SAND2016- 5089PE

3553 Sandia
nal-service in the national interest National

Laboratories

A Crash Course in Python for Scientists

Rick Muller

Center for Computing Research
Sandia National Laboratories
Available as an IPython notebook:

ae http://nbviewer.jupyter.org/gist/rpmuller/5920182
#CCR
L]

Center for Computing Research

& N) U.S. DEPARTMENT OF Iwn ' 'og’ﬁ
| ENERGY i VA‘ u."_‘ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
‘ ,.-A-j Wational Nucioar Security Adrinistration Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://nbviewer.jupyter.org/gist/rpmuller/5920182

The story behind the class

= When | was a grad student, we
wrote Fortran

= When | returned, few
computational materials
scientists were coding

= How can we lower the bar to
computational exploration?

Sandia
National
Laboratories

c neogvb code:
if (n_core .gt. 0) then
iham = iham + 1
domo =1, n_core
ij=1
doi=1, nbf
call daxpy (i, trans(i,mo),
trans(1,mo), 1,
density(ij,iham), 1)
ij=ij+i
enddo
enddo
endif

pyquante2 code:
d = np.dot(c[:,:nc],c[:,:nc].T)
if nopen > 0:
d += 0.5*np.dot(c[:,nc:(nc+no)],
c[:,nc:(nc+no)].T)

Caltech Virtual Test Facility (1998-2010)) i,

High Test
Plane Explosive Materials
. Wave Charge
= ASCI/ASAP team to simulate | |

Lens

shock physics

" |ntegrate explosives with
mechanics using Python

= Could we use similar ideas
in my group? Detonator Membrane

| Python scripting layer |‘—'-| Material properties |

/

mecharics oring.
a'(‘.l‘_.‘ I,u"'"’iz"" __\‘
ra Vol . »
Parallel 3 Adaptive mesh
adaptive refinement
meshing 7

R
| MNexus/Globus | | Scalable IﬁDl

Python Short Course) i

Lecture 1: Python Overview

Lecture 2: Numerical Python

Lecture 3: Practical Python

Lecture 4: Object Criented Programming
Lecture 5. Extending. Python with. C

Lecture 6: Python GUIs with Tkinter

Lecture 7: 3D Graphics with PyOpenGL

= Spring 2000, Beckman Institute, Caltech
= Hence my fascination with drop-shadows!

= 2002, one-day course, Lectures 1, 2, 6, 7

= Currently IPython Notebook:
= http://nbviewer.jupyter.org/gist/rpmuller/5920182

= Part of an effort to move our experimental
condensed matter physics framework to Python

= Also taught to 9- and 10-year olds!

http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://nbviewer.jupyter.org/gist/rpmuller/5920182

Today’s Talk: Why Python for Scientific
Exploration

Sandia
|I1 National

Laboratories

= Not the original intended audience
= Try to touch on language basics
= Couple of advanced topics that may interest veterans

= Easy to Learn: Computer Programming For Everyone
= Readability Counts: Code is Conversation
"= Code Ecosystem: Stand on the Shoulders of Giants

= Speed & Parallelization: Premature Optimization...

Today’s Talk: Why Python?) i,

Easy to Learn: Computer Programming For Everyone

Computer Programming for Everyone [

Laboratories

= Pythonis an easy to learn

You don’t need to be a computer scientist to program. Anyone can

learn to program in Python. I’ve taught it to 9-10 year olds. I've taught
it to experimental physicists.

= You can learn (much of) Python in a day.

= Python tutorial: http://docs.python.org/2/tutorial

» This class: http://nbviewer.jupyter.org/gist/rpmuller/5920182
At the same time, Python is Powerful

You don’t need to be a computer scientist to get all of the cool stuff
that computer scientists do all day

Easy to use data structures, containers, syntax

Multiple programming styles: procedural, object-oriented, functional

= |ots of bells and whistles included in stdlib: web server,
multiprocessing, math, json, databases, XML, regex

http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://docs.python.org/2/tutorial

Today’s Talk: Why Python?

Readability Counts: Code is Conversation

Code is conversation rh) teima_

= Code is conversation

= Your ideas aren’t any good if you can’t share them

= Python produces readable code

= Whitespace sensitive yields standard look and feel

= Simple syntax makes understanding other people’s ideas easy. Code
follows concepts.

Solving a quantum HO in Python

Sandia
National _
Laboratories

x = linspace(-3,3)
m=1.0

ohm =1.0

x ' T = (-0.5/m)*Laplacian(x)
2x| * F V = 0.5*(ohm**2)*(x**2)
H= T+ diag(V)

V@) = tmetr g o

def Laplacian(x):
h = x[1]-x[0]

_ n = len(x)
+ V(x)y(x) = Ey(x) M = -2*identity(n,'d")

_ h? Py(x)
2m 0Ox2

foriin range(1,n):
n _ Yi+1 — 2y + Yi—1 M[i,i-1] = M[i-1,i] = 1
y = h2 return M/h**2

IPython/Jupyter makes readable
notebooks

Sandia
m National

Laboratories

ence |2
— Jupyter Lorenz Differential Equations s (o
File Edit View Insert Cell Kernel Help Python3 O
| B + ¥ B 24 v > B C Code ¢ Coell Toolbar: = None ¢
ece J
J Exploring the Lorenz System
: J u pyt er w o P In this Notebook we explore the Lorenz system of differential equations:
. X =a(y-2x)
File Edit View insert Cel }"=px-y-.tz
B + xaB ++ >} t==fz+xy
] This is one of the classic systems in non-linear differential equations. It exhibits a range of

complex behaviors as the parameters (7, f, p) are varied, including what are known as chaotic
solutions. The system was originally developed as a simplified mathematical model for

: Jupyter atmospheric convection in 1963.

In [7)t interact(Lorenz, N=fixed(10), angle=(0.,360.),
o=(0.0,50.0),B=(0.,5), p=(0.0,50.0));

Welcome to the
angle 308.2
This Notebook Server wa i
max_time 1] 12
WARNING = 10
Don't on this
rely sery 8 286
Your server is hosted that P 28
Run some Python «
To run the code below:

1. Ciick on the cell t0 S¢
2. Press SHIFT+ENTER

A full tutorial for using the

In [): tmatplotlib inline

import pandas as pd
isport numpy as np
import matplotlib

Z Jupyter - i i,

nbviewer

In [129]:

Out[129]:

Laboratories

A Crash Course in Python for Scientists

Hick Muller, Sandia Mational Laboratories

Monte Carlo, random numbers, and computing 7

Many methods in scientific computing rely on Monte Carlo integration, where a seguence of (pseudo) random numbers are used to
approximate the integral of a function. Python has good random number generators in the standard library. The random() function
gives pseudorandom numbers uniformly distributed between 0 and 1:

from random import random

rands = []

for i in range(100):
rands.append(random())

plot(rands)

[<matplotlib.lines.Line2D at 0x10f9b£f210>]

10

Today’s Talk: Why Python?) i,

Code Ecosystem: Stand on the Shoulders of Giants

Python stdlib: Batteries Included) s,

= Broad standard library includes
= Web servers
= String manipulation functions for parsing text, including unicode
= Math and statistics
= Databases, json, XML.

= Large number of data structures
= Linked lists
= Dictionaries
= Binary Trees
= Sets
= Queues

= Many others

Survey of other modules) i,

= Numpy for multidimensional arrays and linear algebra

= Matplotlib for publication quality plotting and graphics

= Scipy a large selection of numerical routines that uses Numpy
= Sympy for symbolic manipulation of math/physics

= Pandas for data science

= Mayavi for 3D graphics (also Pyglet for OpenGL)

= Scikit-learn for machine learning

= pymc Markov chain Monte Carlo

= Pyquante for qguantum chemistry (mine)

= GMPY2 interface to the Gnu multiprecision library

= NetworkX for networks and graph theory

= PyTrilinos interface to Sandia parallel Trilinos toolkit

= mpidpy interface to MPI

= PySpark interface to Apache Spark Map-reduce framework

Sandia

Numpy Overview h) e

= Matlab-like array module for

numerics x = linspace(-3,3)

m=1.0

= Construct arrays ohm = 1.0

. . T = (-0.5/m)*Laplacian(x)
|
Slicing V = 0.5*(chm**2)*(x**2)

= Array operations H= T+ diag(V)

E,U = eigh(H)

" Linear algebra

" Fast, easy to use def Laplacian(x):

h = x[1]-x[0]
= Written in C, linked to :\‘; '62”,92 tity(n.'d")
.. = -2*identity(n,
optimized BLAS. for i in range(1,n):

M[i,i-1] = M[i-1,i] = 1
return M/h**2

Plotting solutions using Matplotlib

Sandia
National _
Laboratories

= There’s also a matplotlib module for easy plotting

= Essentially copied the Matlab API

Plot the Harmonic potential
plot(x,V,color='k’)
foriin range(4):
Plot the energy level:
axhline(y=E]Ji],color='k',Is=""
And the eigenfunction
plot(x,-U[:,il/sqgrt(h)+E[i])
title("Eigenfunctions of the HO")
xlabel("Displacement (bohr)")
ylabel("Energy (hartree)")

)

Energy (hartree)

s Eigenfunctions of the Quantum Harmonic Oscillator

40}

35k

w
o
T

et
w

Displacement (bohr)

Matplotlib

. 1

¢ 1
o ' . — .
p > e \
- |
*2 .' o o |
{
e . - |
- |
e |
o/ L J
%1 &8 &) &4 s IBEIERY 5

Percentage of Bacheiors degrees conferred 1o women in the U S A By major (1970-2011)
[55S

"~
(L1 Leas Lo ot w10

ver
"

]

4 1 i
*
. |
r” -
-
r a
¥ ‘
Ve —
. 3 ‘
- .1
> .
- .
- *
- - -~
- | M
> o —
- -
- . "
. ¥ = 3
v o
s ”) i
(BT ET T
L] ¢] . 1 : L]
Bara e Fywes Cpiin LRameee B0 Yo Mo an e Waged
v o gy %0, G ed 2000

Sandia
National
Laboratories

Scipy Overview) s,

= Scipy is a suite of Fortran/C codes numeric codes that have
been integrated using Numpy arrays.

= |ntegration

= Optimization

" |nterpolation

= Sparse matrices and eigenvalues
= Graph theory

= Spatial decompositions

= |mage processing

Sandia

Optimization '11 Il“aat}m%ries

= Scipy.optimize has a very nice interface to optimization

from scipy.optimize import curve_fit

def gauss(x,A,a): return A*exp(a*x**)

params,conv = curve_fit(gauss,datal:,0],
datal:,1])

x = linspace(-1,1)

plot(data[:,0],datal[:,1],'bo")

A,a = params

plot(x,gauss(x,A,a),'b-")

10

Do you really want to rewrite
Levenberg-Marquardt? Or
Fletcher-Powell?

Visualization, Graphics, GUls) i,

MayaVi GUI Toolkits

Today’s Talk: Why Python?) i,

= Speed & Parallelization: Premature Optimization...

Premature Optimization) i,

= Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and
these attempts at efficiency actually have a strong negative impact when
debugging and maintenance are considered. We should forget about
small efficiencies, say about 97% of the time: premature optimization is
the root of all evil. Yet we should not pass up our opportunities in that
critical 3%.

= Donald Knuth, “Structured Programming with Go To Statements,” 1974

= Python can be 5-10 times slower than compiled C/Fortran. However:
= You can easily find out what parts are slow (profiling)
= You can speed these parts using JIT compilers

= You can use C/Fortran for these parts, either using a compiled library
(Numpy/Scipy) or by writing them in C, Fortran, Cython

= You can parallelize the code using multiprocessing or mpi4py.

Profiling: Find out what is slow) i,

= Python profiling makes it easy to figure out where code is slow

import cProfile,pstats
from pyquante2 import rhf,c6h6,basisset

def main():
bfs = basisset(c6h6,'sto-3g')
solver = rhf(hmx,bfs)
solver.converge()
return

if _name__ ==' main__"
cProfile.run(‘'main()','profile.dat')
prof = pstats.Stats('profile.dat’)
prof.strip_dirs().sort_stats(‘time').print_stats(15)

ncalls tottime percall cumtime percall flename:lineno(function)
222800 80.894 0.000 81.199 0.000 {pyquante2.ctwo.ERI_hgp}
1 1.354 1.354 83.423 83.423 integrals.py:90(__init_)
18648 0.900 0.000 1.684 0.000 {pyquante2.cone.V}
320832 0.550 0.000 0.845 0.000 cgbf.py:44(__getitem__)
891200 0.305 0.000 0.305 0.000 cgbf.py:54(cne_list)
222801 0.288 0.000 0.293 0.000 integrals.py:140(iiterator)

Writing/linking code in C or Fortran) i,

#include "Python.h"

= You can write routines in C,
and wrap them in python,

static PyObject *py_cdistance(PyObject *self,
Pyobject *args){

aIso using C. double xi,yi,zi,xj,yij,zj,dist;
PyArg_ParseTuple(args,"dddddd",&xi,&yi,&zi,
= New methods make this &), &y}, 8);
. dist = c_dist_function(xi,yi,zi,xj,yj,zj);
much easier return Py_BuildValue("d" dist);
}
= Load/prototype from DLL
library
= Cython/f2py/SWIG interface | from ctypes import”
generators mydll = cdll.LoadLibrary("dist.dII")

dist = mydil.dist(0.,0.,0.,1.,1.,1.)

Other methods for speed i

| CythOn: A Python-like ol — Izurepython
language with explicit types o L _rm

10° b

107 |

= PyPy: Optimized Python

runtime [sec]

written in Python il
= Numba: 10+ |
= JIT compiler i: . |
= Compiles down to LLVM IR . LU decomposition
— pure python
from numba import jit i .
from numpy.random import randn 10°H — lapack
@jit E‘ 107 F
def f(x): 3 ool
return x*x ol
if__name__=="'_main__" - ‘ ;
f(randn(1000)) 0° O e 10°

https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en

Threads, processing, parallel programmifigz:..

= Global Interpreter Lock (GIL) from deco import concurrent, synchronized
makes threaded programming
hard @concurrent

def slow(index):

= Necessary for interpreted time.sleep(5)

language
= Many different solutions @synchronized
proposed, none have stuck def run():
= Multiprocessing module has many for index in list("123"):
of these paradigms slow(index)
run()

= MPI frameworks available
- mplé%?y const MessageSpace = {1..numMessages}
= PyTrilinos dmapped Cyclic(startldx=1);
= What | really want is something _
forall msg in MessageSpace do

that has Chapel-like at?stractlons writeln("Hello, world! (from iteration ", msg, " of *,
for parallel programming numMessages, " owned by locale ",

= Not totally unlike Trilinos’s maps | here.id,
"of ", numLocales, ")");

http://www.dabeaz.com/GIL
http://www.dabeaz.com/GIL

Today’s Talk: Why Python?) i

Easy to Learn: Computer Programming For Everyone
Readability Counts: Code is Conversation
Code Ecosystem: Stand on the Shoulders of Giants

Speed & Parallelization: Premature Optimization...

Conclusion rh) teima_

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to
do it.

Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

B a C k u p m Ilﬁag&?rg?cllries

Data structures: Lists (skip)) s,

= Keep a group of similar items together. Built-in functions allow access to
size and other features:

>>> days_of the week = ["Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"]

>>> |en(days_of the week)

7

= Access members of the list using indexing. Like C, start from O.

>>> days_of_the_week|[2]
"Tuesday'

= Convenience function for lists of numbers

>>> range(9)
[0, 1, 2, 3, 4, 5]

= Other data types: tuples, dictionaries, ...

lteration, indentation, blocks (skip)) i,

= for iterates over lists (or iterators)

for day in days_of the week:
statement = “Today is “ + day
print statement

= This is where the range function is useful for flow control:

for i in range(20):
print “the square of “,i,” is “,i*i

= Python is whitespace sensitive. It uses indentation to define
blocks.

Danger: Whitespace

Sensitive!

Boolean testing, if statements (skip)) i,

= Booleans and if control branching in programs

if day == “Sunday”:
print “Sleep in”
else:
print “Go to work”

= Booleans are formed using typical comparisons

1 == # False
50 == 2*25 # True
3 <3.14159 # True
1==1.0 # True
1is 1.0 # False
11=0 # True
[1,2,3] < [1,2,4] # True

Functions (skip)

= You can of course define functions:

Sandia
National

Laboratories

def fibonacci(sequence_length):

"Return the Fibonacci sequence of length *sequence length*"

sequence = [0,1]

if sequence_length < 1:
print "Fibonacci sequence only defined for length 1 or greater"
return

if 0 < sequence_length < 3:
return sequence[:sequence_length]

foriin range(2,sequence_length):
sequence.append(sequenceli-1]+sequence[i-2])

return sequence

>>> fibonacci(12)

[0,1,1,2,3,5, 8, 13, 21, 34, 55, 89]

>>> help(fibonacci)

Help on function fibonacci in module __main__:

fibonacci(sequence_length)
Return the Fibonacci sequence of length *sequence_length*

Special Functions h) i,

= Numpy has many special functions built in. Scipy has more.

14 Airy functions Bessel functions
12} 10
10}
08 | osl
0.6
04
02} 0.0
0.0
-0.2} 1 _os
_.0-4 i i i) i i i i i]
-1.0 -0.5 0.0 05 10 0 2 4 6 8 10
H)':ebyshev polynomials of the first kind 10 Legendre polynomials
0.5 / 05} / 1
! \ /
/1]
0.0 0.0 :
-0.5 054/
{
1 1.0

=10 1 ' - -1. 1 i 1
=10 =05 0.0 05 10 -1.0 -0.5 0.0 0.5 10

Python quantum chemistry

def rhf_simple(geo,basisname="'sto3g',maxiter=25,verbose=False):
bfs = basisset(geo,basisname)
i1 = onee_integrals(bfs,geo)
i2 = twoe_integrals(bfs)
h=i1.T+i1.V
E,U = geigh(h,i1.S)
Enuke = geo.nuclear_repulsion()
nocc = geo.nocc()
Eold = Energy =0

for i in xrange(maxiter):
D = dmat(U,nocc)
Eone = trace2(h,D)
G = i2.get_2jk(D)
H = h+G
Etwo = trace2(H,D)
E,U = geigh(H,i1.S)
Energy = Enuke+Eone+Etwo
if np.isclose(Energy,Eold):
break
Eold = Energy
return Energy,E,U

Sandia
National
Laboratories

Sandia

lterators/generators: Don’t do slow stuff (ski .

= Lists are constructed in a single step. This makes nested loops
very slow.

for i in range(10000):
for j in range(100000):
print i+

= [terators, generators, and the itertools module adopt Haskell-
style lazy evaluation and iteration

for i in xrange(10000): import itertools
for j in xrange(100000):
print i+ fori,j in itertools.product(100000,repeat=2):
print i,j

= |n many cases, the resulting code can be extremely fast

