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Background: sonic crystals

Sonic crystals are made from periodic arrays of scatterers inside a matrix

Acoustic band gaps form for certain arrangements, frequencies, etc.
— Acoustic waves attenuate quickly in these gaps!

Application areas: frequency filters, sound diffusers, etc.

Determination of the band gaps
— Need to compute the center frequency and the width
— (Extended) plane wave expansion method, finite difference time domain (FDTD)
— Either approximate or expensive!

(a) (b) (c)

Fig. 1. Different types of sonic crystals. (a) 1-D sonic crystal consisting of plates arranged periodically; (b) 2-D sonic crystal with
cylinders arranged on a square lattice; (c) 3-D sonic crystal consisting of periodic arrangement of sphere in simple cubic arrange-

ment. Gupta, Acoustical Physics, 2014
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Background: sonic crystals

* Filling fraction plays an important parameter for determining band gap
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Andrew Norris, Rayleigh Lecture, ASME NCAD IMECE 2011
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Partial band gap for waves
in some directions only

Complete band gap for
waves in all directions
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Direct simulation of sonic crystals

e Spatial and temporal fidelity must resolve
— Scatterer size and entire domain size (orders of magnitude difference)
— Frequencies of interest: must fill out the band gap diagram
— Acoustic-structure interactions when structures are excited

e Standard computational challenges must be overcome
— Time step limitations (Courant) for explicit integration
— Algebraic linear solver expense for implicit
— Spatial locations where high resolution necessary change with time

e Spacetime discontinuous Galerkin finite element method
— Satisfy the resolution requirements and overcome the computational challenges!
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Discontinuous Galerkin Finite Element

* Applicable to a wide range of physical
processes
— Nonlinear hyperbolic systems of PDEs

— Uses spacetime Discontinuous Galerkin (SDG) finite
element method
e Superior performance:

— Multi-scale simulations with discontinuities solved
faster

— Linear cost instead of exponential cost as complexity
grows

— Highly parallelizable, asynchronous patch-by-patch
finite element solver

* Local decoupled problems:

— Small patches of finite elements decouple from the

global solution domain and are solved individually \)&)&)&)&/

. . . . X

— Local solution structure enables a highly efficient h- >

or hp-adaptive solution strategy while maintaining
linear scaling

A I Characteristic decoupling

Traditional: no element decoupling

Miller, et. al., Comp. Meth. In App. Mech. Eng. 198 (2008).
— Local and global conservation/balance is ensured

— Linear O(N) complexity in the number of patches
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Spacet

ime DG FEM exploits hyperbolic structure
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the SDG FEM is arbitrarily high

order accurate

Accuracy

in space and time

User defined basis function accuracy

Resolves sharp solution features in both space and

time

-time mesh generation

Information propagation speeds are used to

construct causal space-time meshes

Adaptive space
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dependent problems

Unstructured meshes in space-time can handle

moving boundaries easily

Multi-scale

element size ratios for a simulation can be O(108)

or larger

Shocks/discontinuities resolved and propagated
naturally due to discontinuous basis functions

Figure: Adaptive mesh following dynamic
crack propagation, branching, and arrest.

Abedi et al., CMAME, 2014.
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SDG application areas

Elastodynamics, thermal conduction, fracture, inviscid fluid
flow, atomistic-to-continuum coupling

Development and collaboration credits: Reza Abedi (UTSI), Robert

Haber (UIUC), Jeff Erickson (UIUC), Shripad Thite (google), Shuo-Heng Chung
(microsoft), Aaron Becker (google), Laxmikant Kale (UIUC), Duane Johnson (Ames
Lab, lowa State), Brent Kraczek (ARL)

Another cool movie here
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Demonstration problem

Comparison of polynomial order

Nonadaptive
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acoustic pressure (Pa)

Demonstration problem

e Differences between adaptive and non-adaptive are more
pronounced for lower polynomial order

* Adaptive computations are in good comparison with non-
adaptive with polynomials of order k > 1

— But, computational savings with adaptive computations

* Numerical losses are most severe for low polynomial order

Comparison on adaptivity Comparison on adaptivity
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Multiscale acoustic problems

Reflecting boundary conditions
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 Geometry designed for band
gap center frequency of 20 kHz

 Computed using Linearized Euler
Equations

* Cubic polynomial basis functions
show best accuracy for acoustics
propagation

— Increased computational cost
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Band gap analysis

Transmission loss
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Different propagation direction
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A few other examples
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* Different frequency content

Radius=00125m

* Time and space resolution study

e Method of manufactured
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Acoustic fluid-solid coupling

e Acoustic fluid: a Newtonian fluid that propagates small amplitude
pressure and velocity disturbances; does not support shear waves

e Elastic solid: small amplitude deformations; supports both pressure and
shear waves

* Acoustic fluid-solid (AFS) coupling:
— Solid displacement does not affect wave propagation
— Traction forces and velocities are coupled at the AFS interface
— Accurately predicts acoustic wave propagation in coupled media

* Spacetime DG method for AFSI:
— Permits asynchronous time evolution based on local material properties
— Weakly enforces continuity between elements at material interfaces
— Utilizes highly adaptive meshes to resolve physics at all length/time scales
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Acoustic fluid-solid coupling

Original
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Aluminum solids
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Conclusions & future work

e Spacetime discontinuous Galerkin finite element method is a
viable tool for computational acoustics and acoustic-FSI
— Capabilities lacking for 3 spatial dimensions, future work!
* Adaptive spatial and temporal resolution greatly improves
efficiency
— High order (k=3) interpolation can also lead to reduced simulation
time
e Direct simulation of acoustic fluid-structure interaction could
be used to verify other analysis methods, e.g., plane wave
expansion or homogenization approahes



