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Introduction

= Almost a decade ago, Sandia National Laboratories conducted
shock tests on a satellite payload

= Resonant beam test to simulate the SRS of a pyroshock

= This presentation gives an overview of the level of
attenuation seen at various parts of the payload

= Agenda
= Payload Description
= |nput SRS
= Shock Attenuation Factors
= Shock Attenuation Data
= Summary Observations
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Payload Description

= The structure tested was spacecraft payload with struts
attaching it to the main structure

= Shocks were applied at 3 foot pads independently

oy

e

Accelerometer Strut Fitting

Resonant Beam

Right foot Back foot Resonant beam was bolted to a foot pad
| eft foot Accelerometer was attached to the beam

_ near the pad
Satellite Payload
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Shock Environment

= Different shocks were applied to the front feet and the back
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Shock Attenuation Factors
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c = Design Attenuation
Factors

= Rotational Joint: -3dB
)

= Distance: -3dB
= Right Angle: -0 dB
= Bolted Joint: -3dB

= Flexure: -0 dB

24 dB = Material: -1 dB

_@
~@ .
= Bonded Joint: -1 dB

= Attenuation plots shown
for Struts, Subsystem G,
—© and Part 18

5/25/2016 Load Path Tree
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Shock Attenuation Analysis

= Shock attenuation assessment is based on SRS

= Compute a “Shock Attenuation Spectrum”
= Ratio of the Response SRS to the Input SRS
= dB (20log,,(X)) vs Frequency

= Due to ambiguity of accelerometer frames, the input and response X,
Y, Z SRS are each RSS’d first
= All sensors associated with a part or subsystem are grouped
together

= Shock Attenuation Mean Spectrum is calculated when there is more
than one sensor
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Shock Attenuation Results — Across Struts (i) s,
Y-Axis

Test: leftFootyDirH1; Part: STRUT Tesl: rightFoolYDirH1, Part: STRUT

15 - 10 -
Part: STRUT; Accel B1 Part: STRUT,; Accel B1
Part: STRUT, Accel B4 — Parl: STRUT. Accel B4
< Part: STRUT: Accel D4/ Part: STRUT: Accel D4[]
Part: STRUT; Accel Z1 Part: STRUT,; Accel Z1
Part: STRUT; Accel Z4 1 Part: STRUT. Accel 24
Part: STRUT: Mean Part: STRUT: Mean 1

» Left Foot — Y axis input A * Right Foot — Y axis input
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. . » '_Te’sl:m:kaleE_)IlH!:F:an_: STRI:IT o
= Design attenuation factor for the et
part STRUT. Accei 24
Part: STRUT; Mean

struts was -13 dB

= May not have been conservative
enough for parts located close to
the ends of some struts

= The design factors should be

10' 10° 10° 10"
Frequency (Hz)
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Shock Attenuation Results — Across Struts (i) &=,
X-AXxis
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. Left Foot — X axis input Right Foot — X axis input
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Tesl: backFoolXDirH1, Part: STRUT

Part: STRUT, Accel B1
— Part: STRUT; Accel B4
----- Part: STRUT. Accel D4
Part: STRUT,; Accel Z1

— Part: STRUT; Accel Z4 |
Part: STRUT; Mean

= Design attenuation factor for the "
struts was -13 dB

= May not have been conservative
enough for parts located close to the

ends of some struts
*r Back Foot — X axis input
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Shock Attenuation Results — Across Struts (i) &=,
Z-AXxis

art: ;
— Part: STRUT, Accel B4
----- Part: STRUT. Accel D4
20+ i : : Part: STRUT; Accel 21|
Part: STRUT, Accel Z4
N . d Part: STRUT: Mean
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Test: lellFoslZ0irHZ; Part: STRUT

No Z-axis shocks at the right foot and the back foot
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= Design attenuation factor for the
struts was -13 dB

= May not have been conservative
enough for parts located close to the
ends of some struts
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Shock Attenuation Results — Subsystem G (i) &=

——— Part: G; Accel 01
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.. Local mode?
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60— - - .
10 10° 10 10
Frequency (Hz)

Frequency (Hz)

= Design attenuation factor for
Subsystem G was -30 dB

= Attenuation was much less locally
(near accelerometer O1)

SRS Attenuation (dB)

= QOverall prediction was good

" Back Foot — Y axis input
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Shock Attenuation Results — Subsystem G (i) &=
X-AXxis
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= Design attenuation factor for
Subsystem G was -30 dB

= Attenuation was much less locally
(near accelerometer O1)

SRS Artenuation (dB)

= Qverall prediction was good " Back Foot — X axis input
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Shock Attenuation Results — Subsystem G (i) &=
Z-AXxis
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No Z-axis shocks at the right foot and the back foot
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= Design attenuation factor for
Subsystem G was -30 dB

= Attenuation was much less locally
(near accelerometer O1)

= QOverall prediction was good
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Shock Attenuation Results — Part 18 ) s
Y-Axis

Test: rightFootXDirH1; Part; 18
—r - e e ey

Test: leftFootYDirH1; Part: 18
- v e e e e
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Part: 18, Accel E1 Part: 18; Accel E1
— Part: 18, Accel E4 — Part: 18; Accel E4

0k —— Part: 18; Mean | Part: 18 Mean

]
/ :

f..
T

SRS Attenuation (dB)
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“I Left Foot — Y axis input i | Right Foot — Y axis input
= Design attenuation factor for Part b e

18 was -20 dB

= Overall prediction was "l
conservative
= Best result above 1000 Hz

Aok

SRS Attenuation (dB)

“ Back Foot — Y axis input

35 ) a 4
10 10 0 10
Frequency (Hz)

5/25/2016

Babuska, Pulling & Klenke, Spacecraft and Launch Vehicle Dynamic Environments Workshop 2016, June 20-23, 2016



Shock Attenuation Results — Part 18 ) i
X-AXxis

Test: rightFootXDirH1; Part: 18

Test: lefiFoolXDirH1; Pan. 18
Part: 18; Accel E1 Part: 18; Accel E1
— Part: 18, Accel E4 — Part: 1&; Accel E4
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Test: backFoolXDirH1; Part: 18
Part: 18; Accel E1
—— Part: 18; Accel E4
——— Part: 18, Mean ||

= Design attenuation factor for Part
18 was -20 dB

= Qverall prediction was good

= Not as conservative as the Y-axis ' %

SRS Attenuation (dB)
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Shock Attenuation Results — Part 18 ) i
Z-AXxis
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No Z-axis shocks at the right foot and the back foot
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= Design attenuation factor for Part
18 was -20 dB

= Qverall prediction was good

= Not as conservative as the Y-axis
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Summary Observations

= Shock attenuation factors were generated by the systems
engineering team to provide guidance to designers on
satellite component shock levels

= Took into account:

= Distance, Right Angles, Rotational Joints, Bolted Joints, Bonded Joints,
Flexures, and Material

= Cascaded theses features through the load path
= Did not follow NASA 7005 guidelines, such as the “3-joint rule”, strictly
= The attenuation factors backed-out from the shock test were
remarkably consistent with the systems engineering design
factors

= Local modes reduced the attenuation factors at some frequencies for
some components

Design attenuation factors were consistent with attenuation observed in test
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