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Significance	
  

No	
  clear	
  “quantum”	
  speedup	
  
Some	
  problem	
  instances	
  are	
  easy/hard	
  for	
  D-­‐Wave	
  and	
  
some	
  are	
  easy/hard	
  for	
  other	
  (classical)	
  heuris(cs.	
  
Empirical	
  complexity	
  varies	
  widely,	
  even	
  for	
  closely	
  
related	
  problems.	
  

Most	
  significant	
  hurdles	
  to	
  solving	
  real-­‐world	
  problems:	
  	
  
must	
  “compile”	
  logical	
  problem-­‐domain	
  variables	
  to	
  
physical	
  qubits	
  and	
  limited-­‐precision	
  couplers.	
  
	
  
We	
  give	
  mathema(cal	
  evidence	
  that	
  worst-­‐case	
  O(N2)	
  
overhead	
  is	
  unavoidable	
  for	
  current	
  D-­‐Wave	
  architecture.	
  
	
  
Algorithmic	
  tools	
  for	
  “compiling”	
  real-­‐world	
  problems	
  on	
  
emerging	
  quantum	
  architectures	
  are	
  cri(cal!	
  

Finding	
  an	
  op(mal	
  solu(on	
  
99%	
  of	
  the	
  (me	
  

Finding	
  a	
  solu(on	
  within	
  99%	
  
of	
  op(mal	
  all	
  the	
  (me	
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FIG. 4. Time to find the optimal solution with 99% prob-
ability for di↵erent problem sizes. We compare Simulated
Annealing (SA), Quantum Monte Carlo (QMC) and the D-
Wave 2X. To assign a runtime for the classical algorithms we
take the number of spin updates (for SA) or worldline updates
(for QMC) that are required to reach a 99% success proba-
bility and multiply that with the time to perform one update
on a single state-of-the-art core. Shown are the 50th, 75th
and 85th percentiles over a set of 100 instances. The error
bars represent 95% confidence intervals from bootstrapping.
This experiment occupied millions of processor cores for sev-
eral days to tune and run the classical algorithms for these
benchmarks. The runtimes for the higher quantiles for the
larger problem sizes for QMC were not computed because the
computational cost was too high. For a similar comparison
with QMC with di↵erent parameters please see Fig. 13.

finite range cotunneling. By contrast, the random Ising
instances studied in Refs. [12, 15] have only low energy
barriers, as explained in Ref. [47].

B. D-Wave versus Quantum Monte Carlo

Next we compared the performance of path integral
Quantum Monte Carlo (QMC) with that of D-Wave for
the same benchmark. QMC samples the Boltzmann dis-
tribution of a classical Hamiltonian which approximates
the transverse field Ising model. In the case of a 2-spin
model, the discrete imaginary time QMC classical Hamil-
tonian is
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where �
j

(⌧) = ±1 are classical spins, j and k are site
indices, ⌧ is a replica index, and M is the number of

replicas. The coupling between replicas is given by
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where � is the inverse temperature. The configurations
for a given spin j across all replicas ⌧ is called the world-
line of spin j. Periodic boundary conditions are imposed
between �

j

(M) and �
j

(1). We used continuous path in-
tegral QMC, which corresponds to the limit �⌧ ! 0 [48],
and, unlike discrete path integral QMC, does not su↵er
from discretization errors of order 1/M .

We numerically compute the number of sweeps n
sweeps

required for QMC to find the ground state with 99%
probability at di↵erent quantiles. In our case, a sweep
corresponds to two update attempts for each worldline.
The computational e↵ort is n

sweeps

⇥N⇥T
worldline

, where
N is the number of qubits and T

worldline

is the time to up-
date a worldline. We average T

worldline

over all the steps
in the quantum annealing schedule; however the value
of T

worldline

depends on the particular schedule chosen.
As explained above for SA, we report the total computa-
tional e↵ort of QMC in standard units of time per single
core. For the annealing schedule used in the current D-
Wave 2X processor, we find

T
worldline

= � ⇥ 870 ns (11)

using an Intel(R) Xeon(R) CPU E5-1650 @ 3.20GHz.
This study is designed to explore the utility of QMC

as a classical optimization routine. Accordingly, we op-
timize QMC by running at a low temperature, 4.8 mK.
We also observe that QMC with open boundary condi-
tions (OBC) performs better than standard QMC with
periodic boundary conditions in this case [39]; therefore,
OBC is used in this comparison. We further optimize
the number of sweeps per run which, for a given quan-
tile, results in the lowest total computational e↵ort. We
find that the optimal number of sweeps for the 50th per-
centile at the largest problem size is 106. This enhances
the ability of QMC to simulate quantum tunneling, and
gives a very high probability of success per run in the
median case, p

success

= 0.16.
All the qubits in a cluster have approximately the same

orientation in each local minimum of the e↵ective mean
field potential. Neighboring local minima typically cor-
respond to di↵erent orientations of a single cluster. Here,
tunneling time is dominated by a single purely imaginary
instanton and is described by Eq. (24) below. It was
recently demonstrated that, in this situation, the expo-
nent a

min

/~ for physical tunneling is identical to that of
QMC [39]. As seen in Fig. 4, we do not find a substan-
tial di↵erence in the scaling of QMC and D-Wave (QA).
However, we find a very substantial computational over-
head associated with the prefactor B in the expression
T = BeDamin/~ for the runtime. In other words, B

QMC

can exceed B
QA

by many orders of magnitude. The role
of the prefactor becomes essential in situations where the
number of cotunneling qubits D is finite, i.e., is inde-
pendent of the problem size N (or depends on N very

Fair	
  benchmarking	
  is	
  challenging	
  
How	
  does	
  one	
  fairly	
  compare	
  
different	
  algorithms	
  running	
  on	
  
vastly	
  different	
  types	
  of	
  
computa(onal	
  devices?	
  	
  

Adiaba(c	
  Quantum	
  Compu(ng	
  
What	
  is	
  the	
  near-­‐term	
  poten(al	
  of	
  
adiaba(c	
  quantum	
  compu(ng,	
  
such	
  as	
  D-­‐Wave’s	
  systems?	
  
	
  
Algorithms,	
  hardware	
  
architectures,	
  and	
  underlying	
  
physics	
  differ	
  from	
  classical.	
  

Adopt	
  black-­‐box	
  benchmarking	
  when	
  possible	
  
and	
  scru(nize	
  rou(ne	
  assump(ons	
  

Example:	
  Which	
  of	
  the	
  two	
  below	
  is	
  a	
  “beder”	
  
objec(ve	
  for	
  hard	
  discrete	
  op(miza(on	
  problems?	
  	
  

Hard:	
  exponen(al	
  scaling	
   Easy:	
  within	
  96%	
  of	
  op(mal!	
  

§  What	
  is	
  an	
  appropriate	
  measure	
  of	
  success?	
  
Which	
  are	
  of	
  prac(cal	
  significance	
  and	
  which	
  lead	
  to	
  good	
  
science?	
  

§  What	
  classical	
  algorithm(s)	
  should	
  be	
  used	
  for	
  comparison?	
  
How	
  should	
  they	
  be	
  configured?	
  

§  How	
  should	
  one	
  select	
  appropriate	
  benchmark	
  instances?	
  
Bridge	
  the	
  gap	
  between	
  random	
  and	
  real-­‐world	
  instances?	
  

Recent	
  “100-­‐million”	
  speedup	
  by	
  Google	
  is	
  
only	
  for	
  a	
  par(cular	
  classical	
  algorithm,	
  not	
  
the	
  best	
  known.	
  

Instances	
  where	
  D-­‐Wave	
  outperforms	
  
selected	
  classical	
  algorithms;	
  however,	
  state-­‐
of-­‐the-­‐art	
  discrete	
  op(miza(on	
  techniques	
  
remain	
  to	
  be	
  compared.	
  

Striking	
  variance	
  in	
  D-­‐
Wave	
  performance	
  on	
  
two	
  “easy”	
  related	
  graph	
  
analysis	
  problems.	
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