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Abstract

Significant insight can be gained into the dynamics of a structure with bolted interfaces by observing the 
change in the effective modal natural frequency and damping of each mode of the structure as excitation 
amplitude increases.  Unfortunately, current methods for estimating these parameters require that the 
model be integrated through several dynamic transient simulations at considerable computational expense.  
Festjens, Chevallier and Dion [Int. J. Mech. Sci. 75:170-177, 2013] recently proposed an alternative based 
on quasi-static analysis.  This work builds on theirs, presenting an alternate derivation and alternative 
means of extracting the frequency and damping.  The utility of the approach is then explored by using it to 
estimate the modal frequency and damping of two structures where bolted interfaces are modeled using 
discrete Iwan joints.  The cases studied show that the methodology is highly effective in the micro-slip 
regime and provides several orders of magnitude reduction in the computational cost.

1 Introduction

Much of the uncertainty in finite element models for built up structures comes from the interfaces (e.g.
bolted, riveted, press-fit, etc…).  They are also a major source of damping and can often behave 
nonlinearly; see [1] and [2] for a review of these issues.  Improved methods for modeling joints have been 
presented recently, and when coupled with substructuring methods it is beginning to be possible to model 
realistic structures including the damping and nonlinearity from Coulomb friction at the interface.  For 
example, see the harmonic balance methods in [3] and [4].  However, these methods can still be very
expensive and none of the joint modeling paradigms has been thoroughly validated against measurements.  
In many cases the joints behave almost linearly in terms of the stiffness and mass, while exhibiting strong 
damping nonlinearities.  Because damping is typically light (i.e. a second order effect), it seems 
reasonable to seek approaches that use these facts to simplify modeling and simulation.  For example, 
recent works have shown that, when the joints remain in the micro-slip regime, some structures can be 
modeled effectively as a superposition of weakly nonlinear single-degree-of-freedom oscillators [5-7]; one 
can use this to create a highly efficient reduced order model to predict the response of the structure.

It is generally accepted that interfaces behave quasi-statically, but there is a disconnect between the 
behavior of joints, which has been studied extensively in the contact mechanics community (see, e.g. [8, 
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9]) and the effect on the dynamic response.  One recent work by Festjens, Chevallier & Dion [10] sought 
to overcome this by enforcing the modal motion as a boundary condition on a detailed, nonlinear quasi-
static model for the region around the joints.  They proposed a method that could be used to adjust the 
mode shapes near the joint as amplitude increases, to account for the slight softening that occurs near the 
joints.  Their methodology was found to provide good estimates of the effective damping and natural 
frequency of a cantilever beam with a bolted joint near its root, when compared to a full order nonlinear 
dynamic simulation of the whole structure including Coulomb friction at the joint interface.

This work builds on that of [10, 11] in a few ways.  First, the derivation presented here focuses on 
applying a quasi-static force that deforms the structure in the same way in which it would deform 
dynamically, and the resulting response is used to estimate a reduced order model that uses the linearized 
modes as basis vectors.  In essence, we show that this method is an extension of the Implicit Condensation 
and Expansion method [12, 13] (also see [14]) to structures with damping. In contrast, in [10, 11] Festjens 
et al. apply a combination of boundary conditions and static loads to the region around the joint, which 
may obscure this point.  The derivation presented here explains that, because a force is applied rather than 
a displacement, the structure is free to adjust quasi-statically in response to small changes in the stiffness 
near the joint.  As a result, it is not necessary to include basis vectors associated with those small changes 
in the displacement field near the joint.  In the end the comparison reveals that the method proposed here 
is a special case of one of the methods in [10, 11].  Second, the method proposed in this paper does not 
seek to update the mode shape with displacement amplitude as was done in [10, 11], so it is somewhat 
simpler, and the simulation results show that outstanding results can still be obtained in the regime of 
interest.  Finally, whereas Festjens et al. were concerned with high fidelity models where Coulomb 
friction was assumed to hold at the contact interface, this work focuses on structures where the joints are 
modeled with a single discrete 4-parameter Iwan joint for each interface [15].  These Iwan models have 
been validated over a large range of response amplitude, spanning the microslip regime [2] and hence the 
performance of the modal approach can be quantified over a large range of response amplitude.

The rest of this paper is organized as follows.  The following section presents the theory behind the 
proposed method and discusses similarities with the method in [10, 11].  Section 3 demonstrates the 
method on a simple mass spring system, and Section 4 presents the results when the method is applied to a 
finite element model of two beams that are joined by four bolts, similar to the hardware that was tested in 
[16] and simulated in [16], i.e. the “Sumali Beam.”  Section 5 presents the conclusions.

2 Theoretical Development

Consider an otherwise linear structure that contains localized nonlinearities due to the joints that, in the 
most general case, could depend on the displacements x and velocities x as well as on internal states θ
within the joint model.  (For example, internal slider states are used in the Iwan formulation [15]). The 

joint model manifests iself as a vector of nonlinear forces Jf within the system equations of motion as

follows

 ( , , )J ext t   Mx Cx Kx f x x θ f&& & & (1)

For small vibrations, one can define a linear system that approximates the response about some 
equilibrium,

   
0

J ext t   
x

Mx Cx K f x f&& & (2)

where 
0

J
x

f , denotes the Jacobian of the nonlinear forces at the equilibrium state x0.  One can now solve 

an eigenvalue problem to find the system’s natural frequencies, 0r, and mass-normalized mode shapes 

0rφ about this reference state:

 
0
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K f M φ (3)



Physically, Eq. (3) produces the modal properties of the system at very low response amplitudes when the 
joints are stuck. One must take care not to confuse these modal properties with those of the structure when 
all joints slip completely, which occurs at very high response amplitudes. The high-amplitude properties 
are computed with

2 0r r 
   K M φ (4)

The system in Eq. (1) can be transformed to modal coordinates using the low-amplitude modal basis of the 

structure. Traditionally, this is done using the transformation 0x Φ q , where 0
N mΦ ¡ and m<<N, is 

the matrix of mode shape vectors 0 .rφ This produces the following equation of motion for mode r:

 T T T
0 0 0 0 0 02 ( , , )r r r r r r r r J r extq q q t    φ Kφ φ f x x θ φ f&& & & (5)

Equation (5) assumes that the modes diagonalize the linear damping so the low-amplitude linear damping 

ratio has been defined in terms of the low-amplitude frequency using  T
0 0 0 0/ 2r r r r φ Cφ@ .  This 

also assumes that the joints do not induce any additional damping at low energy.

2.1 General Formulation for Nonlinear Forces

If we apply the well known Ritz/Galerkin approach to the equation of motion, then the nonlinear joint 
forces would be written as follows,

T T
0 0 0 0( , , ) ( , , )r J r Jφ f x x θ φ f φ q φ q θ&& (6)

where the displacements 0x φ q are now required to be spanned by the modes of the linearized system.  

This is known to be inadequate for geometrically nonlinear problems [12-14], and it proves problematic 
here as well.  The joints undergo microslip in the region very close to a joint, and as a result very many 

modes must be included before the term 0φ q can describe the displacement adequately in the region very 

close to the joints.

The first step in the traditional ICE method [12-14] is to assume that the nonlinear term can be 
approximated as follows, which is exactly the same form as used in the traditional Ritz/Galerkin method.

T
0( ) ( )Jg q Φ f x (7)

However, rather than assume that the displacements are well represented by 0x φ q , in the ICE method 

we instead apply a set of quasi-static loads 0rMφ to the finite element model and then fit a model of the 

form ( )g q to the load displacement data.  The nonlinearities are assumed to depend on displacements 

alone and the rth row of the nonlinear function is typically approximated as

   ,ICE
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r r i j r i j k
i j i i j i k j

g B i j q q A i j k q q q
    

  q (8)

Using this approach, the structure is allowed to relax into any of its modes during the quasi-static loading, 
and the model simply captures the projection of the resulting forces onto the reduced basis.  Hence, the 
effect of all higher order modes is capture implicitly.  This approach could be extended to the present 
formulation, and in future works it will be pursued in case coupling between the linear modes must be 
captured, but the remainder of this paper will pursue a simpler approach instead.



2.2 Formulation in Terms of Uncoupled Nonlinear Oscillators

Empirical evidence [6, 7, 17] suggests that the linear modes tend to be preserved for a structure with 
typical nonlinearities due to bolted interfaces, so that one can approximate the response effectively with a 
superposition of weakly nonlinear oscillators.  The theoretical foundation for such an occurrence is 
detailed in [18].  When such a model is appropriate, then the nonlinear function for the rth mode is a 
scalar and the nonlinear forces are approximated as follows.

\
\( , , ) ( , , )r r rg q q   g x x θ θ& & (9)

We next assume that the nonlinear forces are independent of velocity, and that each mode obeys the 
Masing assumptions, which are outlined in [15, 19] and allow the hysteresis curve to be constructed from 
a single loading.  Specifically, the following symmetries are assumed to exist:

 The “forward” part of the hysteresis curve will look like the loading (“backbone”) curve, but 
stretched along each of the displacement and force axes by a factor of two and translated to 
terminate at the tip of the backbone curve.

 The “return” part of the hysteresis curve will look like the forward part, but reflected along each 
of the displacement and force axes.

 The equation of any hysteretic response curve is obtained by 1) applying the Masing hypothesis 
using the latest point of loading reversal and 2) requiring that if an active curve crosses a curve 
described in a previous cycle, the current curve follows that of the previous cycle.

These assumptions were derived for a single joint (or a single deformation mode of a plastic material in 
the early works by Masing) but in this work we shall assume that this holds for each mode of vibration.  
Specifically, we excite each mode in turn with a force applied over the entire structure in the shape of that
linear mode by solving the following quasi-static problem,

0( , )J r Kx f x θ Mφ (10)

where  is the load amplitude.  This produces the quasi-static response x of the structure up to some 
maximum load amplitude.  The response is written to file at several intermediate steps to obtain the entire 
load displacement curve.  The resulting displacements are then mapped to each of the modes using

T
0( ) ( )r rq   φ Mx . The modes that were not directly excited are also retained and used to assess the 

degree to which the modes are statically coupled at each load amplitude.  It is also important to note that 

we have obtained a single valued relationship between ( )x and  by requiring that the load always ramp 

from an unloaded state to a maximum load max.  As a result, it is no longer necessary to track any internal 
states, .

One can now use the curve of the modal force   T
0 0r r rf    φ Mφ versus modal displacement rq

to construct the full hysteresis curve using Masing’s rules, as shown in Fig. 1.
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Figure 1:  (red) Sample loading curve obtained by solving Eq. (10). (blue) Hysteresis curve (forward 
and reverse) computed using Masing’s rules.

Hysteresis curves such as these can now be used to estimate the instantaneous stiffness and damping for 
each mode.  Specifically, the secant to the curve is used to define the stiffness, as follows.
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The energy dissipated per cycle of vibration is the area enclosed by the full hysteresis curve
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where it should be understood that ( )rf  is the constant maximum load at the level, , of interest, and 

rf is a function of displacement rq . This simplifies to four times the integral of the nonlinear part of the 

force displacement curve, as explained in [10]. In this work this integral is evaluated numerically using 

trapezoidal integration based on a certain number of samples N samples of ( )rf  and ( )rq  along the 

loading curve.

Then, using the relationship between energy dissipated per cycle and the damping ratio (for a linear 
system), the effective damping ratio can then be calculated from the following.

 
2

( )
( )

2 ( ) ( )
r

r r

D

q


 

   
 (13)

2.2.1 Comparison with the FCD method in [10].

The proposed method is quite similar to that presented by Festjens, Chevallier and Dion in [10], and 
which shall be denoted the FCD method here.  They proposed to divide the structure into two portions: a 
nonlinear domain (a), which includes the area near the joints, and a linear domain (b) composed of the rest 
of the structure.  They then solve the following quasi-static problem, which includes the inertial load due 
to motion of domain (a) and loads due to the deformation of domain (b).  The latter probably dominates in 
many problems.

 2
aa a a aa a ab b( )J r r   K u f u M φ K φ (14)



They then present two updating schemes that can be used to adjust the mode shapes to accommodate the 
small changes in the mode shapes that occur near the joints.  The approach presented here is identical to 
their approach if 1) the nonlinear domain is extended to include the entire structure and 2) the mode 
shapes are not updated with amplitude.  The definitions of instantaneous damping and instantaneous 
natural frequency used here are also slightly different than those that they used.

2.3 Hilbert Fitting Methods
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Figure 2: Flowchart describing the method used in [6, 7] to estimate the parameters of uncoupled 
modal models (or modal Iwan models) from a physical model with discrete joints.

The proposed quasi-static method will be validated by comparing it with the technique developed by the 
authors in [6, 7, 16].  As summarized in Figure 2, the dynamic response of the structure to an impulsive 
load is found, separated into modal contributions, and then a Hilbert transform is used to extract the 
instantaneous natural frequency and damping ratio for each mode.  This approach also reveals whether 
modal couplings are significant, as explained in [7, 16].

For the results presented here, the impulsive load was shaped so as to maximize the contribution of each 
mode in turn.  Specifically, Eq. (1) is integrated subject to the following impulsive force,

  0 0 0sin( ),ext r r rt p t t   f Mφ , (15)

where p is a scalar multiplier to change the load amplitude.  In [7, 16] impulses are applied at points and 
those results are compared to this special case; see those works for further details.  In the results that 

follow, the time response of a particular mode is denoted ( )rq t and the instantaneous amplitude of that 

mode is denoted ( )rQ t , i.e.  d( ) Re ( )exp i ( )r rq t Q t t    where d(t) is the instantaneous damped 

natural frequency.



3 Application to Mass-Spring problem

The proposed methods were first validated on a simple mass-spring system with three discrete Iwan joints, 
which is shown in the figure below.
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Figure 3: Schematic of the 3DOF system that was used to test the proposed methods.

The parameters of the system were m = 10 kg, k = 5 N/m, and the linear damping matrix was selected 
based on the mass and the linear springs alone so that C = 0.002(M+K).  The parameters of the Iwan 
joints are given in Table 1, and were chosen to assure that each joint had a distinct character.  Note, that 
with these parameters the eigenvalue problem in Eq. (3) becomes the following, and this was solved to 
obtain the mode shapes that were used to define the static loads in Eq. (10).
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Iwan 
Joint

Discrete Iwan Joint Parameters

FS KT  

1 10 5 –0.5 0.1

2 1 4 –0.2 0.01

3 100 3 –0.8 1

Table 1: Iwan parameters of the three joints shown in Fig. 3.

Static loads were then applied at 20 amplitudes that were logarithmically spaced between =0.001 and 
=1000 and the quasi-static response was computed and stored at N=25 load levels that were linearly 
spaced between [0,], to obtain load curves such as that shown in Fig. 1.  (The analysis was repeated 
using N=100 and the resulting frequencies changed by less than 1e-14 percent and the damping ratios by 
less than 1 percent of their values when N=25.)

The estimated damping ratios and natural frequencies for the first three modes of vibration are shown in 
Figs. 4-5.  In each plot the parameters estimated using the quasi-static approach are shown with black 
markers. The plots also show the natural frequency and damping ratio estimated from three transient 
responses using the approach outlined in Sec. 2.3.  Specifically, the transient response of the system with 
the three nonlinear joints was computed using the Newmark method where the excitation was a 0.1 second 
long half-sine impulse that was applied: 1) in the shape of the mode in question as given in Eq. (15)
(denoted “Modal Force”), 2) to the 3rd mass (denoted x3), 3) to the 2nd mass (denoted x2).  Then the 
response was modal filtered, band-pass filtered and processed as explained in Sec. 2.3.  In order to 



compare with the quasi-static results, which did not include the effect of the linear damping matrix†, the 
linear damping ratios 0,1=0.00255, 0,2=0.00153, 0,3=0.00155 were subtracted from the damping 
estimated by the Hilbert transform.

In each figure, the bottom pane shows the ratio of the displacement amplitude of the mode in question 
(denoted Qr) to that of each of the other modes (denoted Qj) due to the quasi-static loading in Eq. (10).  
For example, Fig. 4(c) shows the displacement of modes 2 and 3 relative to that of mode 1, and for 
consistency Q1/ Q1 is also shown, which is always equal to unity.
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Figure 4: Modal parameters for Mode 1 estimated using the proposed quasi-static approach.  (a) 
and (b) also show the parameters estimated from three transient responses.

Discussion

At low amplitudes the damping estimated by the Hilbert transform becomes noisy, presumably due to end 
effects of the FFT.  The quasi-static approach does not suffer from this problem and seemed to produce 
reliable damping estimates down below a damping ratio of 0.01%.  Below this point material damping 
would most likely begin to dominate for any real structure.  At higher amplitudes the damping begins to 
increase, initially in a power-law fashion (i.e. the log of the damping increases linearly with the log of the 

                                                  
† It was necessary to include a linear damping matrix when computing the transient response, otherwise the response 
would not decay when the amplitude became low (so that the joint was not active) and this would contaminate the 
Hilbert Transform since it is based on an FFT. 



amplitude) as observed in [6] and [7], and the frequency begins to decrease very slightly.  This suggests 
that each mode could be well described by a modal Iwan model as was used in [6] and [7].  The damping 
becomes as large as 1% or more, which is an increase of about an order of magnitude from the low-level 
material damping that was assumed for the system.

At higher amplitudes the damping reaches a maximum and the frequency begins to drop precipitously, 
signaling the beginning of macro-slip.  It is interesting to note that the point at which this occurs is closely 
aligned with the point at which the other modes begin to be significantly excited in the quasi-static 
responses.  For example, Fig. 4(c) shows that at low amplitudes modes 2 and 3 respond 1000 times less 
than mode 1 to the static force.  However, as the modal velocity amplitude approaches 0.1 kg1/2 m/s the 
response of these modes approaches 5% of that of mode 1 and the system transitions to macro-slip.  If the 
force of interest excites these high amplitudes then it would not be wise to use an uncoupled modal model.
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Figure 5: Modal parameters for Mode 2 estimated using the proposed quasi-static approach.  (a) 
and (b) also show the parameters estimated from three transient responses.

It is also worth noting that, although the damping predicted by the quasi-static approach generally agrees 
very well with that computed from a transient response when a single mode was excited (i.e. the curves 
denoted “Modal Force”), the impacts at points 2 and 3 sometimes produced noticeably different damping.  
For example, for mode 2 at amplitudes above 0.1 kg1/2 m/s.  Above this point the damping in those trials 
differs by as much as 20-30% from the damping due to a modal force.  This indicates that there is some 
error in approximating the system with three uncoupled weakly-nonlinear oscillators, as elaborated in 



[16].  However, to the extent that the uncoupled modal model is accurate, the quasi-static method does an 
excellent job of predicting the modal behavior.  

In their work, Festjens, Chevallier and Dion [10] implemented a procedure to update the mode shapes of 
the structure as response amplitude increased.  This was not done here and the results obtained seem to be 
quite satisfactory over the range of amplitudes where micro-slip motion is dominant, so there was no 
reason to consider changes to the mode shapes.  However, the joints in this work are discrete and hence 
clearly different from the continuous interface studied in that work.

4 Application to a Beam Finite Element Model

The quasi-static method was further evaluated on a structural model of a more realistic system, namely the 
Sumali Beam [6, 16]. The Sumali Beam consists of two, identical, plate-like beams that overlap and are 
fastened with four bolts. This work uses the exact same Craig-Bampton reduced order model of the beam 
that was studied in [16]. The reduced order model was created from a finite element model whose mesh is 
shown in Fig. 6.  The two beams are composed of 8-node hexahedral elements with a linear, elastic, 
isotropic material model. The Young’s Modulus is 248 GPa, the Poisson’s ratio is 0.29, and the mass 
density is 8000 kg/m3. 

Contact Patch

x

y

z

Figure 6: The Sumali beam finite element mesh. The beams are made transparent to reveal the four 
joint contact patches in between.

The bolts are not modeled, but instead are replaced with whole-joint models. As shown in Fig. 7, a virtual 
node was assigned to each contact patch on each beam, and the virtual node was constrained to all the 
nodes within the contact patch using a RBE3 element spider [20], a type of average multi-point constraint. 
The six degrees of freedom in each virtual node were then tied to those of the opposite virtual node,
associated with the opposite contact patch, using a joint model. Each joint model is a collection of rigid 
constraints, discrete springs, and Iwan elements, and all four joint models in the finite element model are 
assumed to have the same parameters. The x-translation direction holds a linear spring with stiffness 

5.3×107 N/m in parallel with a four-parameter Iwan element with parameters 30.7SF  N, 
84.73 10TK   N/m, 0.23,   and 0.46.  The y-translational direction has a linear spring with 

stiffness 5.25×108 N/m. All other translational and rotational directions for each virtual node are rigidly 
constrained except for z-rotation, which is left open with no discrete elements.

The reduced mass and stiffness matrices for the linear beams were assembled using a Craig-Bampton 
reduction algorithm in Sierra/SD [20]. The details of the reduction are explained in [16]. The matrices 
were then exported into MATLAB, where the joint models were added. For the following analysis, only 
the first three free-free elastic modes (first, second, and third bending) were of interest.  To apply the
quasi-static method to this structure, it was necessary to first apply six constraints to eliminate the rigid 
body modes.
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Figure 7: An exploded view of a joint model in the Sumali beam.

The quasi-static response was computed using the methods outlined in Sec. 2.2 to retrieve the modal 
damping and natural frequency versus amplitude. For the first elastic mode, static loads were applied at 15 
amplitudes spaced logarithmically between 0.44  and 90  and at another 15 amplitudes spaced 

logarithmically between 2200  and 44000  . The spacing was initially continuous between 0.44
and 44000, but the implicit static solver failed to converge at some of the amplitudes in the transition 
region and so those points were simply skipped. (Future works shall seek to address this issue, but time 
did not allow it to be pursued here.)  Similarly, for the 2nd and 3rd modes the static loads ranged between

0.44  and 440000  and the solution was found at 30 points total per mode. At each load

amplitude, the quasi-static response was computed at N=25 load levels spaced linearly between 0 and 
and this load displacement curve was used to derive the modal frequency and damping as described 
earlier. 

Figure 8 shows the damping and natural frequency vs. modal displacement amplitude curves for the three 
elastic modes. Here, the quasi-static results are juxtaposed with the natural frequency and damping versus 
amplitude obtained from the transient response as described in [16]. The low-amplitude linear damping 

ratio of 4
0 1 10r   , which was assigned to all modes for the transient response, was subtracted from 

the damping data obtained from these responses in order to obtain a valid comparison with the quasi-static 
results.   The results show that the effective damping of each mode increases from below material 
damping at low amplitude until it exceeds one percent for modes 1 and 3.  This is an increase in damping 
of over two orders of magnitude.  The quasi-static algorithm captures this increase in damping 
exceptionally well, and also captures the (less significant) decrease in each natural frequency.

The quasi-static response was computed in two ways in Fig. 8. After retrieving the static response solution 
( )x , the green dot data was retrieved from the hysteresis curve constructed from the modal 

displacement that was filtered using the low-amplitude mode shapes 0rφ (as in T
0( ) ( )r rq   φ Mx ) .  

This is the typical mode of operation as explained earlier.  Additionally, to better understand the macroslip 

behavior of the structure, the filtering was also performed using the high-amplitude mode shapes rφ

( T( ) ( )r rq   φ Mx ) and that result is shown with red triangles.  The dynamic response data from [16]

was processed in a similar manner.  Except for the high amplitude frequency of the 2nd and 3rd modes, 

filtering with 0rφ produces quasi-static results that agree remarkably well with the results of the dynamic 

simulations. Those exceptions correspond to a case where the joint(s) are in the macro-slip regime and so 
it is not surprising that the micro-slip model is not effective.  In most applications of interest the authors 
expect that the joints will be designed to maintain their integrity, so the forces will not be large enough to 
induce macro-slip.‡

                                                  
‡ Of course, there are some applications of interest, such as blast loading of structures, where macroslip may be 
expected to occur and the methods developed here would need to be extended to account for this.



Figure 8: Comparison of the quasi-static (Q-S) method and the Hilbert fitting method for 
computing (a,c,e) the natural frequency and (b,d,f) the damping vs. modal displacement amplitude 

for the (a,b) first, (c,d) second and (e,f) third elastic modes.

Considering the excellent agreement obtained, the quasi-static approach is strongly preferred over the 
dynamic approach.  First, while the approach used in [16] was not reviewed in detail here, it is important 
to note that it was much more complicated and required considerable care to perform all of the signal 
processing correctly.  In contrast, the quasi-static approach requires only a few lines of code and is readily 



automated.  Second, the quasi-static approach allows for a massive reduction in the computational cost. 
For the Sumali beam, the time required to complete all of the transient simulations that were needed to 
produce the frequency and damping versus amplitude curves shown above for all three elastic modes was 
about 106 minutes.  This doesn’t include the post-processing, which was non-negligible and required 
some user interaction.  In contrast, the 90 quasi-static responses that were used in the proposed method 
were computed and post-processed in only 5.5 seconds. This is an astonishing three orders of magnitude 
reduction in the computational cost.  In principle, similar curves could be obtained from a single force-
displacement curve for each mode (although with the response stored at additional points along the curve) 
so the cost could potentially be reduced by another order of magnitude.

5 Conclusions

This work has presented a means of using quasi-static loading to estimate the effective modal natural 
frequency and damping ratio of each mode of a structure versus amplitude.  The proposed approach 
reduces to that presented by Festjens et al [10] in the case where the entire structure is treated nonlinearly, 
although this work has presented alternative methods for computing the effective natural frequency and 
damping.  Furthermore, the results presented here suggest that it may not typically be necessary to update 
the mode shapes to account for slip in the joints.  This was theoretically justified by forging a connection
between this method and the implicit condensation and expansion method [13].

This method provides a dramatic reduction in computational cost compared to the authors prior approach 
based on dynamic simulation.  This has already been instrumental in allowing the authors to update the 
parameters of discrete joints in order to bring a finite element model into agreement with experimental 
measurements.  Indeed, this procedure was used on the Sumali beam in order to find the set of discrete 
joint parameters that were used in these simulations.  Those parameters were tuned to approximately 
reflect the measurements from the beam that were reported in [6].  In prior efforts the authors attempted to 
do this using the dynamic response alone, yet it proved quite challenging to explore enough of the 
parameter space in order to find a set of parameters that produced a reasonable agreement with 
measurements.

It is also important to recall that this method is based on an assumption that the linear modes of a structure 
remain uncoupled when the displacements are small enough that the structure remains in the micro-slip 
regime.  A significant body of work is beginning to develop that supports this approach when modeling 
realistic structures [6, 7, 16].  However, there are certainly cases where this assumption does not produce 
acceptable accuracy.  For example, in [16] the authors show that noticeable modal coupling can be 
observe in the response of the finite element model of the Sumali beam when an impulse is applied at 
various discrete points on the model.  When the response is projected onto the linear modes this causes an 
apparent error in the damping predictions (because modal coupling was neglected).  To date the authors 
have found these errors to be relatively small, but for some applications it may certainly prove important 
to extend this approach to account for coupling between modes.
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