Exceptional service in the

EHT = 1500 kV WD = 19.9mm Signal A = SE2

Characterization of Void-Dominated
Ductile Failure in Pure Ta

B. G. Clark, J. R. Michael, B. B. McKenzie,
J. Carroll, H. Lim, and B. L. Boyce

May 30th, 2016 * THERMEC 2016 ® Graz, Austria

L%, U.S. DEPARTMENT OF " VY i "v D‘Téﬁ}
3 ) 4 ENERGY ﬂ' v‘ u‘-ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
o Natlonal Nuclear Security Adminisicaiion Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




Sandia
National
Laboratories

)

s
-
()
&
=
-
(qV)
-
O
C
LL]
(-
O
o)
C
(qv)
—
()
-
T

Samelia Meuntzains at Sunset




Sandia

National Labs




Sandia

Predictive Modeling is Challenging ®&=.
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Sandia Fracture Challenge -
Teams asked to predict:

g

| * Force and COD at
| which crack(s) initiate
« Path of crack

« 3 independent
experimental labs
collected data

* 13 groups gave
predictions from
models

» Wide variety in

predicted results

Crack opening displacement {(mm)




Microscopy Plays Key Role 1) .

Optical Microscopy
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Experimental data provides physical basis for
predictive simulation development




Predicting Ductile Failure in Ta ) .

‘ ——[100] 10° sp2’ 600 ——
250 111] —[100] 10° sp5 - i
—[100] 5° spi1
—[100] 0° sp10
[100] ~[110] 10° sp3 )
200 —[110] 10° sp6 | | —
g e % | |2
—_— ° Sp —
% —[111] 10° sp4 ?,
o —[111110° sp7 | | ¢y
7 7] ]
2 %
(0]
2 100| o ]
2 >
L [
|_
50| o :
CP-FEM Prediction (no damage) |
. 0 ]
| Experimental Data = O 01 02 03 04 05 06 07 08
0 005 01 015 02 025 03 035 04 045 05 :
Engineering Strain (m/m) True strain
111

Without including damage in CP-FEM:

* No softening occurs other than necking

« The material does not “degrade” (e.g. voids, crack,
tearing)

« Stress-strain response does not match experiments




Getting the Damage “Right”
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Metrics for Microstructurally Small Fatigue Crack (MSFC)*
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What controls the initiation of damage in Ta?
How can we better understand how damage nucleates and accumulates?




Ductile Fracture Mechanism ) e

= Mechanical description of void
nucleation, growth, and
coalescence largely based on
studies in 50’s and 60’s

= Voids continue to grow in
response to high stresses,
eventually coalesce

= |n this study, 99.9% Ta used;
no evidence of second-phases
or inclusions via SEM/TEM

Can modern techniques reveal how voids initiate in pure metals?




Tensile Testing of 99.9%Ta ) .

In Situ Scanning Electron Microscope (SEM) tensile test on Ta




Fractography of 99.9%Ta )

3021°SS

= Ta exhibits significant ductility, but
with valley/ridge fracture surface e L7+
‘ 7 . . . . o #%N99.9% Ta
— no ‘classic’ hemispherical dimpling K

= Mating surfaces are mirrored
— with no evidence of cup-cone
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What role does local microstructure play in
void initiation and growth?




Characterization of Deformed Ta ) i

. Interrupted Ta Tensile Tests
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Deformed Ta samples polished to
mid-plane to investigate local

_ . . _ Ta tensile bar deformed at 5x10-3to
microstructure in voided regions  40% remaining strength and polished
to mid-plane for void analysis




Void Formation at 80% RTS ) s,

Sample has begun to neck
No large voids observed

EBSD shows scattered small voids (30-
100 nm) near bands of [122] / [110]
aligned with tensile axis




Void Formation at 60% RTS ) s,

160%Remaining Strength

~|" Arrays of voids aligned along tensile axis
- | = EBSD shows elongated, inclined [001]
' subgrains associated with each void

- |= Alternating regions of [122] indicates high
' angle GBs

Deformation-induced microstructural changes and stress state
controls the initiation/growth of voids




Void Formation in Single Crystal Ta
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« [110] Ta shows void formam:

well before failure
« [111] Ta shows necking, but no
evidence of voiding, right up to
oint of failure
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Future Work TEI\/I of V0|ds inTa @i

FIB cross-sections of
sub-surface voids in
interrupted tensile bars
TEM of
dislocation/defect

det | curr | tilt [mag @] HFW | WD 3 pm structures
ETD|[0.69nA|53°|12000x[10.7 um|4.1 mm 1819 Helios D401 . . . .
Further insight into void

nucleation mechanism




Future Work: X-Ray Tomography @

 Diffraction contrast tomography to map
grain orientations in Ta tensile bar

« Deform in-situ with 3D x-ray tomography
to map void evolution

« Compare 1:1 experimental and modeling

results from same starting microstructure

In situ compression,
hot cold chamber

Cable/hose - 4 ; -
management system | e !
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Conclusions i

99.9% pure Ta is ductile, but does not exhibit a ‘classic” ductile
fracture surface (i.e. hemispherical dimples)
= but, fracture surface still indicates void-driven failure

Voids in interrupted tensile test specimens were analyzed by SEM
and EBSD

—> voids prevalent in regions of high misorientation

No inclusions or second-phases observed via SEM or TEM
—> void initiation likely at dislocation junctions / sub-boundaries

Early single crystal Ta results are consistent with polycrstalline
results: Grains oriented as [110] form voids readily in Ta

Failure mechanism of Ta is void-driven, with
deformation-induced microstructural changes and
stress state controlling the initiation and growth of voids

17



Nanoscale Analysis of Void Initiation () &

2 deformed to 40% UTS = Focused lon Beam [FIB) used to locate subsurface,
deformation-induced voids in interruptedtensile

bar.

* Preliminary TEM shows void shape aligned with
angle of sub-boundaries

*» Transmission Kikuchi Diffraction (TKD) to determine
crystallographic orientation near void.

= QOrientations are consistent with EBSD analysis

showing void nucleation along high angle
misorientation boundaries
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Damage model in crystal plasticity @®&=.

« Damage
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Ta single crystal simulation: [111] g
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Ta single crystal simulation: [110] g
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Crystal Plasticity Predictions )

Great comparison qualitatively, but strain and rotation are underpredicted




