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Magnesium Battery Promises

 Metal anode drives improvement in overall energy density

Mg
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Intercalation 
Cathode

Mg2+

Electrolyte

Mg0

Anode mAh/cm3 V vs. SHE
LiC6 780 -2.9
Mg 3830 -2.4
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Pack-level calculations:
Mg anode + high voltage cathode = success

Mg metal plating and stripping comprise 
anode charge/discharge



 Electrolytes must support Mg deposition cycling at ≥ 99.8% coulombic efficiency (CE) and 
reasonable current densities (1-6 mA/cm2)… while maintaining wide electrochemical window 
and compatibility with cathodes of reasonable voltage

Magnesium Battery Confessions

3

Electrolytes for Cathode

Mg2+ blocking film

Mg2+

RMgCl + AlClxRy

Mg(BH4)2

Mg(BR4)2

MgCl2 + MgR2

Mg0

No blocking film

Electrolytes for Anode

Mg0

Ether solvents

MgxCly
+

Mg(ClO4)2

MgOTf2

MgTFSI2

Polar aprotic solvents

 Electrolyte development must marry the anode and cathode functionality
 Reductive and oxidative stability
 Non-corrosive toward cathode materials
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Pushing the Limits of Conventional Electrolytes

 Weakly coordinating anions
 Wide electrochemical windows
 Oxide-compatible
 Mg susceptible to passivation

TFSI CB11H12
-

• Commercially available
• Soluble in glymes
• Susceptible to reductive 

decomposition

• Synthesized
• Soluble in long-chain glymes
• High reductive stability

-20

-10

0

10

20

-1 0 1 2 3

j (
m

A
/c

m
2
)

E (V vs. Mg)

As Prepared (x5)

Electrochemically Purified

Distilled Solvent

MgTFSI2 in diglyme – purity matters

protic impurities:

MgCB2 in triglyme and tetraglyme - high stability

G3
G4

Tutusaus et al. Angew. Chem. Int. Ed. 2015, 54, 1-6
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TFSI and Carborane Systems Afford Instructive Comparison
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MgTFSI2 system : rapid passivation, low CE
 Regulated by impurities + anion

MgCB2 system: slow passivation, high CE
 Regulated by impurities

MgTFSI2:G3

MgTFSI2:G1

MgTFSI2:G2
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Passivation dynamics in MgTFSI2:G2 Passivation dynamics in MgCB2:G3
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Average Bulk Speciation Doesn’t Explain Differences

subtle variations in complex structure
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similar average Mg2+ environment

 Mg deposition reversibility and passivation are not strongly dependent on 
Mg2+ complexation in weakly-coordinating electrolytes

 Unique interfacial processes must explain differences in electrolyte behavior

 Interfacial stability appears to be the key determinant
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Passivated structures dominated 
by fluorine/oxygen signatures

Interfacial Stability Controls Deposit Morphology

active 
Mg

passive 
Mg

680 685 690 695 700 705

Energy (eV)

Particle

Continuous Region

F O

F

F K-edge

O K-edge

STXM

Stable anions enable continuous, compact deposit structure

MgCB2/G3
1.5 mA/cm2

MgTFSI2/G2
1.5 mA/cm2

Unstable anions enforce low nucleation density and 3D growth

ALS 
BL 5.3.2

 Anion/byproduct adsorption directs 
non-uniform growth 
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Origins of Interfacial TFSI Instability

C-S bond scission predicted during Mg2+ -> Mg+ reduction
If TFSI is coordinated to Mg2+/+

Computationally derived bond dissociation energies
(K. Persson group, LBNL)

J. Am. Chem. Soc. 2015, 137, 3411−3420

DFT-derived complex structures
(D. Prendergast group, LBNL)

Geometry of G2:Mg2+:TFSI- complex 
controls likelihood of C-S bond scission

Stable structure

Unstable structure

J. Phys. Chem. C, 2016, 120 , 3583–3594
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In Operando Characterization of TFSI Instability 

Mg rod CE/RE

In situ Raman Spectroscopy

Quartz window

Inverted laser

Electrochemically roughened Au WE
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cathodic polarization induces changes in TFSI signature in MgTFSI2:G2
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 Perturbation of TFSI coordination 
structure near Mg potentials

 Persistent changes in TFSI spectra 
signify formation of a surface layer 
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Chloride Mitigates Instability in TFSI Electrolytes
TFSI/G3 Electrolytes

 Cl- increases CE and reduced stripping overpotential in 
TFSI, but not in carborane system
 Demonstrates the role of reducible vs. non-

reducible anion species
 What role(s) does Cl- play?

 Unique complexation facilitates rapid Mg2+

delivery?
 Exclusion of TFSI from Mg2+ coordination at 

interface?
 Protection of fresh Mg0?
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Chloride Drives Complex Formation

1:2 MgTFSI:MgCl

MgTFSI

Changes in Mg K-edge XANES are consistent with Cl-complex formation
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Cl-complexation down-regulates deposition kinetics

J0 = 2.4 mA/cm2

J0 = 0.6 mA/cm2

MgCB
MgCB:MgCl

10 µm Au WE

Electrochemical Kinetics Depend on Nature of Mg2+-Complex

 Chloride-ligands expected to reduce solvation 
energy of Mg2+

 Deposition kinetics are hindered with the addition 
of Cl- in G2 and G3, but not in G1!

 Rate-limiting step depends on solvent and ligand 
interplay

Cl-complexation reduces glyme:Mg2+ chelation

glyme ν(C-O)

desolvation/
adsorption

electronation/
de-ligation

Mg0
Mg2+

Mg2+ Cl- Cl-
Cl-

Cl-complexation induces a de-shielded 25Mg NMR 
response

Raman Spectroscopy 
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Stripping after 2h OCP

Chloride Preserves the Active Mg0 Interface
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 Activity could be maintained by two routes
 Cl-adsorption to Mg0 prevents reaction with 

anion/impurities
 Cl-mediated breakdown of rapidly formed 

passivating layer

 Presence pf persistent self-discharge 
suggests Mg0 is not completely protected 
from reactants
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Chloride Alters Interfacial TFSI Population
MgTFSI:G1
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Low TEY signal for F -> lower 
TFSI concentration at 
interface

Blue-shifted O K-edge in TEY 
indicates lower interfacial 
TFSI concentration vs. bulk

ALS BL 
8.0.1
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displaces TFSI from 
interface



 MgTFSI2 and MgCB2 electrolytes provide fertile ground for 
understanding the links between bulk, interface, and activity

 These electrolyte systems are primarily limited by both impurities and, 
in the MgTFSI2 case, instability of the anion species

 Reversibility of Mg deposition and Mg passivation are primarily 
determined by interfacial processes not necessarily reflective of the bulk 
speciation

 Chloride additives alter both the bulk complexation of Mg2+ and the 
interfacial behavior of reactive species
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Take Home Messages
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Chloride Modifies Interfacial Behavior
Raman comparison
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