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High Energy x-ray sources have many useful applications

NRL PPD

-

roundbreaking Science with

@ Wq’&u‘s Bl'mhtest X Rays

Data: Cu Shot 21975 (
) 0.024 Fe Primary X-ray Source
109% 2 0.006 Cr

1010
CRE Simulation 093 Cu ) - .
0.04 Ni Incident Radiation from ) . a
|

M-Shell electron

108] Ejected lls vacancy

Intensity (kJ/sec-cm-keV)

2 Ejected
il > Lshel
&= electron Experiments at the
107 ) Linac Coherent Light Source
aim to advance the
understanding of chemistry,

physics, materials science,
and life itself.

106|

|
10.0
Energy (keV)

.
u
p-
‘@

4

For validating For inner-shell For scattering For Generating
atomic & plasma photoionization experiments world’s brightest
models light source



Motivation:
Why investigate Krypton as an X-ray source? \"' [

NRL PPD

* The refurbished Z machine at Sandia National Laboratories
and the National Ignition Facility (NIF) are energetically
capable of producing intense multi-keV X-ray radiation sources
from High Z materials such as Ktr.

* Well-characterized laboratory experiments validate atomic and
radiation models that are crucial for diagnosing hot dense
plasmas.

« There are recent studies of Kr for EUV and X-ray generation in
EBIT, pulsed-power devices, and gas cluster laser absorption.



Motivation: The radiation character depends upon the
atomic number \">
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As we go to higher Z, more energetic photons are produced, but the conversion efficiency falls
off. Different mechanisms are responsible for emission as we go from low to high Z elements.
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Motivation: X-ray sources on Z and NIF display
different variations with K-shell photon energy %

Z targets are wire arrays and gas puffs. Mature technology
for < 5 keV sources, but K-shell yield and efficiency fall off
rapidly with higher Z,.

NIF targets are metal lined, foam, and gas filled pipes. To
date, limited optimization of the target design. Note that NIF
K-shell yields do not fall off with Z, as on Z.

Why is the variation with K-shell photon energy different
between Z and NIF? We know that z-pinches are effective at
heating ions, whereas lasers preferentially heat electrons.

Atomic physics is the same, but the drive, energy
deposition process, and target dynamics are different.
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» Early atomic models had limited and configuration averaged
structures; collisional-radiative data generated using simple
codes or formulae.

Atomic Physics
level structure
rate coefficients
emissivity & opacity

» Radiation transport involved escape probability for emission
line and recombination radiation.

+ Radiation as a Z-pinch diagnostic necessitated more detailed
and improved atomic and radiation modeling.

photo-pumping
photo-ionization
non-LTE

kinetics

* Now atomic rates for all important processes are self-
consistently generated using FAC codes at the fine-structure
level.

Z- pinches
NIF hohlraums

 Detailed multi-frequency radiation transport needed for Radiation

. or . g line profiles
spectral accuracy at high densities, and for analysis and Dynamics g o tl?ansport
diagnostics. temperature

density

 Self-consistent coupling of three critical physical element velocity

1) non-LTE atomic physics, 2) radiation transport and
3) magneto-hydrodynamics form the scientific basis of our
analysis and calculation of radiation in the HEDLP.




Atomic modeling: complexity and cost grow
exponentially with atomic number (Z,)

Challenges

* Coupling enormous amount of atomic data into
NLTE modeling

e Accurate and detailed models can be
computationally intractable

« Number of levels varies by 10> between
models =» runtime varies by many orders of
magnitude

« Completeness is required for accuracy, but
some averaging is necessary

statistical weight
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Detailed yet manageable atomic models for high Z, elements (divertors/hohlraums and
also Z-pinches) are needed for accurate ionization balance

Levels required for accurate
NLTE ionization kinetics

—ground & excited
 states up to n=10
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The Kr atomic database includes details from
H- to Ar-like ionization stages \'
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lon stage | H He Li Be B Cc N o F Ne Na Mg Al Si P S Cl Ar

'°"'z(akt::,'; 179 17.3 411 3.97 3.76 3.63 346 329 3.11 2.94 120 1.15 1.05 1.01 0.955 0.901 0.847 0.795

Levels | 14 22 13 50 38 54 80 94 68 42 14 45 103 79 56 60 101 64

Lines | 40 80 35 351 286 464 770 1381 776 323 51 441 1964 1213 663 1407 3020 1143

* Fully relativistic distorted-wave (RDWV) for Structure and collision calculations
» Flexible Atomic Code (FAC) used for detailed K-, L- & M-shell up to Ar-like ions
« Simple codes and formulas for lower ionization states

» Singly excited states up to n=7

* Doubly excited states up to n=10

« Full radiative and collisional coupling



All physical processes in our collisional-radiative
modeling are driven by non-LTE atomic kinetics
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The electrons, ions, and photons interact and in doing so transfer energy from
one particle to the other.

XM +e—= X" . Spontaneous decay/Resonant photoabsorption: X7 < X7 + hv
i . lonization/3-body recombination : X +e<= X" +e'+e"

Dielectronic ! J
Recombination ] o o i}
X7 — X7 4 hv Electron impact excitation/deexcitation : X +e<= X7 +e'

X7 +hy <> X7 Photoionization/radiative recombination: X7 +hv < X7 +e

Photoionization
Xj"+e'te ‘ - i/ 7% Autoionization/resonant capture : X" +e < X" — X7 +hv
i . z z
e-Excitation Bremsstrahlung/inverse bremsstrahlung: X’+e—> X" +e+hv

X/ +e=>X"+e ) ) .
Dielectronic recombination:
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Atomic properties and effect of ion density and

dielectronic recombination on Kr fractional populations
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configuration-average distorted wave
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Kr L-shell spectra showing effect of
detailed vs. lumped dielectronic recombination
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Multi-zone Radiation transport Model:
Frequency-averaged line transport
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c oG Transported Voigt Line Profile
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Averaging over a spectral line profile can greatly speed computations. Escape from
line wings increases P, by orders of magnitude over the line center value.
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Time integrated multi-frequency simulation
shows improved agreement with data

K-shell SS synthetic spectra are matched to time integrated data (SS Z578) using densities and

temperatures profiles. Summation of the simulated spectra over a rad-hydro run shows better agreement.

)
\* [

NRL PPD

25 [ —Probabilistic Simulation
I —Experimental Spectrum

N
o

Fe-He-IC

|Fe-He-a

Intensity (kJ/keV)
) o
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— Multifrequency Simulation (at peak emission)
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a large number of frequencies (using a power law distribution) that resolve the line profile. It is important to
account for the coupling of CRE to hydrodynamics when interpreting spectroscopic data.
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DZAPP combines 1D MHD with detailed atomic physics and
radiation transport to study the evolution of the plasma
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DZAPP is a 1D simulation code, combining a transmission-line circuit model, an MHD
transport scheme, and detailed atomic physics and radiation transport. The result
is time-dependent plasma motion and self-consistent radiation.
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The Z facility achieved record X-ray emission from
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Ar (3 keV) and Kr (13 keV ) gas-puff Z-pinches g,

Initial setup is double shell gas puff
— Initial outer diameter 8cm, 12cm
— Length 20 mm

Imploded by ~20MA Z current

Examp|e of a Double-puff Stagnates to ~0.5mm hot core
p Surrounded by ~2mm cooler ‘halo’
Z-pinch Nozzle.

Azimuthally symmetric gas shells
~1 mg/cm
Shell-like and ramped profile

Courtesy: D.J. Ampleford (SNL)
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Kr L-shell spectra from non-LTE kinetics modeling at
T.=600 eV & N;=8x10"° cm" compared to Z-2383 data
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SNL Spectrum:
8cm initial diameter Kr gas puff

Calculated Snap-shot Spectrum
from post-process:

» Radiation from post-process with
single N, and T,

* lonization using Collisional
Radiative Equilibrium

« Atomic model for K- through M-shell
obtained using FAC

Z data: Courtesy of S. Hansen & D.J. Ampleford (SNL)
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Kr Radiation 1-D MHD simulation of 8 cm nozzle:
History of plasma conditions D
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8 cm nozzle
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Kr L-shell spectra from full DZAPP simulation
compared to 8-cm double shell Z pinch data
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SNL Spectrum:
8cm initial diameter Kr gas puff

Simulated Spectrum:

Radiation Integrated over full 1D ZR
implosion simulation

lonization using full Non-Equilibrium
integration of atomic populations in
time

Atomic model for K- through M-shell
obtained using FAC
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Kr Radiation 1-D MHD simulation of 12 cm nozzle:
History of plasma conditions

12 cm nozzle: Total Mass 1.34 mg, Axial Length 2.0 cm; Outer Puff: 5.0 cm; Inner Puff: 2.1 cm

NRL PPD
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Laboratories

sandia  Kr gas puff implosions indicate that tailored mass distribution m
M Naonal ik dense jet on axis can significantly increase K-shell output @)

« Efficient emission of 13-keV Kr K-shell
photons requires high velocity
— Implode from 12cm to ~1mm in ~120 ns
— Very susceptible to Rayleigh-Taylor
instability
 MHD simulations used to design gas
profiles
— Ramped density for stable implosion
— Jet on axis to provide high pressure target
to thermalize kinetic energy
« Data demonstrates that jet can
approximately double 13 keV emission

— Initial analysis indicates ~7-9 kJ radiated at
> 10 keV with jet on axis

— Consistent with predictions

Courtesy: D.J. Ampleford (SNL)
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Kr spectra from full 1D-DZAPP simulation
®)

for 12-cm double shell Z pinch

NRL PPD

Intensity (kJ/keV)

K-shell

3 5 10 20
Energy (keV)

Calculated Spectrum from
12 cm initial diameter
Kr gas puff

Radiation Integrated over full 1D
ZR implosion simulation

lonization using full Non-
Equilibrium integration of atomic
populations in time

Atomic model for K- through
M-shell obtained using FAC

Z shot 2639:

Total mass = 1.34 mg
Outer puff = 5.0 cm
Inner puff = 2.1 cm
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Z-2639 shot with 12 cm outer nozzle (with central jet) K-shell emission
E@

indicates hot core surrounded by cooler (L-shell) region
NRL PPD

h ic of pl ' he axi
Schematic of plasma at stagnation on the axis Calculated Spectrum
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T. =600 eV i
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K-shell radiation 2
0 10
* Radiation determined from static calculations of 5 - ]
temperature and density in the K- and L-shell 1= Z2639 (Ramp+jet) =~
producing regions of the plasma - 10'25— 13;6598 EZ{,}“ﬁ_jﬁgozfcmn;J
* lonization using collisional radiative equilibrium atomic
populations and probability-of-escape radiation | , L

transport 1 2 4 7 10 20

«  Z shot 2639: Total mass = 1.34 mg; outer puff = 5.0 cm; Energy (keV)

inner puff = 2.1 cm .



Several 12 cm outer nozzle L-shell spectral data compared with a static @
NLTE simulation (n,=3x21, T_,= 600 eV \'' )
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12-cm K-shell emission from several Z shots are compared with
integrated spectra from a NLTE 0-D model
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Kr filled gas pipe target produces high X-ray K-shell yield

W Lawrence Livermore gt the National Ignition Facility (NIF)

National Laboratory
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Gated X-ray Imager/
Super Snout II/NXS

-

DANTE-2

epoxy wall

Kr fill
1.2-1.5 atm
] Gated X-ray Imager/
DANTE=1 #/\\ " Super Snout IINXS

730-750 kJ

Side-on (left) and face-on (right) views of the thin-walled gas pipes
used for Kr as x-ray source targets in the NIF experiments,
illustrating how the laser beams were pointed with respect to the
target’s axis and laser entrance holes.

Production of 3 keV to 18 keV sources
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Courtesy of : Mark May (LLNL)
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Kr K-shell simulation on NIF using
same Atomic model as onz \"[D
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n, =2.75x10" cm-3
T.=1.1keV
Calculated Hot-spot Spectrum from post-process:
m Radiation from post-process using 10 zones with
single N, and T, in central zone and cooler, denser

in the outer zones. This might not give accurate
prediction if there are large spatial gradients in T..

* Non-LTE lonization Kinetics

» Atomic model for K- through M-shell Kr obtained
using FAC.

* 0-D hydrodynamics model might not predict if there
is strong temporal evolution of plasma.

n,=1.5x10"¢ cm?  K-shell
T, =7.5 keV radiation
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Kr K-shell simulation compared to
)

NIF Super Snout (SS) spectra
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11.0

—— N120805-001 (1.5 atm; 708 kJ)
—— N120628-002 (1.2 atm; 684 kJ)

12.0

NIF SS Simulation
NRL Simulation

Calculated Spectrum

Model K-shell region with a
simple density and electron
temperature profile.

Hot core (T.=7.5 keV and
n,=1.5x10"8 cm-3), surrounded by

cooler, denser plasma
(T,=1.1keV, n,=2.75x10"9 cm3).

15.0 16.0

SS data : Courtesy of M. May, M. Barrios, T. Flannigan, K. Bell
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Big Picture

NRL PPD

Detailed and accurate Atomic and Radiation models enable us to link material properties
on the atomic scale to the radiation that drives HED plasmas. Diagnostic applications of
intense plasma x-ray sources are enabled by such models.

Our understanding of energy coupling into Z-pinch and laser produced plasmas is still
limited.

We are still unable to harness this energy source for increasing X-ray radiation yields and
peak powers in relevant spectral ranges.

In order to improve our understanding of the plasma structure and the dynamics of high-Z
radiation source materials, the development of dedicated platforms using proper
diagnostics is absolutely crucial.

It is important that research into the physics of radiation production in these novel
plasmas be supported.
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