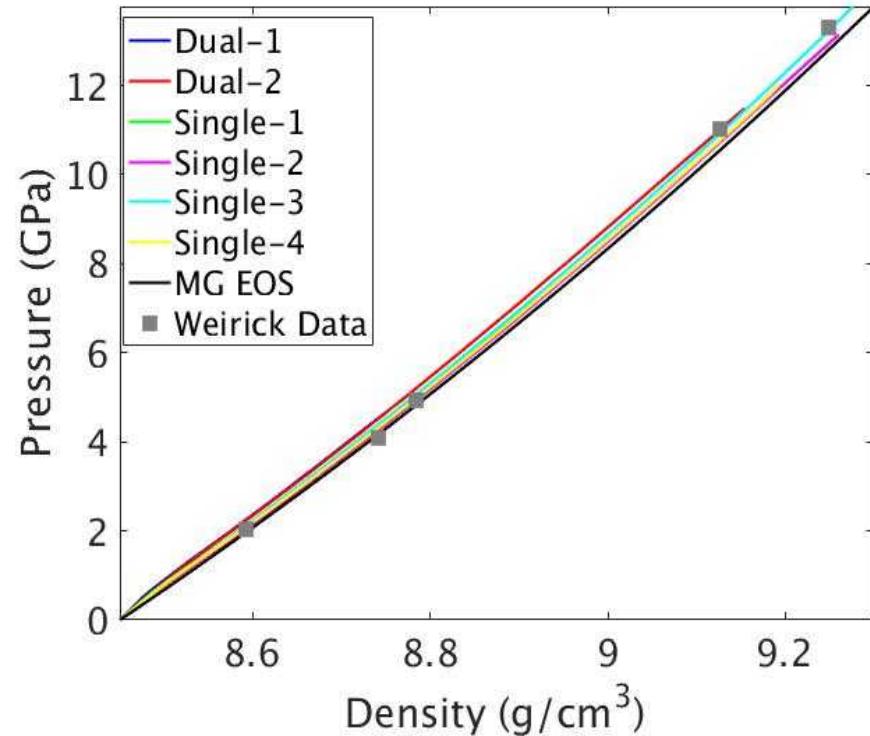
Quasi-Isentropic Comparison

- The experimental quasi-isentropes are stiffer than Sesame 4100 isentrope
 - Sesame 4100 is an old model
 - Experimental data is all at higher pressures than these experiments
 - Relies on mixture routines at high pressures
 - Table does contain entropy or free energy



Quasi-Isentropic Comparison

- Past Hugoniot data is compared to the current experiments
 - Isentrope and Hugoniot are second order tangent
- Current Mie-Gruneisen (MG) EOS [6] matches well
 - Experimental data is slightly stiffer
 - MG EOS is based on higher pressure Hugoniot data
- Gas gun experiments at low pressure by Weirick [7] agree with the experimental results



Shear Strength

- Shear strength is only determined from the single sample experiments
 - Assume symmetry about the hydrostat
 - $Y = 2\tau$
- Shear strength measurements were only obtained for 2 experiments
 - Earlier experiments did not record the release long enough
 - Single - 3 and Single - 4
 - Strain rates range from $1\text{e}5 \text{ s}^{-1}$ to $2\text{e}5 \text{ s}^{-1}$
- In-house MATLAB code was used to determine the shear strength
 - Corrections were incorporated for attenuation of the signals

Shear Strength Comparison

- Coefficients for the empirical Johnson-Cook constitutive model exist for Brass [8] in many hydrocodes
 - Lead free alloy
- The shear strengths measured are slightly higher than predicted by JC model
- Error estimated from the Monte Carlo simulations



Conclusions

- The quasi-isentrope of Brass 36000 was obtained using magnetic ramp compression
 - Results obtained with both ILA and the transfer function method were in good agreement
 - The measured quasi-isentrope was in good agreement with past Hugoniot data at low pressures, but stiffer than the Sesame 4100 table
- The shear strength of 36000 Brass was obtained at high pressures for two experiments
 - The experimental yield strengths were larger than predicted by the JC model
 - Model was calibrated for a different alloy
- Future efforts will focus obtaining more shear strength measurements and a comparative study on a lead free brass alloy

Acknowledgements

- Thanks is due to members of the Dynamic Integrated Compression Experimental (DICE) facility at Sandia National Laboratories for constructing the targets and running the experiments
 - Randy Hickman
 - Nicole Cofer
 - Keith Hodge
 - Joshua Usher