\

Sandia
SAND2016-5044C
m Nduuiidi

Laboratories

Performance Portable Assembly
For Plasma Fluid Equations

Matthew Bettencourt, Eric Cyr, Richard Kramer, Roger Pawlowski, Edward

Phillips, Alan Robinson and John Shadid
Sandia National Laboratories

ECCOMAS 2016

Tuesday June 71, 2016

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

UL I g%
NN A A

National Nuclear Security Administration

Problem Description

Prediction of plasma processes at moderate to high densities
« Multifluid plasma equations — Electrons, ions and neutrals
— Six-dimensional Boltzmann equations too high of dimensionality
— Particle methods too expensive due to plasma frequency
— Sets of 5 or 13 coupled PDEs with stiff source terms need to be solved
« Equations need to be composible and maintainable
Analysis Beyond Forward Simulation
« Forward solves are not enough — we want to explore complex solution spaces:

— Simultaneous analysis and design adds requirements (typically
sensitivities)

— Do not burden analysts/physics experts with analysis algorithm
requirements: i.e. programming sensitivities for implicit solvers,
optimization, stability, bifurcation analysis and UQ

Engine must be flexible, extensible, maintainable and EFFICIENT!

@ Sandia
National
Laboratories

Problem Description

Prediction of plasma processes at moderate to high densities
* Multifluid plasma equations — Electrons, ions and neutrals

Dlrected Acycll Graph base ssembly

. Equatlons need to be composible and maintainable
Analysis Beyond Forward Simulation
« Forward solves are not enough — we want to explore complex solution spaces:

— Simultaneous analysis and design adds requirements (typically
sensitivities)

=-Da not hurden analvsts/nhvsics exnerts with analvsis alaarithm
Template-based Generic Programming ‘

Engine must be flexible, extensible, maintainable and EFFICIENT!

@ Sandia
National
Laboratories

Drekar/Panzer:
Algorithms and Software

Drekar: Algorithms research application
» Targets coupled multi-physics
» Large scale simulation (>100k cores)
» Advanced algorithm demonstration

A co-dependent development relationship

Panzer: Multi-physics assembly engine
 Finite element focused (currently)
+ Embedded analysis (AD, Sensitivities)

Drekar drives Panzer « Technology sharing and deployment Panzer provides
requirements and Drekar flexible
design goals infrastructure and core
technologies
(John Shadid Tom Smith Allen Robinson Andrew Bradley A
Roger Pawlowski Paul Lin Matt Bettencourt Greg von Winckel
Eric Cyr David Sondak Sidafa Conde David Hensinger
Edward Phillips Paula Weber Ben Seefeldt Sandia
\ Tim Wildey Richard Kramer Chris Siefert @ Frte)

Uncertainty Quantification

Order of Accuracy of Drekar/Rythmos Time Integ
stokes 2n

Weak Scaling: Linear Iterations (Ha=2.5)
16k]
+— FC AMG (BG/Q) Bl
700F * =* DD ILU(1),ov=1 (Titan)
* = FC AMG (Titan)

4=lpr]| 5 |

S=C-BF'B"
Block
= Preconditioning

PDE Constrained
Optimization

107 10° 10°
nnnnnnnnnnnnnnnn

Algebraic Multigrid
(>100k cores) Compatible Discretizations

Lightweight DAG-based

' .
% Expression Evaluation

« Decompose a complex model into a
graph of simple kernels (functors) R =] [@;u — Vol - q+ @;S} d0
Q

— Decomposition is NOT unique

« Supports rapid development, separation
of concerns and extensibility.

* A node in the graph evaluates one or
more fields:
— Declare fields to evaluate q
— Declare dependent fields
— Function to perform evaluation YVu I

8 71

Wy
« Separation of data (Fields) and kernels
(Expressions) that operate on the data

— Fields are accessed via multidimensional array
interface (shards or kokkos)

Vi,

dia |
nauOna
AL Laboratories

S .
DAG Evaluation

The problem domain is broken into worksets

— Smaller number of elements which fit into cache or
other memory structures

— The entire DAG is evaluated for a single workset

— Each math kernel can be threaded over the
workset elements

Worksets are filled with a gather operation

The workset’'s contributions are accrued in a
matrix with a scatter operation

All intermediate calculations are independent
of if they are computing a Jacobian or
residual or sensitivity @ S

'

}I Parallelization Strategies

 MPI — Domain decomposition
— This is the traditional approach
— Not covered In this talk
Threading — On node parallelization g vz

— More scalable for local cores
— Extensible to GPUs/Cuda
— Threads team up to accelerate a kernel

Elements

+ Kernel parallelization Mwﬂ
— Different kernels at the same time @@.‘.é.-,,

bb@bbbbbdééobbbb

— Asynchronous Many Tasking (AMT)
@) i
Laboratories

What is Kokkos?
o O O

Applications & Libraries

Kokkos

performance portability for C++ applications

A A J
Multi-Core Many-Core APU CPU+GPU

Cornerstone for performance portability across next generation HPC

architectures at multiple DOE laboratories, and other organization@ —

National
Laboratories

Abstractions
Patterns, Policies, and Spaces

Parallel Pattern of user’s computations
— parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)

Execution Policy tells how user computation will execute
— Static scheduling, dynamic scheduling, thread-teams, ... (extensible)
Execution Space tells where computations will execute

— Which cores, numa region, GPU, ... (extensible)

Memory Space tells where user data resides

— Host memory, GPU memory, high bandwidth memory, ... (extensible)

Layout (policy) tells how user array data is laid out

— Row-major, column-major, array-of-struct, struct-of-array ... (extensible)

Differentiating: Layout and Memory Space
— Versus other programming models (OpenMP, OpenACC, ...)

— Critical for performance portability ... @ ﬁan_dial
il

Threading
Traditional Architectures

* The gather, math routines and scatter
operations were all threaded

 MPI only (left) was compared to
| Kokkos::OpenMP (right) on 16000 elements

e—e Assembly
e—e Advection Kernel
e—e Matrix and RHS Scater
eo—e Cubature Basis with Vector :

:) Pr1s RN e
e—e Basis Evaluation :
o—e Gradient Of Variable
e—e Gather Solution

2

e—e Assembly
e—e Advection Kernel

e—e Matrix and RHS Scater
e—e Cubature Basis with Vector
s—e Basis Evaluation

o—e Gradient Of Variable

e—e Gather Solution

Run Time(s)
Run Time(s)
N

274 i3 2 k}
2 2 2 2 2 2z 2 2 2 2 2 2 2
Cores Cores
Run on a dual 16 core Haswell with hyperthreading. Left result uses one socket for 1 to 32 cores and MPI across sockets. MPI rl" National
results show the average time across MPI ranks. 156k total degrees of freedom. Time is for Jacobian assembly only. Laboratories

Threading
Modern Architectures

» Kokkos allows one to migrate to new
machines and backends

— Only recompilation is required to move to Intel’'s
Knights Corner (left) or Nvidia K80 via Cuda (right)

- : 24 :
. *—e Assembly +—e Assembly
2 o—e Advection Kernel 5 o—e Advection Kernel
28 ... | == Matrix and RHS Scater | 2 e—e Matrix and RHS Scater
o—e Cubature Basis with Vector eo—e Cubature Basis with Vector
2’ e—e Basis Evaluation 2%t i e—e Basis Evaluation 1
26 eo—e Gradient Of Variable o—e Gradient Of Variable 5
e—e Gather Solution 3 : e—e Gather Solution
" Prl s -
)
[
g
)
=%
2
5
s
2-2
2-4
s .
2.) 0.4 0.6 lia
Cores Cores

mnal

Summary
Threading Results

2 T
e—e Haswell-Kokkos
2| e—e Haswell-MPI
e—e Cuda-K80
28l e—e KNC-Kokkos
2’ b
)
g
[
§ 2
o 5|
24t
22t
22 1 L
10° 107 10" 10°

Log Fraction of Machine

@ Sandia
National
Laboratories

g
-~
*’j Beyond Threading

* Threading accelerates each individual math
kernel

— Eventually there is insufficient work in a single
kernel to use all the threads efficiently
* Task parallelism
— Chunks of threads solve different kernels
— The wider the graph, the more task parallelism

— Asynchronous Many Task (AMT) is an active
research area in scheduling these tasks

« HPX, DHARMA, Charm++, Legion, ...

Sandia
National
Laboratories

Task Parallelism

__ '
% Single Fluid

Real DAG much more complex than the
previous toy example

HEE
FEd

Theoretical speed up for this DAG

Jacobian

_ 1 Thread/Kernel 8 Threads/Kernel | 16 Threads/Kernel
Residual

3.4 3.4

3.5

.

Summary
Next Steps

A4

« Assembly performance can be improved with
both threading and task parallelism

— Threading shows up-to 64x speed up

— Need to demonstrate these two approaches together
* Cuda parallelism performance lower than

expected

— Not enough parallelism per workset

* Need bigger workset, however, limited memory
— Need to implement hierarchical parallelism

« Kokkos makes thread parallelism easier
— Need to incorporate Kokkos further @sma

National
Laboratories

