

Exceptional service in the national interest

A spacetime finite element method for coupled acoustic fluid-structure interactions

Scott T. Miller, Ph.D.

*Computational Solid Mechanics and Structural Dynamics
Sandia National Laboratories*

Amanda D. Hanford, Ph.D.

*Head, Marine & Physical Acoustics Department
Applied Research Laboratory
The Pennsylvania State University*

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP.

PennState
Applied Research Laboratory

Background: sonic crystals

- Sonic crystals are made from periodic arrays of scatterers inside a matrix
- Acoustic band gaps form for certain arrangements, frequencies, etc.
 - Acoustic waves attenuate quickly in these gaps!
- Application areas: frequency filters, sound diffusers, etc.
- Determination of the band gaps
 - Need to compute the center frequency and the width
 - (Extended) plane wave expansion method, finite difference time domain (FDTD)
 - Either approximate or expensive!

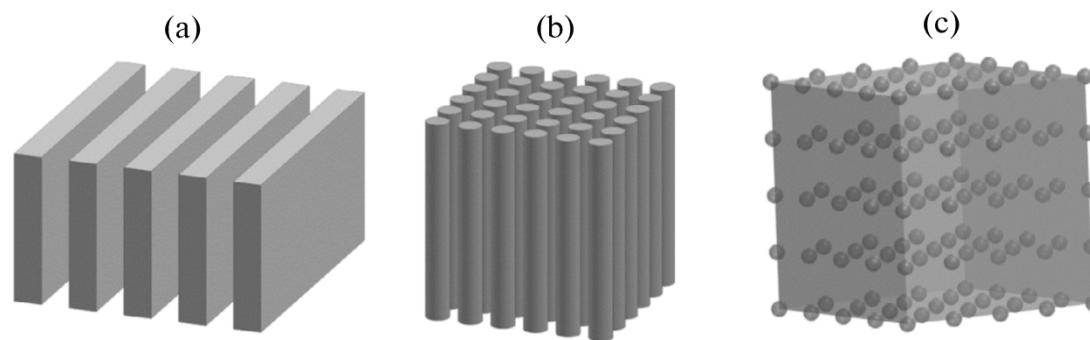
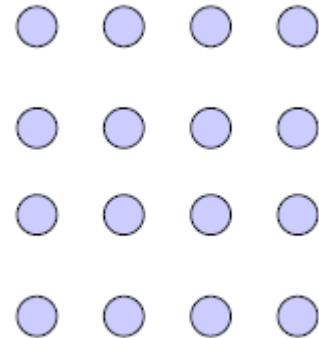
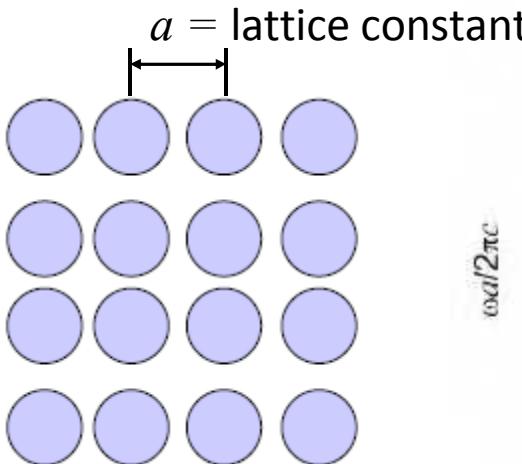
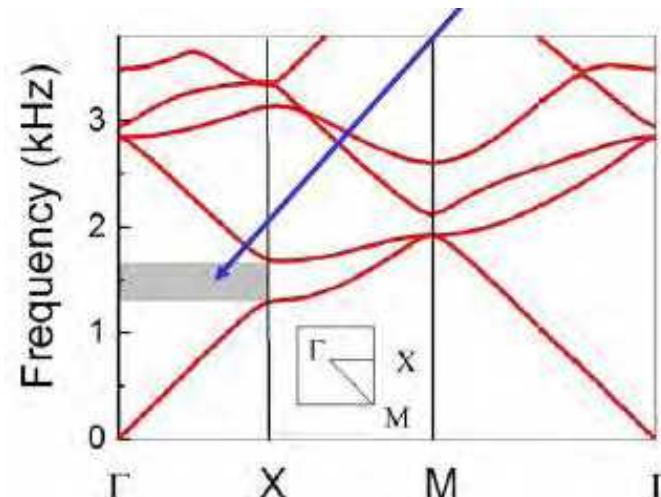


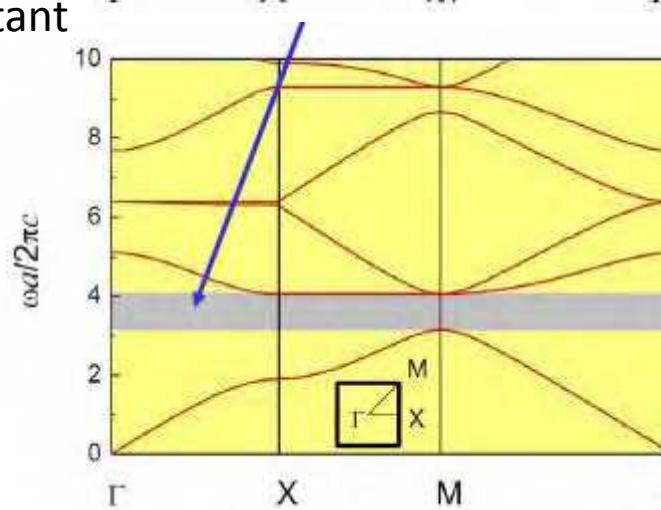
Fig. 1. Different types of sonic crystals. (a) 1-D sonic crystal consisting of plates arranged periodically; (b) 2-D sonic crystal with cylinders arranged on a square lattice; (c) 3-D sonic crystal consisting of periodic arrangement of spheres in simple cubic arrangement. Gupta, *Acoustical Physics*, 2014

Background: sonic crystals

- Filling fraction plays an important parameter for determining band gap



Partial band gap for waves
in some directions only



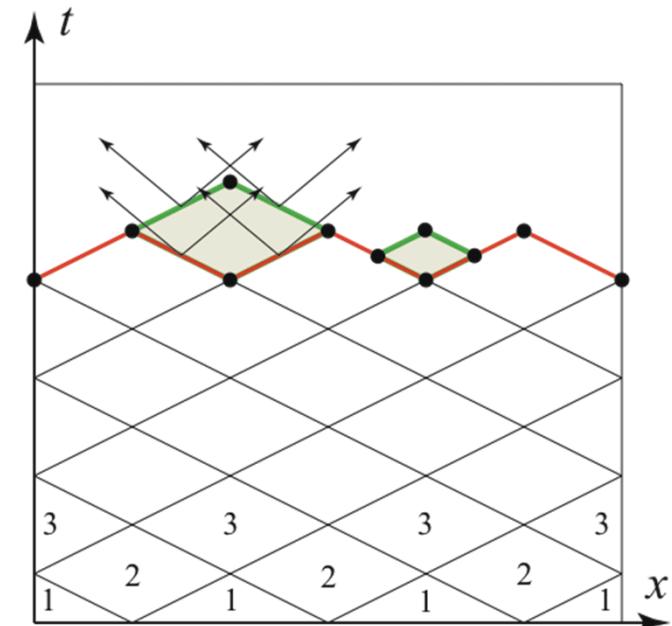
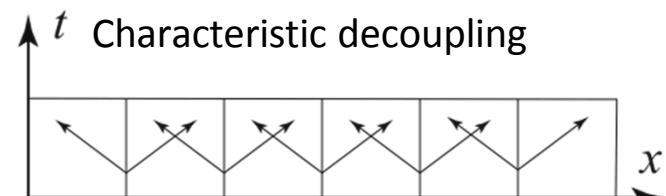
Complete band gap for
waves in all directions

Direct simulation of sonic crystals

- Spatial and temporal fidelity must resolve
 - Scatterer size and entire domain size (orders of magnitude difference)
 - Frequencies of interest: must fill out the band gap diagram
 - Acoustic-structure interactions when structures are excited
- Standard computational challenges must be overcome
 - Time step limitations (Courant) for explicit integration
 - Algebraic linear solver expense for implicit
 - Spatial locations where high resolution necessary change with time
- Spacetime discontinuous Galerkin finite element method
 - Satisfy the resolution requirements and overcome the computational challenges!

Discontinuous Galerkin Finite Element

- **Applicable to a wide range of physical processes**
 - Nonlinear hyperbolic systems of PDEs
 - Uses spacetime Discontinuous Galerkin (SDG) finite element method
- **Superior performance:**
 - Multi-scale simulations with discontinuities solved faster
 - Linear cost instead of exponential cost as complexity grows
 - Highly parallelizable, asynchronous patch-by-patch finite element solver
- **Local decoupled problems:**
 - Small patches of finite elements decouple from the global solution domain and are solved individually
 - Local solution structure enables a highly efficient h - or hp -adaptive solution strategy while maintaining linear scaling
 - Local and global conservation/balance is ensured
 - Linear $O(N)$ complexity in the number of patches

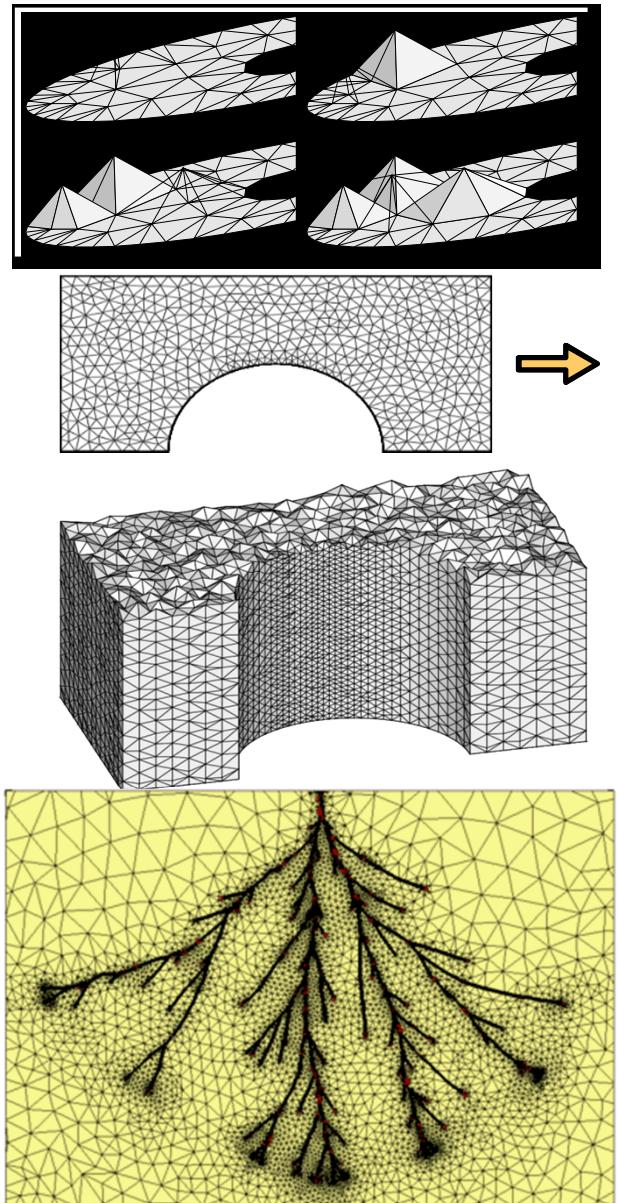


Traditional: no element decoupling
Miller, et. al., *Comp. Meth. In App. Mech. Eng.* **198** (2008).

Spacetime DG FEM exploits hyperbolic structure

- **Accuracy:** the SDG FEM is arbitrarily high order accurate in space *and* time
 - User defined basis function accuracy
 - Resolves sharp solution features in both space and time
- **Adaptive space-time mesh generation:**
 - Information propagation speeds are used to construct *causal* space-time meshes
 - Unstructured and asynchronous mesh generation for time-dependent problems
 - Unstructured meshes in space-time can handle moving boundaries easily
- **Multi-scale:**
 - element size ratios for a simulation can be $O(10^8)$ or larger
 - Shocks/discontinuities resolved and propagated naturally due to discontinuous basis functions

Figure: Adaptive mesh following dynamic crack propagation, branching, and arrest.
Abedi et al., CMAME, 2014.



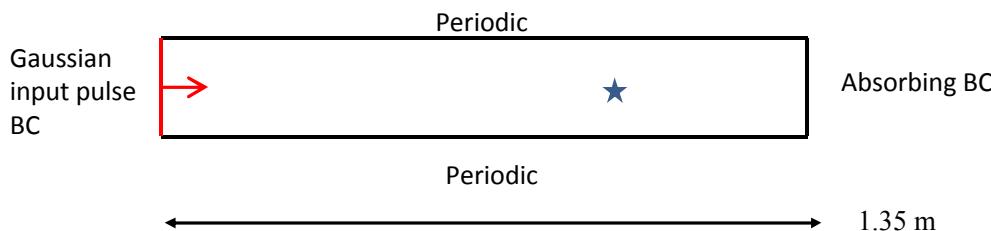
SDG application areas

- Elastodynamics, thermal conduction, fracture, inviscid fluid flow, atomistic-to-continuum coupling
- Development and collaboration credits: Reza Abedi (UTSI), Robert Haber (UIUC), Jeff Erickson (UIUC), Shripad Thite (google), Shuo-Heng Chung (microsoft), Aaron Becker (google), Laxmikant Kale (UIUC), Duane Johnson (Ames Lab, Iowa State), Brent Kraczek (ARL)

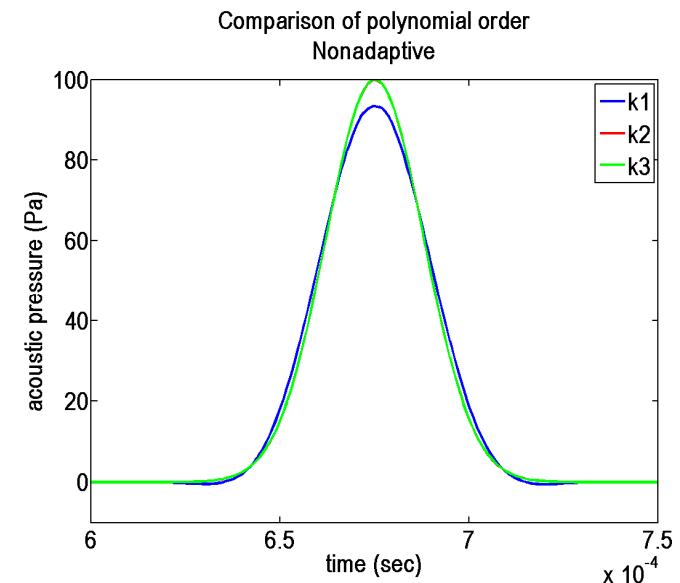
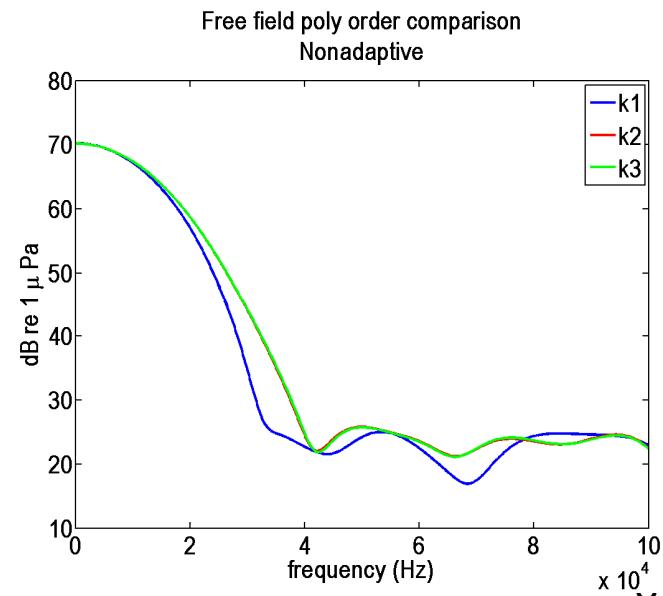
Another cool movie here

Demonstration problem

- 2D Acoustic propagation in free space

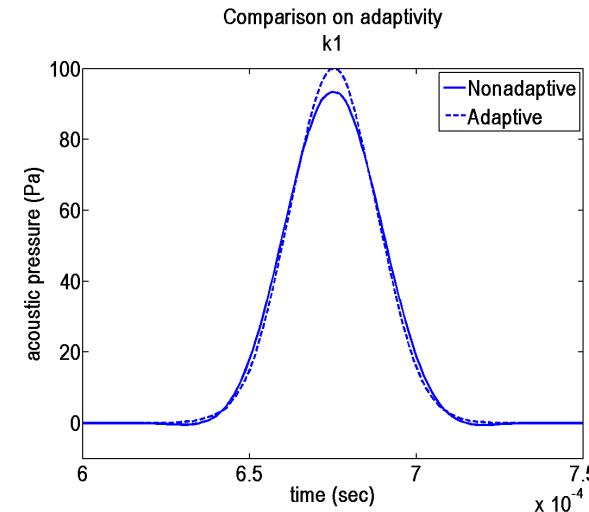
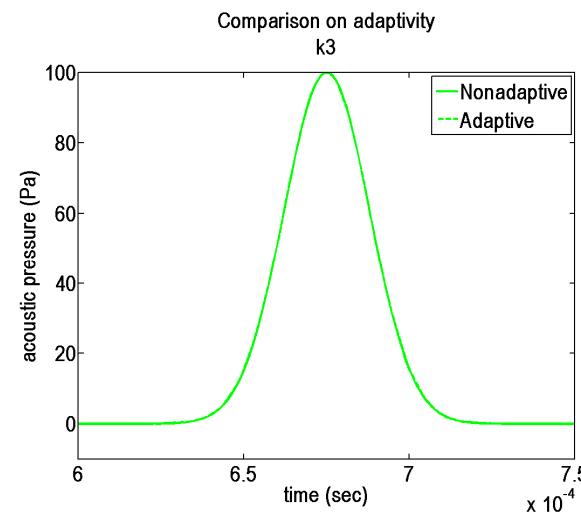
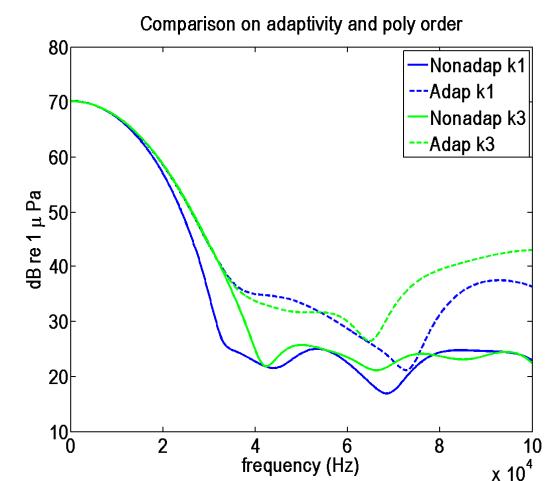


- Evaluation of
 - Element polynomial order
 - Adaptive vs non-adaptive meshes
 - Numerical losses
 - Post processing

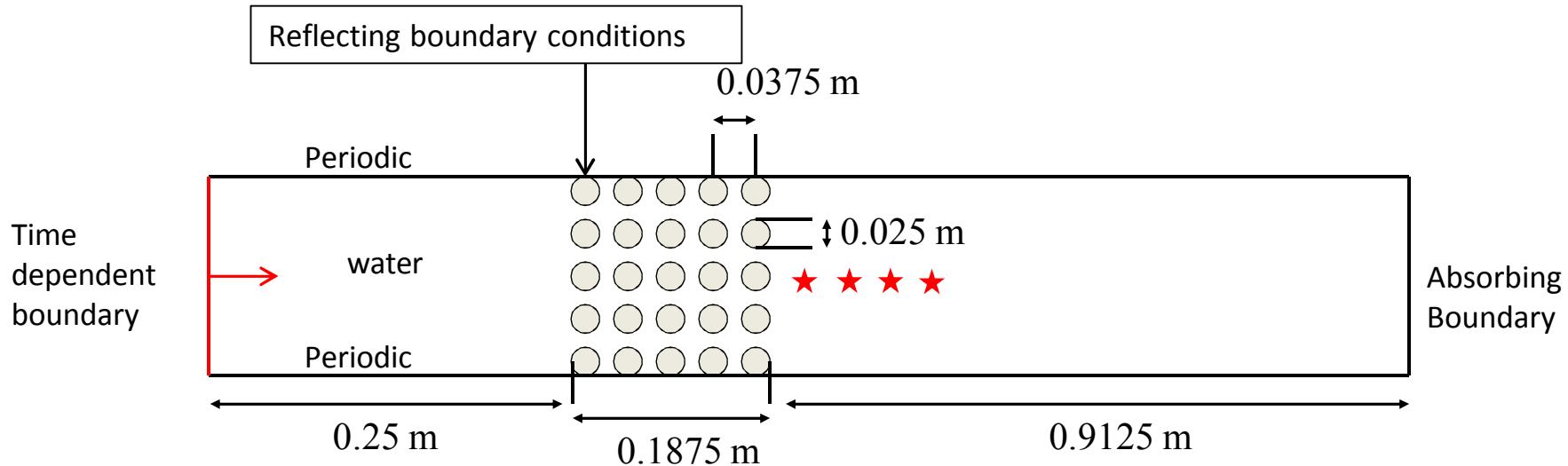


Demonstration problem

- Differences between adaptive and non-adaptive are more pronounced for lower polynomial order
- Adaptive computations are in good comparison with non-adaptive with polynomials of order $k > 1$
 - But, computational savings with adaptive computations
- Numerical losses are most severe for low polynomial order

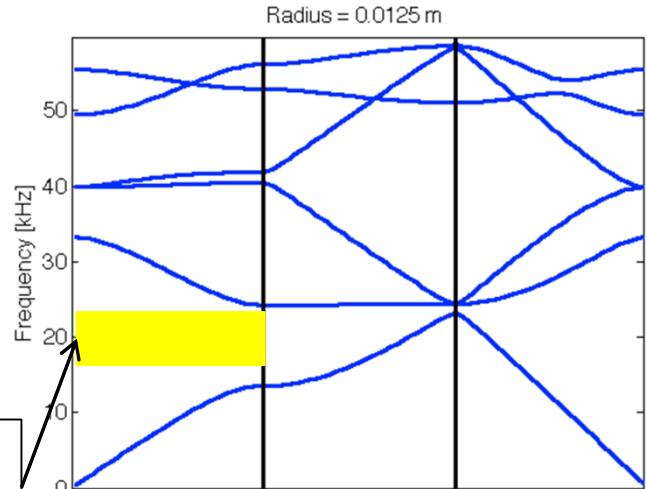


Multiscale acoustic problems

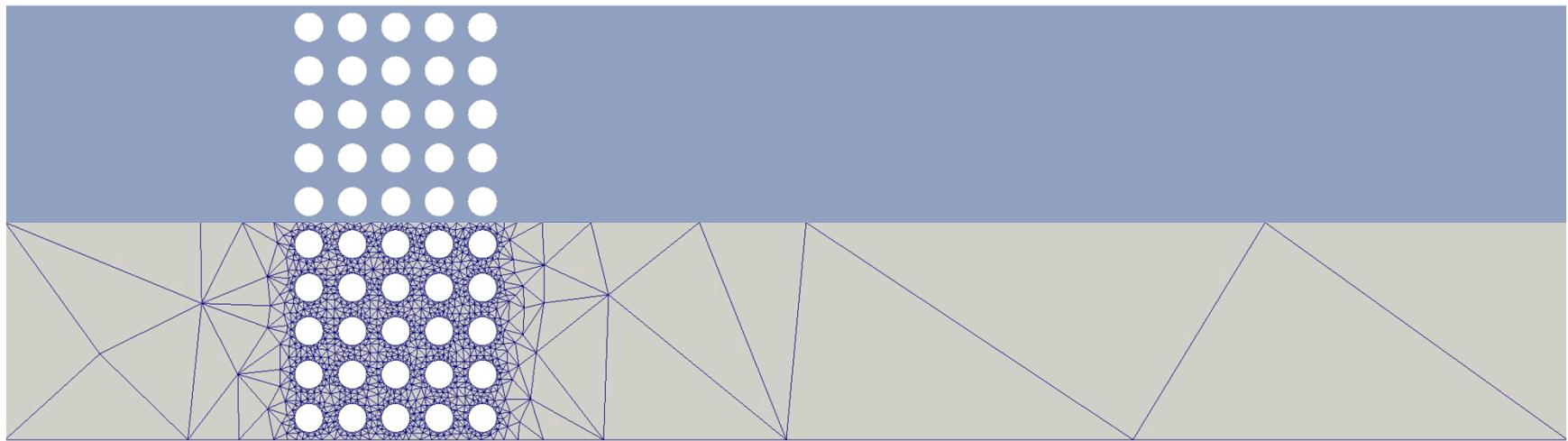
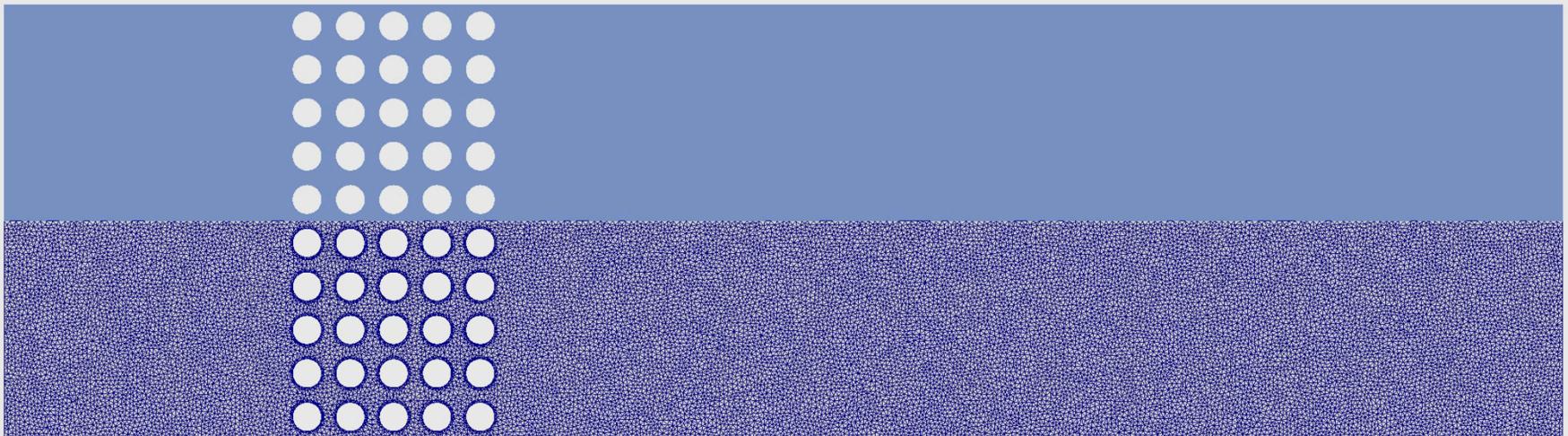


- Geometry designed for band gap center frequency of 20 kHz
- Computed using Linearized Euler Equations
- Cubic polynomial basis functions show best accuracy for acoustics propagation
 - Increased computational cost over linear basis functions

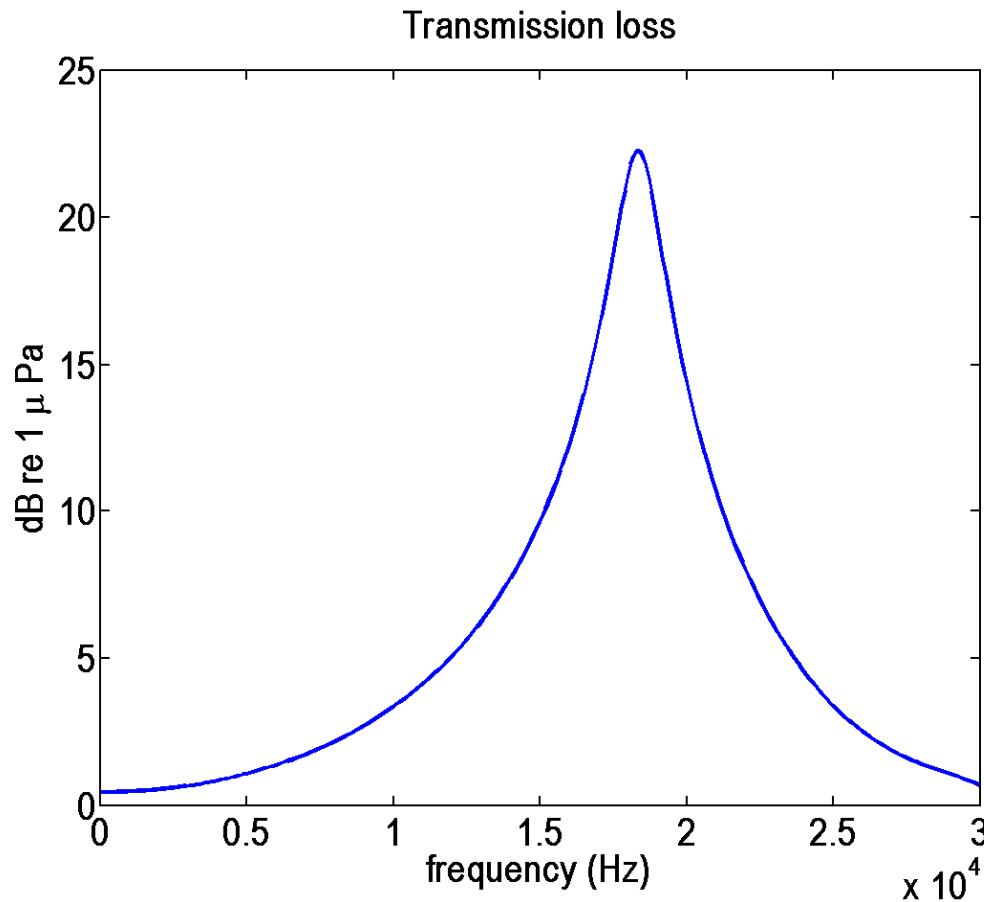
Investigate this band gap



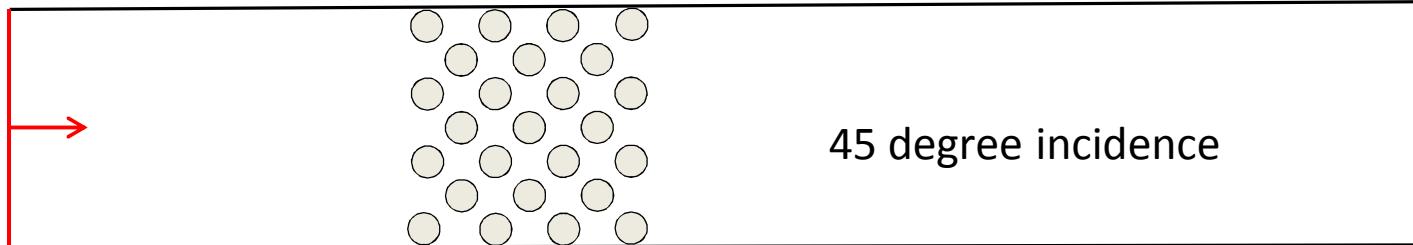
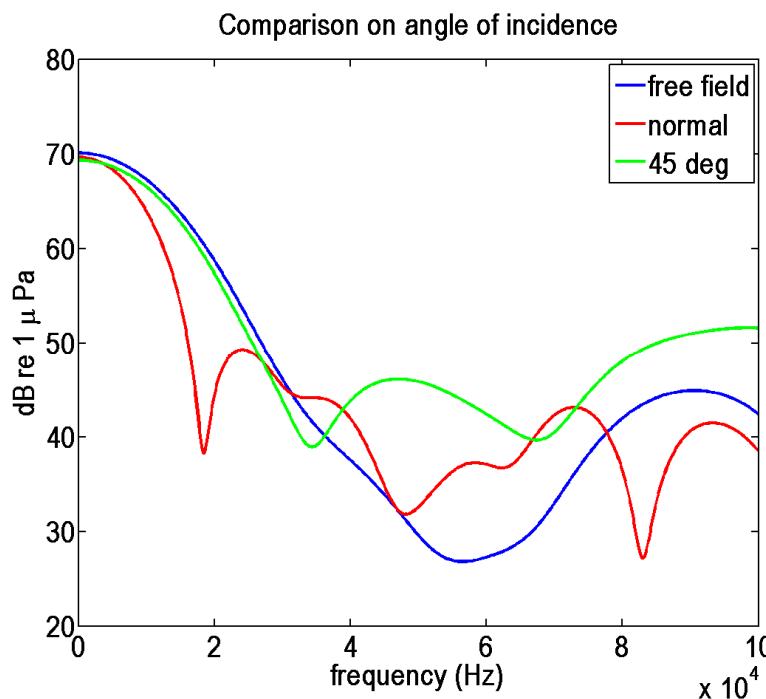
Results of sonic crystal



Band gap analysis

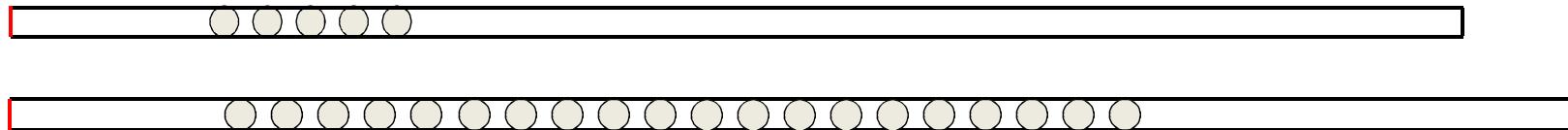


Different propagation direction

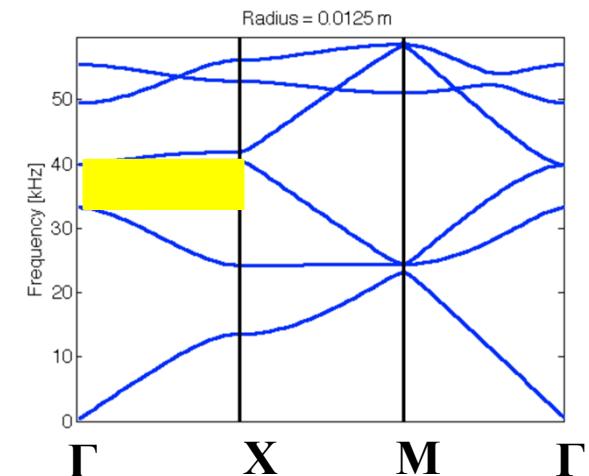


Interference patterns due to scatterer arrangement change band gaps.

A few other examples



- Different frequency content
- Time and space resolution study
- Method of manufactured solutions
- Results all physically meaningful

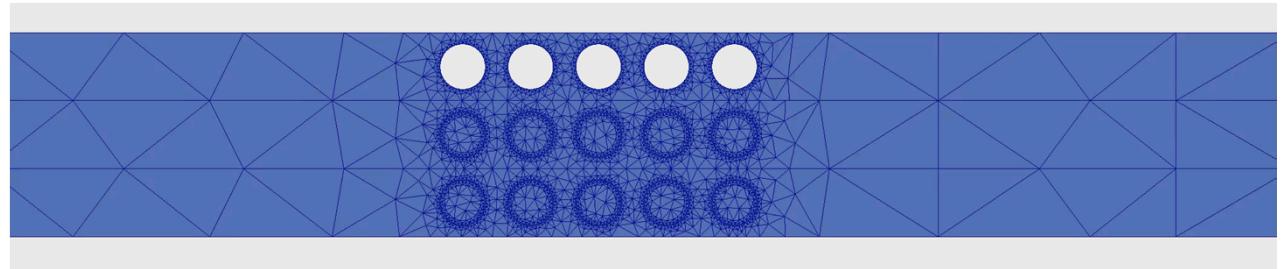


Acoustic fluid-solid coupling

- **Acoustic fluid:** a Newtonian fluid that propagates small amplitude pressure and velocity disturbances; does not support shear waves
- **Elastic solid:** small amplitude deformations; supports both pressure and shear waves
- **Acoustic fluid-solid (AFS) coupling:**
 - Solid displacement does not affect wave propagation
 - Traction forces and velocities are coupled at the AFS interface
 - Accurately predicts acoustic wave propagation in coupled media
- **Spacetime DG method for AFSI:**
 - Permits asynchronous time evolution based on local material properties
 - Weakly enforces continuity between elements at material interfaces
 - Utilizes highly adaptive meshes to resolve physics at all length/time scales

Acoustic fluid-solid coupling

Original
Silicone solids
Aluminum solids



Conclusions & future work

- Spacetime discontinuous Galerkin finite element method is a viable tool for computational acoustics and acoustic-FSI
 - Capabilities lacking for 3 spatial dimensions, future work!
- Adaptive spatial *and* temporal resolution greatly improves efficiency
 - High order ($k=3$) interpolation can also lead to reduced simulation time
- Direct simulation of acoustic fluid-structure interaction could be used to verify other analysis methods, e.g., plane wave expansion or homogenization approaches