
Performance Portable Assembly
For Plasma Fluid Equations

Matthew Bettencourt, Eric Cyr, Richard Kramer, Roger Pawlowski, Edward
Phillips, Alan Robinson and John Shadid

Sandia National Laboratories

ECCOMAS 2016

Tuesday June 7th, 2016

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned

subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2016-5044C

Problem Description

Prediction of plasma processes at moderate to high densities

• Multifluid plasma equations – Electrons, ions and neutrals

– Six-dimensional Boltzmann equations too high of dimensionality

– Particle methods too expensive due to plasma frequency

– Sets of 5 or 13 coupled PDEs with stiff source terms need to be solved

• Equations need to be composible and maintainable

Analysis Beyond Forward Simulation

• Forward solves are not enough – we want to explore complex solution spaces:

– Simultaneous analysis and design adds requirements (typically
sensitivities)

– Do not burden analysts/physics experts with analysis algorithm
requirements: i.e. programming sensitivities for implicit solvers,
optimization, stability, bifurcation analysis and UQ

Engine must be flexible, extensible, maintainable and EFFICIENT!

Problem Description

Prediction of plasma processes at moderate to high densities

• Multifluid plasma equations – Electrons, ions and neutrals

– Six-dimensional Boltzmann equations too high of dimensionality

– Particle methods too expensive due to plasma frequency

– Sets of 5 or 13 coupled PDEs with stiff source terms need to be solved

• Equations need to be composible and maintainable

Analysis Beyond Forward Simulation

• Forward solves are not enough – we want to explore complex solution spaces:

– Simultaneous analysis and design adds requirements (typically
sensitivities)

– Do not burden analysts/physics experts with analysis algorithm
requirements: i.e. programming sensitivities for implicit solvers,
optimization, stability, bifurcation analysis and UQ

Engine must be flexible, extensible, maintainable and EFFICIENT!

Directed Acyclic Graph-based Assembly

Template-based Generic Programming

Drekar/Panzer:
Algorithms and Software

John Shadid
Roger Pawlowski
Eric Cyr
Edward Phillips
Tim Wildey

Tom Smith
Paul Lin
David Sondak
Paula Weber
Richard Kramer

Allen Robinson
Matt Bettencourt
Sidafa Conde
Ben Seefeldt
Chris Siefert

Andrew Bradley
Greg von Winckel
David Hensinger

Drekar drives Panzer
requirements and

design goals

Panzer provides
Drekar flexible

infrastructure and core
technologies

Drekar: Algorithms research application

• Targets coupled multi-physics

• Large scale simulation (>100k cores)

• Advanced algorithm demonstration

Panzer: Multi-physics assembly engine

• Finite element focused (currently)

• Embedded analysis (AD, Sensitivities)

• Technology sharing and deployment

A co-dependent development relationship

Discretizations & Algorithms

Drekar/Panzer: Capabilities

Applications

Uncertainty Quantification

PDE Constrained
Optimization

IMEX

Magnetohydrodynamics

Turbulent CFD

Compatible Discretizations
Algebraic Multigrid

(>100k cores)

Block
Preconditioning

Lightweight DAG-based
Expression Evaluation

• Decompose a complex model into a
graph of simple kernels (functors)

– Decomposition is NOT unique

• Supports rapid development, separation
of concerns and extensibility.

• A node in the graph evaluates one or
more fields:

– Declare fields to evaluate

– Declare dependent fields

– Function to perform evaluation

• Separation of data (Fields) and kernels
(Expressions) that operate on the data

– Fields are accessed via multidimensional array
interface (shards or kokkos)

DAG Evaluation

• The problem domain is broken into worksets
– Smaller number of elements which fit into cache or

other memory structures

– The entire DAG is evaluated for a single workset

– Each math kernel can be threaded over the
workset elements

• Worksets are filled with a gather operation

• The workset’s contributions are accrued in a
matrix with a scatter operation

• All intermediate calculations are independent
of if they are computing a Jacobian or
residual or sensitivity

E
le

m
e

n
ts

Quad Points

f array

w array

v array

Thread per
Element

Source integral kernel

for q:
 I += w(q) f(q) v(q)

Source integral kernel

E
le

m
e
n

ts

Basis
Functions

Parallelization Strategies

• MPI – Domain decomposition

– This is the traditional approach

– Not covered in this talk

• Threading – On node parallelization

– More scalable for local cores

– Extensible to GPUs/Cuda

– Threads team up to accelerate a kernel

• Kernel parallelization

– Different kernels at the same time

– Asynchronous Many Tasking (AMT)

What is Kokkos?

9

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Multi-Core Many-Core APU CPU+GPU

Drekar Trilinos
SPARC

Applications & Libraries

Kokkos
performance portability for C++ applications

Albany
EMPIRE

LAMMPS

Cornerstone for performance portability across next generation HPC
architectures at multiple DOE laboratories, and other organizations.

Abstractions
Patterns, Policies, and Spaces

• Parallel Pattern of user’s computations
– parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)

• Execution Policy tells how user computation will execute

– Static scheduling, dynamic scheduling, thread-teams, ... (extensible)

• Execution Space tells where computations will execute

– Which cores, numa region, GPU, ... (extensible)

• Memory Space tells where user data resides

– Host memory, GPU memory, high bandwidth memory, ... (extensible)

• Layout (policy) tells how user array data is laid out

– Row-major, column-major, array-of-struct, struct-of-array … (extensible)

• Differentiating: Layout and Memory Space
– Versus other programming models (OpenMP, OpenACC, …)

– Critical for performance portability …

Threading
Traditional Architectures

• The gather, math routines and scatter
operations were all threaded

• MPI only (left) was compared to
Kokkos::OpenMP (right) on 16000 elements

Run on a dual 16 core Haswell with hyperthreading. Left result uses one socket for 1 to 32 cores and MPI across sockets. MPI
results show the average time across MPI ranks. 156k total degrees of freedom. Time is for Jacobian assembly only.

Threading
Modern Architectures

• Kokkos allows one to migrate to new
machines and backends

– Only recompilation is required to move to Intel’s
Knights Corner (left) or Nvidia K80 via Cuda (right)

Summary
Threading Results

Beyond Threading

• Threading accelerates each individual math
kernel

– Eventually there is insufficient work in a single
kernel to use all the threads efficiently

• Task parallelism

– Chunks of threads solve different kernels

– The wider the graph, the more task parallelism

– Asynchronous Many Task (AMT) is an active
research area in scheduling these tasks

• HPX, DHARMA, Charm++, Legion, …

Task Parallelism
Single Fluid

Real DAG much more complex than the
previous toy example

Theoretical speed up for this DAG

1 Thread/Kernel 8 Threads/Kernel 16 Threads/Kernel

Jacobian 3.5 4.5 4.9

Residual 3.4 3.4 3.5

Summary
Next Steps

• Assembly performance can be improved with
both threading and task parallelism

– Threading shows up-to 64x speed up

– Need to demonstrate these two approaches together

• Cuda parallelism performance lower than
expected

– Not enough parallelism per workset

• Need bigger workset, however, limited memory

– Need to implement hierarchical parallelism

• Kokkos makes thread parallelism easier

– Need to incorporate Kokkos further

