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Magnesium Battery Promises

Pack-level calculations: Mg metal plating and stripping comprise
Mg anode + high voltage cathode = success anode charge/discharge

80 kW, 100 kWh___ 360 V /\
700

@

smaller

600 ~

useIL)

)]

o

o
T

M g2+

Mg° (—)Q
@

400 -

@

300

® @ @
000000
000000

X"

200 +~

Useable Energy Density (Wh

Kevin Gallagher,
Argonne National M .
Laboratory g Electrolyte Intercalation
100 - Anode Cathode
Nissan Leaf lighter
0 2.2 kWIhuse . 1 . 1 . 1 .
0 100 200 300 400 500 Anode mAh/cm3 V vs. SHE
Useable Specific Energy (Wh _/kg) LiCG 780 2.9
Mg 3830 -2.4

» Metal anode drives improvement in overall energy density
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Magnesium Battery Confessions

» Electrolytes must support Mg deposition cycling at > 99.8% coulombic efficiency (CE) and
reasonable current densities (1-6 mA/cm?)... while maintaining wide electrochemical window
and compatibility with cathodes of reasonable voltage
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» Electrolyte development must marry the anode and cathode functionality
» Reductive and oxidative stability
» Non-corrosive toward cathode materials
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Pushing the Limits of Conventional Electrolytes
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TFSI and Carborane Systems Afford Instructive Comparison
MgCB, system: slow passivation, high CE

MgTFSI, system : rapid passivation, low CE
> Regulated by impurities + anion
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Average Bulk Speciation Doesn’t Explain Differences

subtle variations in complex structure similar average Mg?* environment
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» Mg deposition reversibility and passivation are not strongly dependent on
Mg?* complexation in weakly-coordinating electrolytes

» Unique interfacial processes must explain differences in electrolyte behavior

» Interfacial stability appears to be the key determinant
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Interfacial Stability Controls Deposit Morphology

Passivated structures dominated
by fluorine/oxygen signatures
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» Anion/byproduct adsorption directs
non-uniform growth
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Origins of Interfacial TFSI Instability

Computationally derived bond dissociation energies DFT-derived complex structures
(K. Persson group, LBNL) (D. Prendergast group, LBNL)

J. Phys. Chem. C, 2016, 120, 3583—-3594
J. Am. Chem. Soc. 2015, 137, 3411-3420
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In Operando Characterization of TFSI Instability

In situ Raman Spectroscopy cathodic polarization induces changes in TFSI signature in MgTFSI,:G2
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» Perturbation of TFSI coordination
structure near Mg potentials
» Persistent changes in TFSI spectra
signify formation of a surface layer
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Chloride Mitigates Instability in TFSI Electrolytes
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TFSI, but not in carborane system
> Demonstrates the role of reducible vs. non-

reducible anion species
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Chloride Drives Complex Formation

Changes in Mg K-edge XANES are consistent with Cl-complex formation
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Electrochemical Kinetics Depend on Nature of Mg?*-Complex

Cl-complexation induces a de-shielded >>Mg NMR Cl-complexation down-regulates deposition kinetics
response § .
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Chloride Preserves the Active Mg° Interface
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» Activity could be maintained by two routes » Presence pf persistent self-discharge
» Cl-adsorption to Mg prevents reaction with suggests Mg is not completely protected
anion/impurities from reactants
» Cl-mediated breakdown of rapidly formed
passivating layer
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Chloride Alters Interfacial TFSI Population
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Take Home Messages

MgTFSI, and MgCB, electrolytes provide fertile ground for
understanding the links between bulk, interface, and activity

= These electrolyte systems are primarily limited by both impurities and,
in the MgTFSI, case, instability of the anion species

= Reversibility of Mg deposition and Mg passivation are primarily
determined by interfacial processes not necessarily reflective of the bulk
speciation

= Chloride additives alter both the bulk complexation of Mg?* and the
interfacial behavior of reactive species
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Chloride Modifies Interfacial Behavior

Raman comparison
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» Chloride alters TFSl interactions at Mg° potentials
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