
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

A Crash Course in Python for Scientists

Rick Muller

Center for Computing Research

Sandia National Laboratories

Available as an IPython notebook:

http://nbviewer.jupyter.org/gist/rpmuller/5920182

SAND2016-5089PE

http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://nbviewer.jupyter.org/gist/rpmuller/5920182

The story behind the class

 When I was a grad student, we
wrote Fortran

 When I returned, few
computational materials
scientists were coding

 How can we lower the bar to
computational exploration?

c neogvb code:
if (n_core .gt. 0) then

iham = iham + 1
do mo = 1, n_core

ij = 1
do i = 1, nbf

call daxpy (i, trans(i,mo),
trans(1,mo), 1,
density(ij,iham), 1)

ij = ij + i
enddo

enddo
endif

pyquante2 code:
d = np.dot(c[:,:nc],c[:,:nc].T)
if nopen > 0:

d += 0.5*np.dot(c[:,nc:(nc+no)],
c[:,nc:(nc+no)].T)

Caltech Virtual Test Facility (1998-2010)

 ASCI/ASAP team to simulate
shock physics

 Integrate explosives with
mechanics using Python

 Could we use similar ideas
in my group?

Aivazis et al., Comp. in Sci & Eng., 42 (2000).

 Spring 2000, Beckman Institute, Caltech

 Hence my fascination with drop-shadows!

 2002, one-day course, Lectures 1, 2, 6, 7

 Currently IPython Notebook:

 http://nbviewer.jupyter.org/gist/rpmuller/5920182

 Part of an effort to move our experimental
condensed matter physics framework to Python

 Also taught to 9- and 10-year olds!

http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://nbviewer.jupyter.org/gist/rpmuller/5920182

Today’s Talk: Why Python for Scientific
Exploration

 Not the original intended audience

 Try to touch on language basics

 Couple of advanced topics that may interest veterans

 Easy to Learn: Computer Programming For Everyone

 Readability Counts: Code is Conversation

 Code Ecosystem: Stand on the Shoulders of Giants

 Speed & Parallelization: Premature Optimization…

Today’s Talk: Why Python?

 Easy to Learn: Computer Programming For Everyone

 Readability Counts: Code is Conversation

 Code Ecosystem: Stand on the Shoulders of Giants

 Speed & Parallelization: Premature Optimization…

Computer Programming for Everyone

 Python is an easy to learn
 You don’t need to be a computer scientist to program. Anyone can

learn to program in Python. I’ve taught it to 9-10 year olds. I’ve taught
it to experimental physicists.

 You can learn (much of) Python in a day.

 Python tutorial: http://docs.python.org/2/tutorial

 This class: http://nbviewer.jupyter.org/gist/rpmuller/5920182

 At the same time, Python is Powerful
 You don’t need to be a computer scientist to get all of the cool stuff

that computer scientists do all day

 Easy to use data structures, containers, syntax

 Multiple programming styles: procedural, object-oriented, functional

 Lots of bells and whistles included in stdlib: web server,
multiprocessing, math, json, databases, XML, regex

http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://docs.python.org/2/tutorial

Today’s Talk: Why Python?

 Easy to Learn: Computer Programming For Everyone

 Readability Counts: Code is Conversation

 Batteries Included: Stand on the Shoulders of Giants

 Speed & Parallelization: Premature Optimization…

Code is conversation

 Code is conversation
 Your ideas aren’t any good if you can’t share them

 Python produces readable code
 Whitespace sensitive yields standard look and feel

 Simple syntax makes understanding other people’s ideas easy. Code
follows concepts.

Solving a quantum HO in Python

x = linspace(-3,3)
m = 1.0
ohm = 1.0
T = (-0.5/m)*Laplacian(x)
V = 0.5*(ohm**2)*(x**2)
H = T + diag(V)
E,U = eigh(H)

def Laplacian(x):
h = x[1]-x[0]
n = len(x)
M = -2*identity(n,'d')
for i in range(1,n):

M[i,i-1] = M[i-1,i] = 1
return M/h**2

IPython/Jupyter makes readable
notebooks

http://nbviewer.jupyter.org/gist/rpmuller/5920182

Today’s Talk: Why Python?

 Easy to Learn: Computer Programming For Everyone

 Readability Counts: Code is Conversation

 Code Ecosystem: Stand on the Shoulders of Giants

 Speed & Parallelization: Premature Optimization…

Python stdlib: Batteries Included

 Broad standard library includes

 Web servers

 String manipulation functions for parsing text, including unicode

 Math and statistics

 Databases, json, XML.

 Large number of data structures

 Linked lists

 Dictionaries

 Binary Trees

 Sets

 Queues

 Many others

Survey of other modules
 Numpy for multidimensional arrays and linear algebra

 Matplotlib for publication quality plotting and graphics

 Scipy a large selection of numerical routines that uses Numpy

 Sympy for symbolic manipulation of math/physics

 Pandas for data science

 Mayavi for 3D graphics (also Pyglet for OpenGL)

 Scikit-learn for machine learning

 pymc Markov chain Monte Carlo

 Pyquante for quantum chemistry (mine)

 GMPY2 interface to the Gnu multiprecision library

 NetworkX for networks and graph theory

 PyTrilinos interface to Sandia parallel Trilinos toolkit

 mpi4py interface to MPI

 PySpark interface to Apache Spark Map-reduce framework

Numpy Overview

 Matlab-like array module for
numerics

 Construct arrays

 Slicing

 Array operations

 Linear algebra

 Fast, easy to use

 Written in C, linked to
optimized BLAS.

x = linspace(-3,3)
m = 1.0
ohm = 1.0
T = (-0.5/m)*Laplacian(x)
V = 0.5*(ohm**2)*(x**2)
H = T + diag(V)
E,U = eigh(H)

def Laplacian(x):
h = x[1]-x[0]
n = len(x)
M = -2*identity(n,'d')
for i in range(1,n):

M[i,i-1] = M[i-1,i] = 1
return M/h**2

Plotting solutions using Matplotlib

 There’s also a matplotlib module for easy plotting

 Essentially copied the Matlab API

Plot the Harmonic potential
plot(x,V,color='k’)
for i in range(4):

Plot the energy level:
axhline(y=E[i],color='k',ls=":")
And the eigenfunction
plot(x,-U[:,i]/sqrt(h)+E[i])

title("Eigenfunctions of the HO")
xlabel("Displacement (bohr)")
ylabel("Energy (hartree)")

Matplotlib

Scipy Overview

 Scipy is a suite of Fortran/C codes numeric codes that have
been integrated using Numpy arrays.

 Integration

 Optimization

 Interpolation

 Sparse matrices and eigenvalues

 Graph theory

 Spatial decompositions

 Image processing

Optimization
 Scipy.optimize has a very nice interface to optimization

from scipy.optimize import curve_fit

def gauss(x,A,a): return A*exp(a*x**)

params,conv = curve_fit(gauss,data[:,0],
data[:,1])

x = linspace(-1,1)
plot(data[:,0],data[:,1],'bo')
A,a = params
plot(x,gauss(x,A,a),'b-')

Do you really want to rewrite
Levenberg-Marquardt? Or
Fletcher-Powell?

Visualization, Graphics, GUIs
MayaVi GUI Toolkits OpenGL

Today’s Talk: Why Python?

 Easy to Learn: Computer Programming For Everyone

 Readability Counts: Code is Conversation

 Code Ecosystem: Stand on the Shoulders of Giants

 Speed & Parallelization: Premature Optimization…

Premature Optimization

 Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and
these attempts at efficiency actually have a strong negative impact when
debugging and maintenance are considered. We should forget about
small efficiencies, say about 97% of the time: premature optimization is
the root of all evil. Yet we should not pass up our opportunities in that
critical 3%.

 Donald Knuth, “Structured Programming with Go To Statements,” 1974

 Python can be 5-10 times slower than compiled C/Fortran. However:

 You can easily find out what parts are slow (profiling)

 You can speed these parts using JIT compilers

 You can use C/Fortran for these parts, either using a compiled library
(Numpy/Scipy) or by writing them in C, Fortran, Cython

 You can parallelize the code using multiprocessing or mpi4py.

Profiling: Find out what is slow

 Python profiling makes it easy to figure out where code is slow

import cProfile,pstats
from pyquante2 import rhf,c6h6,basisset

def main():
bfs = basisset(c6h6,'sto-3g')
solver = rhf(hmx,bfs)
solver.converge()
return

if __name__ == '__main__':
cProfile.run('main()','profile.dat')
prof = pstats.Stats('profile.dat')
prof.strip_dirs().sort_stats('time').print_stats(15)

ncalls tottime percall cumtime percall filename:lineno(function)
222800 80.894 0.000 81.199 0.000 {pyquante2.ctwo.ERI_hgp}

1 1.354 1.354 83.423 83.423 integrals.py:90(__init__)
18648 0.900 0.000 1.684 0.000 {pyquante2.cone.V}

320832 0.550 0.000 0.845 0.000 cgbf.py:44(__getitem__)
891200 0.305 0.000 0.305 0.000 cgbf.py:54(cne_list)
222801 0.288 0.000 0.293 0.000 integrals.py:140(iiterator)

Writing/linking code in C or Fortran

 You can write routines in C,
and wrap them in python,
also using C.

 New methods make this
much easier

 Load/prototype from DLL
library

 Cython/f2py/SWIG interface
generators

#include "Python.h"

static PyObject *py_cdistance(PyObject *self,

Pyobject *args){

double xi,yi,zi,xj,yj,zj,dist;

PyArg_ParseTuple(args,"dddddd",&xi,&yi,&zi,

&xj,&yj,&zj);

dist = c_dist_function(xi,yi,zi,xj,yj,zj);

return Py_BuildValue("d",dist);

}

from ctypes import*

mydll = cdll.LoadLibrary(”dist.dll")
dist = mydll.dist(0.,0.,0.,1.,1.,1.)

Other methods for speed

 Cython: A Python-like
language with explicit types

 PyPy: Optimized Python
written in Python

 Numba:

 JIT compiler

 Compiles down to LLVM IR

from numba import jit
from numpy.random import randn

@jit
def f(x):

return x*x

if __name__ == '__main__':
f(randn(1000))

LU decomposition

A Speed Comparison Of C, Julia, Python, Numba, and Cython on LU Factorization, Jean Francois Puget, IBM Developer Blog

https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en

Threads, processing, parallel programming

 Global Interpreter Lock (GIL)
makes threaded programming
hard

 Necessary for interpreted
language

 Many different solutions
proposed, none have stuck

 Multiprocessing module has many
of these paradigms

 MPI frameworks available

 mpi4py

 PyTrilinos

 What I really want is something
that has Chapel-like abstractions
for parallel programming

 Not totally unlike Trilinos’s maps

from deco import concurrent, synchronized

@concurrent
def slow(index):

time.sleep(5)

@synchronized
def run():

for index in list('123'):
slow(index)

run()

Understanding the Python GIL: dabeaz.com/GIL

" of ", numLocales, ")");

const MessageSpace = {1..numMessages}
dmapped Cyclic(startIdx=1);

forall msg in MessageSpace do
writeln("Hello, world! (from iteration ", msg, " of ",

numMessages, " owned by locale ",
here.id,

" of ", numLocales, ")");

http://www.dabeaz.com/GIL
http://www.dabeaz.com/GIL

Today’s Talk: Why Python?

 Easy to Learn: Computer Programming For Everyone

 Readability Counts: Code is Conversation

 Code Ecosystem: Stand on the Shoulders of Giants

 Speed & Parallelization: Premature Optimization…

Conclusion

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to
do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Backup

Data structures: Lists (skip)

 Keep a group of similar items together. Built-in functions allow access to
size and other features:

 Access members of the list using indexing. Like C, start from 0.

 Convenience function for lists of numbers

 Other data types: tuples, dictionaries, …

>>> days_of_the_week = ["Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"]
>>> len(days_of_the_week)
7

>>> days_of_the_week[2]
'Tuesday'

>>> range(5)
[0, 1, 2, 3, 4, 5]

Iteration, indentation, blocks (skip)

 for iterates over lists (or iterators)

 This is where the range function is useful for flow control:

 Python is whitespace sensitive. It uses indentation to define
blocks.

for day in days_of_the_week:
statement = “Today is “ + day
print statement

for i in range(20):
print “the square of “,i,” is “,i*i

Danger: Whitespace
Sensitive!

Boolean testing, if statements (skip)

 Booleans and if control branching in programs

 Booleans are formed using typical comparisons

if day == “Sunday”:
print “Sleep in”

else:
print “Go to work”

1 == 2 # False
50 == 2*25 # True
3 < 3.14159 # True
1 == 1.0 # True
1 is 1.0 # False
1 != 0 # True
[1,2,3] < [1,2,4] # True

Functions (skip)

 You can of course define functions:
def fibonacci(sequence_length):

"Return the Fibonacci sequence of length *sequence_length*"
sequence = [0,1]
if sequence_length < 1:

print "Fibonacci sequence only defined for length 1 or greater"
return

if 0 < sequence_length < 3:
return sequence[:sequence_length]

for i in range(2,sequence_length):
sequence.append(sequence[i-1]+sequence[i-2])

return sequence

>>> fibonacci(12)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> help(fibonacci)
Help on function fibonacci in module __main__:

fibonacci(sequence_length)
Return the Fibonacci sequence of length *sequence_length*

Special Functions

 Numpy has many special functions built in. Scipy has more.

Python quantum chemistry
def rhf_simple(geo,basisname='sto3g',maxiter=25,verbose=False):

bfs = basisset(geo,basisname)
i1 = onee_integrals(bfs,geo)
i2 = twoe_integrals(bfs)
h = i1.T + i1.V
E,U = geigh(h,i1.S)
Enuke = geo.nuclear_repulsion()
nocc = geo.nocc()
Eold = Energy = 0

for i in xrange(maxiter):
D = dmat(U,nocc)
Eone = trace2(h,D)
G = i2.get_2jk(D)
H = h+G
Etwo = trace2(H,D)
E,U = geigh(H,i1.S)
Energy = Enuke+Eone+Etwo
if np.isclose(Energy,Eold):

break
Eold = Energy

return Energy,E,U

Iterators/generators: Don’t do slow stuff (skip)

 Lists are constructed in a single step. This makes nested loops
very slow.

 Iterators, generators, and the itertools module adopt Haskell-
style lazy evaluation and iteration

 In many cases, the resulting code can be extremely fast

for i in range(10000):
for j in range(100000):

print i+j

for i in xrange(10000):
for j in xrange(100000):

print i+j

import itertools

for i,j in itertools.product(100000,repeat=2):
print i,j

