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When meshing two domains sharing a smooth interface, it is difficult to B
avoid introducing overlaps and gaps.




Complications ) e,

With the introduction of gaps and overlaps, for any coupling
technique it becomes difficult to:

= Compare solutions variables between the two domains
= Determine boundary conditions on the interface

= Preserve physical properties such as linear momentum, energy
conservation, etc...

Common approaches are based on Lagrange multipliers
= FETI [Farhat & Roux]
= domain decomposition [Toselli & Widlund]
= solve the saddle point problem [Bochev, Parks & Romero]

= mortar methods [Anagnostou, Mavriplis & Patera; Bernardi, Maday & Patera;

Flemisch, Melenk & Wohlmuth]
I EEEEEEEE—————————



National

Traditional Formulation for ) .
Interfaces with Matching Nodes

Original weak form of an elliptic problem with matching conditions

fﬁ;(vui, V’U@)Ql = (fi, ’UZ')QZ. + <8nui,fvz->g Yv; € Hpi(Qi), 1=1,2
8nu1 — _8nu2 on o
u; = W on o.

Traditional Lagrange multiplier approach:

£(Vwi, Voo, = (£, vi)o, + (=1)"H (A vi), Vo; € Hr, (%), i = 1,2
<111—112,[,L>0 = 0 VNEH_l/z(O').




Alternate Formulation as a ) i
Minimization Problem

Reformulation as an optimization problem [Gunzburger & Lee]

k(Vu;, Vuy)a, = (fi,vi)q, + (Onwi, vi)s Yv; € Hr, (), 1 =1,2
anul = —(9n112 on o
u; = U2 on o.
becomes
. 1 2 ) 2
min g Jur —uz|l )+ 5 llgll;
s.t.

k(Vug, Vo), = (fi,vi)0, + (—1)" (g, vi)o  Yo; € Hr (), 1 = 1,2

However, this was designed with the matched node case in mind. We wish
to extend this approach to noncoincident interfaces.




Extension to Noncoincident Meshes h) i

2, 6 2
u; — ugf|; + 5 ||gll;

DN —

man

s.t.

k(Vug, Vog)o, = (f,vi)q, + (=1)"" (g, vi)s Yu; € Hr, (Q), i = 1,2

We introduce an extension operator, Fo_.q (112), which in some way takes U9
from domain 2, and maps its values onto domain 1.

This can be done similarly for U1 .

We now replace the single term in the objective with two terms,

min 5 IBrmcuy — Byouglls, + 5 [luy = Bxoywgll2 + % [us — BrsowZ, + 5 llgll,
s.t.
k(Vug, Vi), = (fi,vi)o, + (1) (g, vi), Vv; € Hr, (), i =1,2




Extension to Noncoincident Meshes h) i

Difficulty

min b || Byycuy — Eysona|2 + B [luy — Eosgus|l2 + 2 |luz — Erow|2, + $ g,

s.t.

K;(vu’h VIUZ)QZ - (fiavi)Qi + (_1)i+1<g7fvi>0 V’Ui € H

We can no longer rely on 0,u; = g = —(—g) = —0dnu, to enforce the
Neumann matching condition is satisfied.

Solution
Instead, we introduce the operators 3, and B9 , described later, which exactly
satisfy the condition J, Big dos = — | Bag dos, and approximately satisfy the
condition B1g ~ —DB>g .

min 5 | By — By sowslly, + 3w — Baswg|l), + 3 |luz — Ersowil;, + 5 llgll,,,

s.t.

li(vuh V’U’L)QZ - (fiavi)Qi + <Bzga ’vi>o'i V’Ui € HI‘Z. (QZ), 1= 1, 2
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Extension Operator

| N1 | ~ |
> (Eyqub) " Ny(z])
k=0

| V1|
— Z(ug 4 VugA:B)(wa)Nl (-’13‘;1)
k=0

= For each (quadrature) point

= Find the triangle closest to the
point of interest

= Construct a gradient from the
solution on the cell

= Evaluate the plane at the point




Neumann Operator ) o,

* We need to construct B, and B, that map a common control to both
domains and:
= Preserve global flux exactly
= Approximately enforce that flux is equal but opposite pointwise

¢ °
Parameterized
interfaces 071,
0o, and G, . é §
0 o
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Neumann Operator

Interface 1 G G ........... e @
T
Common Control @ @ % ®) @
)
Interface 2 @ o ® o @

By parameterizing and then weighting values according to support of piecewise
discontinuous basis functions (transformed onto the common interface), normal

directions are ignored by assuming they are the same.

This will cause problems in passing a patch test, but can ensure global flux

conservation.
e



Virtual Interface o, =

=O=c =Om &, =0 =Omc: =Om o, mOm




Numerical Studies )

= Minimization problem

mgz'n /870 | Eoscur — E2—>CU2H§C + % jur — ]52—>1112H§1 + % |ug — E1—>2U11H(2,2 + % Igll,..
s.t.
H(vu’b V'UZ)§21 — (fi7 vi)ﬂi + <B'Lg7 'vz'>o',b~ \V/’UZ' - HFi (Q’L)7 1 = 1, 2

is solved by eliminating the states and solving the
Hessian against the Jacobian of the objective

= Only one Hessian solve needed

(linear constraints with quadratic objective results in a quadratic
objective after reducing the states)

= Many other choices for optimization algorithm
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Flat-Perturbed Flat-Uniform S-Curve




Numerical Results = i,
[ Flat Interface ]
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v DOES pass patch test
For any left to right ratio




Numerical Results
[ S-Curve Interface ]
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é v/ Passes patch test for
left = right ratio

% Does NOT pass patch test
for left # right ratio




Linear Patch Test 7

= Globally linear solution, U = 333 —+ 2y
= Expectation:

= Will pass for coincident interfaces

= Constant flux corresponding to manufactured solution lies in the solution
space being optimized over

= Will generally fail for noncoincident interfaces

= Counter example:
— No common control can be defined for the following case
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0'1-111:1147%:3011 01,1
1 _ _ =9
o192] 02, Q 0-2'112—\/5( U2 x u2,y)—\/ﬁon 021
2 O-Q'HQZL(_UQx_FuQ )Z_—10D022
\/§ ) 7y \/5 9
g1 7= g1 . g1 =3 and gg = 3 for o
g2 g and g1 = % and go = % for 09. =x=




L2 Error
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Manufactured Solution

[S-Curve Interface]

i | Netiona

« Solution: z?(y — 2)’sin(2nz) — (x — 3)3 cos(2mx — ¥)
* 0= le-11, k =1, 51 20762 :0750 =1

S-Curve Interface

4| | =2 Order
F | =0 =2 VS.2
[ | =0 =2 Vs.3

| |=0-2vs.5
F|=o0=3 vs.4
| =2 -3 vs.5

2vs.4

10°% 107
Mesh Size

H! Error
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S-Curve Interface

=15 Order

-0 =2 ys5.2
-0 =2 V8.3

2vs.4
=0=2 V55
-0 =3 Vs.4

-0 =3 V8.5

1072
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Manufactured Solution [Flat-Perturbed]

Parameter 0=0 0—=1le-14 0=1e-11
51 52 BC LQ Hl LQ Hl L2 Hl
1 h 0O [ 1.19 081 ] 1.76 0.93 | 1.72 0.92
1 hA* 0 | 171 093|173 092|172 0.90
1 A 0 | 111 081|174 091|171 0.90
h 1 0 | 1.36 089 | 1.75 0.93 | 1.71 0.92
h? 1 0 | 1.58 093 | 1.72 0.92 | 1.70 0.91
R 1 0 | 087 067|172 091 | 1.69 0.91
1 0 0O [ 141 0.76 | 1.71 091 | 1.71 0.91
0 1 0O | 147 0883 | 1.70 091 | 1.70 0.91
1 1 O | 1.13 087 | 1.77 093 | 1.71 0.93
0 0 1 | 1.30 0.89 | 1.78 0.93 | 1.70 0.93

Flat perturbed interface with 2:3 ratio between o1 and o9
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Manufactured Solution [Flat-Uniform] ) i,

Parameter 0=0 0=1e-14 d=le-11
By Ba PBo | L? H L? H! L? H!
1 h 0O 200 1.00 | 2.00 1.00 | 2.00 1.00
1 hR* 0 | 200 1.00 | 2.00 1.00 | 2.00 1.00
1 A3 0 200 1.00 200 1.00 | 2.00 1.00
h 1 0 | 200 1.00 | 2.00 1.00 | 2.00 1.00
h? 1 0 | 200 1.00 | 2.00 1.00 | 2.00 1.00
S| 0 | 2.00 1.00 | 2.00 1.00 | 2.00 1.00
1 0 0O | 200 1.00 | 2.00 1.00 | 2.00 1.00
0 1 0 200 1.00 | 2.00 1.00 | 2.00 1.00
1 1 0 | 200 1.00 | 2.00 1.00 | 2.00 1.00
0 0 1 | 200 1.00 | 2.00 1.00 [ 2.00 1.00

Flat uniform interface with 1:1 ratio between o1 and o2




Manufactured Solution [S-Curve] ) i

Parameter 0=0 d0=1le-14 0=1le-11
By Ba Bo | L? H! L? H! L? H!
1 h 0 230 121 | 1.86 094 | 2.09 0.95
1 kA% 0 230 1.13]209 095|184 093
1 A 0 | 235 1.07 197 094 | 1.73 0.92
h 1 0 239 1.21 | 1.87 094 | 2.08 0.95
| 0 | 234 1.14 | 2.10 0.95 | 1.96 0.94
| 0 | 254 1.15| 206 094 | 1.86 0.93
1 0 0O | 1.19 056 | 1.75 0.92 | 1.75 0.92
0 1 0O [1.02 033 ] 1.8 093] 1.86 0.93
1 1 0O | 1.80 1.08 | 1.60 0.95 | 1.97 0.94
0 0 1 [ 221 120 | 1.78 094 | 2.01 0.94

S-Curve interface with 2:3 ratio between o1 and o2




Conclusions )

Observed optimal H! convergence rates (1.0) with various weightings of
terms in the objective, and nearly optimal L?> convergence rates (1.7-2.0)

Developed an extension technique for evaluating jumps in solution
variables from opposite subdomains using the gradient

Used parameterizations of the 1d interface to generate a common
refinement and then used this common refinement as a mesh on which to
define a control space

Reformulated the coupled problem posed over mismatched and
noncoincident subdomains as a minimization problem by using the
common interface and extension operators

Passed a linear patch test in the case of coincident interfaces
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