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Abstract

Significant insight can be gained into the dynamics of a structure with bolted interfaces by observing the
change in the effective modal natural frequency and damping of each mode of the structure as excitation
amplitude increases. Unfortunately, current methods for estimating these parameters require that the
model be integrated through several dynamic transient simulations at considerable computational expense.
Festjens, Chevallier and Dion [Int. J. Mech. Sci. 75:170-177, 2013] recently proposed an alternative based
on quasi-static analysis. This work builds on theirs, presenting an alternate derivation and alternative
means of extracting the frequency and damping. The utility of the approach is then explored by using it to
estimate the modal frequency and damping of two structures where bolted interfaces are modeled using
discrete Iwan joints. The cases studied show that the methodology is highly effective in the micro-slip
regime and provides several orders of magnitude reduction in the computational cost.

1 Introduction

Much of the uncertainty in finite element models for built up structures comes from the interfaces (e.g.
bolted, riveted, press-fit, etc...). They are also a major source of damping and can often behave
nonlinearly; see [1] and [2] for a review of these issues. Improved methods for modeling joints have been
presented recently, and when coupled with substructuring methods it is beginning to be possible to model
realistic structures including the damping and nonlinearity from Coulomb friction at the interface. For
example, see the harmonic balance methods in [3] and [4]. However, these methods can still be very
expensive and none of the joint modeling paradigms has been thoroughly validated against measurements.
In many cases the joints behave almost linearly in terms of the stiffness and mass, while exhibiting strong
damping nonlinearities. Because damping is typically light (i.e. a second order effect), it seems
reasonable to seek approaches that use these facts to simplify modeling and simulation. For example,
recent works have shown that, when the joints remain in the micro-slip regime, some structures can be
modeled effectively as a superposition of weakly nonlinear single-degree-of-freedom oscillators [5-7]; one
can use this to create a highly efficient reduced order model to predict the response of the structure.

It is generally accepted that interfaces behave quasi-statically, but there is a disconnect between the
behavior of joints, which has been studied extensively in the contact mechanics community (see, e.g. [8,
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9]) and the effect on the dynamic response. One recent work by Festjens, Chevallier & Dion [10] sought
to overcome this by enforcing the modal motion as a boundary condition on a detailed, nonlinear quasi-
static model for the region around the joints. They proposed a method that could be used to adjust the
mode shapes near the joint as amplitude increases, to account for the slight softening that occurs near the
joints. Their methodology was found to provide good estimates of the effective damping and natural
frequency of a cantilever beam with a bolted joint near its root, when compared to a full order nonlinear
dynamic simulation of the whole structure including Coulomb friction at the joint interface.

This work builds on that of [10, 11] in a few ways. First, the derivation presented here focuses on
applying a quasi-static force that deforms the structure in the same way in which it would deform
dynamically, and the resulting response is used to estimate a reduced order model that uses the linearized
modes as basis vectors. In essence, we show that this method is an extension of the Implicit Condensation
and Expansion method [12, 13] (also see [14]) to structures with damping. In contrast, in [10, 11] Festjens
et al. apply a combination of boundary conditions and static loads to the region around the joint, which
may obscure this point. The derivation presented here explains that, because a force is applied rather than
a displacement, the structure is free to adjust quasi-statically in response to small changes in the stiffness
near the joint. As a result, it is not necessary to include basis vectors associated with those small changes
in the displacement field near the joint. In the end the comparison reveals that the method proposed here
is a special case of one of the methods in [10, 11]. Second, the method proposed in this paper does not
seek to update the mode shape with displacement amplitude as was done in [10, 11], so it is somewhat
simpler, and the simulation results show that outstanding results can still be obtained in the regime of
interest. Finally, whereas Festjens et al. were concerned with high fidelity models where Coulomb
friction was assumed to hold at the contact interface, this work focuses on structures where the joints are
modeled with a single discrete 4-parameter Iwan joint for each interface [15]. These Iwan models have
been validated over a large range of response amplitude, spanning the microslip regime [2] and hence the
performance of the modal approach can be quantified over a large range of response amplitude.

The rest of this paper is organized as follows. The following section presents the theory behind the
proposed method and discusses similarities with the method in [10, 11]. Section 3 demonstrates the
method on a simple mass spring system, and Section 4 presents the results when the method is applied to a
finite element model of two beams that are joined by four bolts, similar to the hardware that was tested in
[16] and simulated in [16], i.e. the “Sumali Beam.” Section 5 presents the conclusions.

2 Theoretical Development

Consider an otherwise linear structure that contains localized nonlinearities due to the joints that, in the
most general case, could depend on the displacements x and velocities X as well as on internal states 0
within the joint model. (For example, internal slider states are used in the Iwan formulation [15]). The

joint model manifests iself as a vector of nonlinear forces f, within the system equations of motion as
follows

M Cxéa- Kx +f, (x,%0) =1, (1) (1)

For small vibrations, one can define a linear system that approximates the response about some
equilibrium,

M c1&+(K +VE[ )x =1, (t) @)

where Vf,| , denotes the Jacobian of the nonlinear forces at the equilibrium state xo. One can now solve
Xo

an eigenvalue problem to find the system’s natural frequencies, ey, and mass-normalized mode shapes
¢®,, about this reference state:

[(K+V£,\x° )—a)OfM}pO, =0 (3)



Physically, Eq. (3) produces the modal properties of the system at very low response amplitudes when the
joints are stuck. One must take care not to confuse these modal properties with those of the structure when
all joints slip completely, which occurs at very high response amplitudes. The high-amplitude properties
are computed with

[K-0,M]p,, =0 @

The system in Eq. (1) can be transformed to modal coordinates using the low-amplitude modal basis of the
structure. Traditionally, this is done using the transformation x =®q, where @, € | Nxm-and m<<N, is

the matrix of mode shape vectors @, . This produces the following equation of motion for mode 7:

&—i_ 2COra)0rqgrL+ q)ngq)Orqr + q)grf./ (X’ &0) = q)grffxf (t) (5)

Equation (5) assumes that the modes diagonalize the linear damping so the low-amplitude linear damping
ratio has been defined in terms of the low-amplitude frequency using &,, @9, C,, /(2w,, ). This

also assumes that the joints do not induce any additional damping at low energy.
2.1  General Formulation for Nonlinear Forces

If we apply the well known Ritz/Galerkin approach to the equation of motion, then the nonlinear joint
forces would be written as follows,

0,1, (x,%0) = ¢, f,(9,q,0,40) (6)

where the displacements X = @,q are now required to be spanned by the modes of the linearized system.

This is known to be inadequate for geometrically nonlinear problems [12-14], and it proves problematic
here as well. The joints undergo microslip in the region very close to a joint, and as a result very many

modes must be included before the term @,q can describe the displacement adequately in the region very
close to the joints.

The first step in the traditional ICE method [12-14] is to assume that the nonlinear term can be
approximated as follows, which is exactly the same form as used in the traditional Ritz/Galerkin method.

g(q) = @,'f,(x) (7)

However, rather than assume that the displacements are well represented by X = @,q, in the ICE method
we instead apply a set of quasi-static loads M@, to the finite element model and then fit a model of the

form g(q) to the load displacement data. The nonlinearities are assumed to depend on displacements
alone and the rth row of the nonlinear function is typically approximated as

g ice(@) = ZZB Li)aa,+2. 2. A0, j.k)a,q,49 ®)

=l j=i i=l j=i k=j

Using this approach, the structure is allowed to relax into any of its modes during the quasi-static loading,
and the model simply captures the projection of the resulting forces onto the reduced basis. Hence, the
effect of all higher order modes is capture implicitly. This approach could be extended to the present
formulation, and in future works it will be pursued in case coupling between the linear modes must be
captured, but the remainder of this paper will pursue a simpler approach instead.



2.2 Formulation in Terms of Uncoupled Nonlinear Oscillators

Empirical evidence [6, 7, 17] suggests that the linear modes tend to be preserved for a structure with
typical nonlinearities due to bolted interfaces, so that one can approximate the response effectively with a
superposition of weakly nonlinear oscillators. The theoretical foundation for such an occurrence is
detailed in [18]. When such a model is appropriate, then the nonlinear function for the rth mode is a
scalar and the nonlinear forces are approximated as follows.

g(x,%0)=| '¢,(q,,4.0) | ©)

We next assume that the nonlinear forces are independent of velocity, and that each mode obeys the
Masing assumptions, which are outlined in [15, 19] and allow the hysteresis curve to be constructed from
a single loading. Specifically, the following symmetries are assumed to exist:

o The “forward” part of the hysteresis curve will look like the loading (“backbone”) curve, but
stretched along each of the displacement and force axes by a factor of two and translated to
terminate at the tip of the backbone curve.

e The “return” part of the hysteresis curve will look like the forward part, but reflected along each
of the displacement and force axes.

e The equation of any hysteretic response curve is obtained by 1) applying the Masing hypothesis
using the latest point of loading reversal and 2) requiring that if an active curve crosses a curve
described in a previous cycle, the current curve follows that of the previous cycle.

These assumptions were derived for a single joint (or a single deformation mode of a plastic material in
the early works by Masing) but in this work we shall assume that this holds for each mode of vibration.
Specifically, we excite each mode in turn with a force applied over the entire structure in the shape of that
linear mode by solving the following quasi-static problem,

Kx +f,(x,0) =Me¢, o (10)

where o is the load amplitude. This produces the quasi-static response x of the structure up to some
maximum load amplitude. The response is written to file at several intermediate steps to obtain the entire
load displacement curve. The resulting displacements are then mapped to each of the modes using

g, ()=, 'Mx(c). The modes that were not directly excited are also retained and used to assess the
degree to which the modes are statically coupled at each load amplitude. It is also important to note that
we have obtained a single valued relationship between X(a) and o by requiring that the load always ramp
from an unloaded state to a maximum load ol..x. As a result, it is no longer necessary to track any internal
states, 0.

One can now use the curve of the modal force f, (a) = ¢0,TM¢0,a =a versus modal displacement g,

to construct the full hysteresis curve using Masing’s rules, as shown in Fig. 1.
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Figure 1: (red) Sample loading curve obtained by solving Eq. (10). (blue) Hysteresis curve (forward
and reverse) computed using Masing’s rules.

Hysteresis curves such as these can now be used to estimate the instantaneous stiffness and damping for
each mode. Specifically, the secant to the curve is used to define the stiffness, as follows.

@) o
@ (@)@ ) (a

The energy dissipated per cycle of vibration is the area enclosed by the full hysteresis curve

D(@)=[""" (2.~ fi(@)da, + [ """ (<21, + 1,(@))dg,
’ . ’ (12)
D,(@=2[""" (21, f(@))d,

where it should be understood that f(ct) is the constant maximum load at the level, a, of interest, and

f, is a function of displacement g, . This simplifies to four times the integral of the nonlinear part of the
force displacement curve, as explained in [10]. In this work this integral is evaluated numerically using
trapezoidal integration based on a certain number of samples N,, samples of f,(a) and g, (a) along the
loading curve.

Then, using the relationship between energy dissipated per cycle and the damping ratio (for a linear
system), the effective damping ratio can then be calculated from the following.

D(a)
27 (g, (), (@)

¢ (@)= (13)

2.2.1 Comparison with the FCD method in [10].

The proposed method is quite similar to that presented by Festjens, Chevallier and Dion in [10], and
which shall be denoted the FCD method here. They proposed to divide the structure into two portions: a
nonlinear domain (a), which includes the area near the joints, and a linear domain (b) composed of the rest
of the structure. They then solve the following quasi-static problem, which includes the inertial load due
to motion of domain (a) and loads due to the deformation of domain (b). The latter probably dominates in
many problems.

K,u,+f,@u)=(0'M,9, -K,0, )o (14)



They then present two updating schemes that can be used to adjust the mode shapes to accommodate the
small changes in the mode shapes that occur near the joints. The approach presented here is identical to
their approach if 1) the nonlinear domain is extended to include the entire structure and 2) the mode
shapes are not updated with amplitude. The definitions of instantaneous damping and instantaneous
natural frequency used here are also slightly different than those that they used.

2.3 Hilbert Fitting Methods
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Figure 2: Flowchart describing the method used in [6, 7] to estimate the parameters of uncoupled
modal models (or modal Iwan models) from a physical model with discrete joints.
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The proposed quasi-static method will be validated by comparing it with the technique developed by the
authors in [6, 7, 16]. As summarized in Figure 2, the dynamic response of the structure to an impulsive
load is found, separated into modal contributions, and then a Hilbert transform is used to extract the
instantaneous natural frequency and damping ratio for each mode. This approach also reveals whether
modal couplings are significant, as explained in [7, 16].

For the results presented here, the impulsive load was shaped so as to maximize the contribution of each
mode in turn. Specifically, Eq. (1) is integrated subject to the following impulsive force,

f_(t)=Meo, psin(o,t), t<n/o,. , (15)
or (U3 0r

ext

where p is a scalar multiplier to change the load amplitude. In [7, 16] impulses are applied at points and
those results are compared to this special case; see those works for further details. In the results that
follow, the time response of a particular mode is denoted ¢, (¢) and the instantaneous amplitude of that

mode is denoted Q (¢),i.e. g.(f)=Re [Qr ) exp(ia)d (t))] where ,(?) is the instantaneous damped

natural frequency.



3 Application to Mass-Spring problem

The proposed methods were first validated on a simple mass-spring system with three discrete Iwan joints,
which is shown in the figure below.

k k k
NN L PN NNA
Iwan 1 Iwan 3

Figure 3: Schematic of the 3DOF system that was used to test the proposed methods.

The parameters of the system were m = 10 kg, £ = 5 N/m, and the linear damping matrix was selected
based on the mass and the linear springs alone so that C = 0.002(M+K). The parameters of the Iwan
joints are given in Table 1, and were chosen to assure that each joint had a distinct character. Note, that
with these parameters the eigenvalue problem in Eq. (3) becomes the following, and this was solved to
obtain the mode shapes that were used to define the static loads in Eq. (10).

100 -5 0] [9 -4 0 10 0 0
-5 10 -5|+|-4 7 3 E—a)of 0 10 O |kg|o, =0 (16)
0 -5 s| o -3 3" 0 0 10
Iwan Discrete lwan Joint Parameters
Joint Fg K, X B
1 10 5 -0.5 0.1
2 1 4 -0.2 0.01
3 100 3 —0.8 1

Table 1: Iwan parameters of the three joints shown in Fig. 3.

Static loads were then applied at 20 amplitudes that were logarithmically spaced between a=0.001 and
a=1000 and the quasi-static response was computed and stored at N,=25 load levels that were linearly
spaced between [0,a], to obtain load curves such as that shown in Fig. 1. (The analysis was repeated
using N,=100 and the resulting frequencies changed by less than 1e-14 percent and the damping ratios by
less than 1 percent of their values when N,=25.)

The estimated damping ratios and natural frequencies for the first three modes of vibration are shown in
Figs. 4-5. In each plot the parameters estimated using the quasi-static approach are shown with black
markers. The plots also show the natural frequency and damping ratio estimated from three transient
responses using the approach outlined in Sec. 2.3. Specifically, the transient response of the system with
the three nonlinear joints was computed using the Newmark method where the excitation was a 0.1 second
long half-sine impulse that was applied: 1) in the shape of the mode in question as given in Eq. (15)
(denoted “Modal Force”), 2) to the 3™ mass (denoted x3), 3) to the 2™ mass (denoted x,). Then the
response was modal filtered, band-pass filtered and processed as explained in Sec. 2.3. In order to



compare with the quasi-static results, which did not include the effect of the linear damping matrix’, the
linear damping ratios &;=0.00255, §,=0.00153, £,5=0.00155 were subtracted from the damping
estimated by the Hilbert transform.

In each figure, the bottom pane shows the ratio of the displacement amplitude of the mode in question
(denoted Q,) to that of each of the other modes (denoted Q;) due to the quasi-static loading in Eq. (10).
For example, Fig. 4(c) shows the displacement of modes 2 and 3 relative to that of mode 1, and for
consistency 0,/ Q; is also shown, which is always equal to unity.
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Figure 4: Modal parameters for Mode 1 estimated using the proposed quasi-static approach. (a)
and (b) also show the parameters estimated from three transient responses.

Discussion

At low amplitudes the damping estimated by the Hilbert transform becomes noisy, presumably due to end
effects of the FFT. The quasi-static approach does not suffer from this problem and seemed to produce
reliable damping estimates down below a damping ratio of 0.01%. Below this point material damping
would most likely begin to dominate for any real structure. At higher amplitudes the damping begins to
increase, initially in a power-law fashion (i.e. the log of the damping increases linearly with the log of the

T It was necessary to include a linear damping matrix when computing the transient response, otherwise the response
would not decay when the amplitude became low (so that the joint was not active) and this would contaminate the
Hilbert Transform since it is based on an FFT.



amplitude) as observed in [6] and [7], and the frequency begins to decrease very slightly. This suggests
that each mode could be well described by a modal Iwan model as was used in [6] and [7]. The damping
becomes as large as 1% or more, which is an increase of about an order of magnitude from the low-level

material damping that was assumed for the system.

At higher amplitudes the damping reaches a maximum and the frequency begins to drop precipitously,
signaling the beginning of macro-slip. It is interesting to note that the point at which this occurs is closely
aligned with the point at which the other modes begin to be significantly excited in the quasi-static
responses. For example, Fig. 4(c) shows that at low amplitudes modes 2 and 3 respond 1000 times less
than mode 1 to the static force. However, as the modal velocity amplitude approaches 0.1 kg'? m/s the
response of these modes approaches 5% of that of mode 1 and the system transitions to macro-slip. If the
force of interest excites these high amplitudes then it would not be wise to use an uncoupled modal model.
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Figure 5: Modal parameters for Mode 2 estimated using the proposed quasi-static approach. (a)
and (b) also show the parameters estimated from three transient responses.

It is also worth noting that, although the damping predicted by the quasi-static approach generally agrees
very well with that computed from a transient response when a single mode was excited (i.e. the curves
denoted “Modal Force”), the impacts at points 2 and 3 sometimes produced noticeably different damping.
For example, for mode 2 at amplitudes above 0.1 kg"* m/s. Above this point the damping in those trials
differs by as much as 20-30% from the damping due to a modal force. This indicates that there is some
error in approximating the system with three uncoupled weakly-nonlinear oscillators, as elaborated in



[16]. However, to the extent that the uncoupled modal model is accurate, the quasi-static method does an
excellent job of predicting the modal behavior.

In their work, Festjens, Chevallier and Dion [10] implemented a procedure to update the mode shapes of
the structure as response amplitude increased. This was not done here and the results obtained seem to be
quite satisfactory over the range of amplitudes where micro-slip motion is dominant, so there was no
reason to consider changes to the mode shapes. However, the joints in this work are discrete and hence
clearly different from the continuous interface studied in that work.

4 Application to a Beam Finite Element Model

The quasi-static method was further evaluated on a structural model of a more realistic system, namely the
Sumali Beam [6, 16]. The Sumali Beam consists of two, identical, plate-like beams that overlap and are
fastened with four bolts. This work uses the exact same Craig-Bampton reduced order model of the beam
that was studied in [16]. The reduced order model was created from a finite element model whose mesh is
shown in Fig. 6. The two beams are composed of 8-node hexahedral elements with a linear, elastic,
isotropic material model. The Young’s Modulus is 248 GPa, the Poisson’s ratio is 0.29, and the mass
density is 8000 kg/m’.

Contact Patch

Figure 6: The Sumali beam finite element mesh. The beams are made transparent to reveal the four
joint contact patches in between.

The bolts are not modeled, but instead are replaced with whole-joint models. As shown in Fig. 7, a virtual
node was assigned to each contact patch on each beam, and the virtual node was constrained to all the
nodes within the contact patch using a RBE3 element spider [20], a type of average multi-point constraint.
The six degrees of freedom in each virtual node were then tied to those of the opposite virtual node,
associated with the opposite contact patch, using a joint model. Each joint model is a collection of rigid
constraints, discrete springs, and Iwan elements, and all four joint models in the finite element model are
assumed to have the same parameters. The x-translation direction holds a linear spring with stiffness

53x10" N/m in parallel with a four-parameter Iwan element with parameters F,=30.7 N,

K, =4.73%x10° N/m, y =—-0.23,and 8 =0.46. The y-translational direction has a linear spring with

stiffness 5.25x10® N/m. All other translational and rotational directions for each virtual node are rigidly
constrained except for z-rotation, which is left open with no discrete elements.

The reduced mass and stiffness matrices for the linear beams were assembled using a Craig-Bampton
reduction algorithm in Sierra/SD [20]. The details of the reduction are explained in [16]. The matrices
were then exported into MATLAB, where the joint models were added. For the following analysis, only
the first three free-free elastic modes (first, second, and third bending) were of interest. To apply the
quasi-static method to this structure, it was necessary to first apply six constraints to eliminate the rigid
body modes.



Figure 7: An exploded view of a joint model in the Sumali beam.

The quasi-static response was computed using the methods outlined in Sec. 2.2 to retrieve the modal
damping and natural frequency versus amplitude. For the first elastic mode, static loads were applied at 15
amplitudes spaced logarithmically between o =0.44 and a =90 and at another 15 amplitudes spaced
logarithmically between o =2200 and a =44000. The spacing was initially continuous between 0.44
and 44000, but the implicit static solver failed to converge at some of the amplitudes in the transition
region and so those points were simply skipped. (Future works shall seek to address this issue, but time
did not allow it to be pursued here.) Similarly, for the 2™ and 3" modes the static loads ranged between
a =0.44 and o =440000and the solution was found at 30 points total per mode. At each load
amplitude, the quasi-static response was computed at N,=25 load levels spaced linearly between 0 and «
and this load displacement curve was used to derive the modal frequency and damping as described
earlier.

Figure 8 shows the damping and natural frequency vs. modal displacement amplitude curves for the three
elastic modes. Here, the quasi-static results are juxtaposed with the natural frequency and damping versus
amplitude obtained from the transient response as described in [16]. The low-amplitude linear damping
ratio of £, =1x107*, which was assigned to all modes for the transient response, was subtracted from
the damping data obtained from these responses in order to obtain a valid comparison with the quasi-static
results.  The results show that the effective damping of each mode increases from below material
damping at low amplitude until it exceeds one percent for modes 1 and 3. This is an increase in damping
of over two orders of magnitude. The quasi-static algorithm captures this increase in damping
exceptionally well, and also captures the (less significant) decrease in each natural frequency.

The quasi-static response was computed in two ways in Fig. 8. After retrieving the static response solution
x(ot), the green dot data was retrieved from the hysteresis curve constructed from the modal

displacement that was filtered using the low-amplitude mode shapes @, (as in ¢, (a) =@, Mx(a)) .

This is the typical mode of operation as explained earlier. Additionally, to better understand the macroslip
behavior of the structure, the filtering was also performed using the high-amplitude mode shapes @_,

(g,(a)=¢,,"Mx(a) ) and that result is shown with red triangles. The dynamic response data from [16]
was processed in a similar manner. Except for the high amplitude frequency of the 2™ and 3" modes,
filtering with ¢, produces quasi-static results that agree remarkably well with the results of the dynamic
simulations. Those exceptions correspond to a case where the joint(s) are in the macro-slip regime and so
it is not surprising that the micro-slip model is not effective. In most applications of interest the authors

expect that the joints will be designed to maintain their integrity, so the forces will not be large enough to
induce macro-slip.}

' Of course, there are some applications of interest, such as blast loading of structures, where macroslip may be
expected to occur and the methods developed here would need to be extended to account for this.
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Figure 8: Comparison of the quasi-static (Q-S) method and the Hilbert fitting method for
computing (a,c,e) the natural frequency and (b,d,f) the damping vs. modal displacement amplitude
for the (a,b) first, (c,d) second and (e,f) third elastic modes.

Considering the excellent agreement obtained, the quasi-static approach is strongly preferred over the
dynamic approach. First, while the approach used in [16] was not reviewed in detail here, it is important
to note that it was much more complicated and required considerable care to perform all of the signal
processing correctly. In contrast, the quasi-static approach requires only a few lines of code and is readily



automated. Second, the quasi-static approach allows for a massive reduction in the computational cost.
For the Sumali beam, the time required to complete all of the transient simulations that were needed to
produce the frequency and damping versus amplitude curves shown above for all three elastic modes was
about 106 minutes. This doesn’t include the post-processing, which was non-negligible and required
some user interaction. In contrast, the 90 quasi-static responses that were used in the proposed method
were computed and post-processed in only 5.5 seconds. This is an astonishing three orders of magnitude
reduction in the computational cost. In principle, similar curves could be obtained from a single force-
displacement curve for each mode (although with the response stored at additional points along the curve)
so the cost could potentially be reduced by another order of magnitude.

5 Conclusions

This work has presented a means of using quasi-static loading to estimate the effective modal natural
frequency and damping ratio of each mode of a structure versus amplitude. The proposed approach
reduces to that presented by Festjens et al [10] in the case where the entire structure is treated nonlinearly,
although this work has presented alternative methods for computing the effective natural frequency and
damping. Furthermore, the results presented here suggest that it may not typically be necessary to update
the mode shapes to account for slip in the joints. This was theoretically justified by forging a connection
between this method and the implicit condensation and expansion method [13].

This method provides a dramatic reduction in computational cost compared to the authors prior approach
based on dynamic simulation. This has already been instrumental in allowing the authors to update the
parameters of discrete joints in order to bring a finite element model into agreement with experimental
measurements. Indeed, this procedure was used on the Sumali beam in order to find the set of discrete
joint parameters that were used in these simulations. Those parameters were tuned to approximately
reflect the measurements from the beam that were reported in [6]. In prior efforts the authors attempted to
do this using the dynamic response alone, yet it proved quite challenging to explore enough of the
parameter space in order to find a set of parameters that produced a reasonable agreement with
measurements.

It is also important to recall that this method is based on an assumption that the linear modes of a structure
remain uncoupled when the displacements are small enough that the structure remains in the micro-slip
regime. A significant body of work is beginning to develop that supports this approach when modeling
realistic structures [6, 7, 16]. However, there are certainly cases where this assumption does not produce
acceptable accuracy. For example, in [16] the authors show that noticeable modal coupling can be
observe in the response of the finite element model of the Sumali beam when an impulse is applied at
various discrete points on the model. When the response is projected onto the linear modes this causes an
apparent error in the damping predictions (because modal coupling was neglected). To date the authors
have found these errors to be relatively small, but for some applications it may certainly prove important
to extend this approach to account for coupling between modes.
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