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Difficulties with Meshing Independently

Ω1 Ω2

When meshing two domains sharing a smooth interface, it is difficult to 
avoid introducing overlaps and gaps. 

Overlap

Gap
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Complications

With the introduction of gaps and overlaps, for any coupling 
technique it becomes difficult to:

 Compare solutions variables between the two domains

 Determine boundary conditions on the interface

 Preserve physical properties such as linear momentum, energy 
conservation, etc…

Common approaches are based on Lagrange multipliers
 FETI [Farhat & Roux]

 domain decomposition [Toselli & Widlund]

 solve the saddle point problem [Bochev, Parks & Romero]

 mortar methods [Anagnostou, Mavriplis & Patera; Bernardi, Maday & Patera; 
Flemisch, Melenk & Wohlmuth]
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Traditional Formulation for
Interfaces with Matching Nodes

Original weak form of an elliptic problem with matching conditions

Traditional Lagrange multiplier approach:
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Alternate Formulation as a
Minimization Problem

Reformulation as an optimization problem [Gunzburger & Lee] 

becomes

However, this was designed with the matched node case in mind. We wish 
to extend this approach to noncoincident interfaces.
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We introduce an extension operator,                     , which in some way takes           
from domain 2, and maps its values onto domain 1. 

This can be done similarly for       .

We now replace the single term in the objective with two terms, 

Extension to Noncoincident Meshes
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Extension to Noncoincident Meshes

We can no longer rely on                                                       to enforce the 
Neumann matching condition is satisfied.

Instead, we introduce the operators        and        , described later, which exactly 
satisfy the condition                                                 , and approximately satisfy the    
condition                         . 

Difficulty

Solution
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Extension Operator

 For each (quadrature) point
 Find the triangle closest to the

point of interest

 Construct a gradient from the 
solution on the cell

 Evaluate the plane at the point

σ1

σ2
Ω2
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Neumann Operator
• We need to construct B1 and B2 that map a common control to both 

domains and:
 Preserve global flux exactly
 Approximately enforce that flux is equal but opposite pointwise

Parameterized 
interfaces     ,

, and      . 
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Neumann Operator

Common Control

Interface 2

Interface 1

2

1

By parameterizing and then weighting values according to support of piecewise 
discontinuous basis functions (transformed onto the common interface), normal 
directions are ignored by assuming they are the same. 

This will cause problems in passing a patch test, but can ensure global flux 
conservation.

c
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Virtual Interface
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Numerical Studies

 Minimization problem

is solved by eliminating the states and solving the      
Hessian against the Jacobian of the objective

 Only one Hessian solve needed 
(linear constraints with quadratic objective results in a quadratic 
objective after reducing the states)

 Many other choices for optimization algorithm
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Domains
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Flat-Perturbed Flat-Uniform S-Curve



Numerical Results
[ Flat Interface ]

✔DOES pass patch test
For any left to right ratio
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Numerical Results
[ S-Curve Interface ]

✔Passes patch test for 
left = right ratio

✖Does NOT pass patch test
for left ≠ right ratio
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Linear Patch Test
 Globally linear solution,

 Expectation: 
 Will pass for coincident interfaces

 Constant flux corresponding to manufactured solution lies in the solution 
space being optimized over

 Will generally fail for noncoincident interfaces

 Counter example: 

– No common control can be defined for the following case
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• Solution:

•

Manufactured Solution
[S-Curve Interface]



Manufactured Solution [Flat-Perturbed]
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Manufactured Solution [Flat-Uniform]
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Manufactured Solution [S-Curve]
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Conclusions

 Observed optimal H1 convergence rates (1.0) with various weightings of 
terms in the objective, and nearly optimal L2 convergence rates (1.7-2.0)

 Developed an extension technique for evaluating jumps in solution 
variables from opposite subdomains using the gradient

 Used parameterizations of the 1d interface to generate a common 
refinement and then used this common refinement as a mesh on which to 
define a control space

 Reformulated the coupled problem posed over mismatched and 
noncoincident subdomains as a minimization problem by using the 
common interface and extension operators

 Passed a linear patch test in the case of coincident interfaces
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