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Current State of the Art in Energy Storage The Lithium lon
Battery s -

(cathode) containing
Lithium metal oxides

Negative electrode
Separator (anode) comprised
(ion permeable) of graphite

During charge, Lithium ions migrate towards the negative electrode.
They store electrons from an external energy source.

During discharge, Lithium loses electrons in the negative electrode.

One Of the greatest SUccess in These electrons drive an external load.

. Charge Discharge
electrochemical energy storage
Cathode
It has been adapted to many different
platforms and form factors

Separator

Anode

As transformative as this technology is it can * Li* (Lithium fon) o electron)

be argued that it is reaching its theoretical ‘
N ¥ “l'l‘..

https://boschenergystoragesolutions.com/en/blog/-/blog/4334855/how-a-lithium-ion-

battery-works
https://boschenergystoragesolutions.com/en/blog/-/blog/4334855/how-a-lithium-ion- y;
battery-works ‘ ’(

http://www.bombayharbor.com/Product/13263/Battery lon Battery Pack Lithium Battery Li
m_lon.html . . . . .
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Beyond Lithium lon: Sulfur Battery

e Lithium sulfur batteries have been extensively
studied
* They suffer from two major drawbacks...
Sulfur is electrically insulating
Sulfur shuttle mechanism
* Much of the work done in this field is done to

mitigate these problems...
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Voltage V vs. LilLi'

1.0 Depth of Discharge
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Portable rechargable batteries tend to hit an energy-
storage-per-weight limit. Lithium-ion technology has

gone through several phases and types, but is also 2017 g
expected to reach a ceiling soon. JCESR*
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How Do we make the Best Sulfur Cathode? What Are the Tools?

-~ § : & 2
" o ,‘" ‘ 2 A 9 >
P & ‘v 2

B s wos sz Sea-mer w o - o SoAcnies W == GT1000W WO GSmm  SgwA<iniews  Vidh-2a58um
Super P 62 m?/g Denka 68 m?/g Ketjenblack EC600J 1270m?/g
Test Matrix
% active Carbon Binder System | Loading/WFT
90 Super P 15 mil(380um)
80 Denka PVDF 8 mil (200um)
70 Ketjenblack EC600)J 4 mil (100pum)
60
50
40
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.
Experimental Details

Cells utilized a Li metal anode 50um laminated onto 10um copper

2X Celgard 3501 separator

Electrolyte
0 1:1v:v1-3dioxolane:dimethoxyethane
0 1M LITFSi 0.25M LiNO;

Cycling done at 0.1C at RT

All cells built in a dry room

May contain trade secrets or commercial or financial information that is privileged or confidential and exempt from public disclosure.
5
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Super P LI133/SBR binder system coated to 100 um WFT Discharged at
C/10 at RT
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I
First Discharge Capacity, RT, Super P, LI123/SER 0.1C RT
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First Discharge Capacity, RT, Denka, L1133/SBR 0.1C RT
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First Discharge Capacity, RT, Ketjenblack, PVDF 0.1C RT
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By utilizing a high surface area conducting phase and PVDF a 5x increase in capacity over Li ion is

achievable
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What are the Properties of the Cathode that Make the Performance Better?

Super P 62 m?/g

* More than just surface area
e Capillary Condensation Mechanism

v

Kelvin Equation r= T RTInE/P)

r = Pore Radius

v = Surface Tension

V = Molar Volume of the Liquid

R = Gas Constant

P° = Normal Vapor Pressure of the liquid
P = @bserved Pressure of Vapor

Ketjenblack EC600J 1270m?/g

The preparation
conditions are
expected to increase
the total surface area
of the porous matrix
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How Conducting is the Carbon?
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Slurry Viscosity @22C (cp)

Cathode Porosity

e —
Cathode Preparation and its Effects on cell Performance

Slurry Properties of Super P Denka and Ketjenblack
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Going Lean a Potential way to Suppress Polysulfide
Shuttle?

Effects of Running the LiS Chemistry with Less Electrolyte
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Prototyping of LiS at Various Levels 0.1C RT 5 mL_/g
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.
Future Directions and Impact

. Increasing the surface area of the conducting phase increased the performance of the
cathode
. If BP2000 is used can we push the limits further?

. The optimal cathode can be fabricated by preparing a KB carbon + PVDF binder in a
60:30:10 ratio slurry viscosity and cathode porosity seem to have minimal effect

. The first ever LiS 18650 prototype

Key Take-Away

. By utilizing the basic building blocks of cathode chemistry a 5x fold increase in capacity
is obtainable
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