
Computational Approaches to DSMC on 
Next-Generation Processors

Matthew T. Bettencourt1 Chris H. Moore
1Electromagnetic Theory,

Sandia National Laboratories,
Albuquerque, New Mexico, USA

DSMC 2015 Conference

Kapaa Hawaii

September 15th, 2015

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.
SAND 2015-6755 C

SAND2016-5006C



Background

• US DoE Advanced Scientific Computing (ASC) is 
refreshing their major computing resources

– FY16 Trinity – Self booted Xeon Phi cluster

– FY18 Sierra – IBM Power with Nvidia chips -150 PF

– FY21 ATS-3 – In bidding process

• Current software stack cannot take advantage of these 
platforms

• New program element to develop new applications 

– Advanced Technology Demonstration and Mitigation

• Sandia National Laboratories is developing a new 
code for plasma simulation EMPIRE

– ElectroMagnetic Plasma In Radiation Environments

UNCLASSIFIED UNLIMITED RELEASE



EMPIRE

• EMPIRE is a new open source application being developed 
for next generation platforms

• Physics and simulation goals –

– Electromagnetic and electrostatic

– Kinetic and fluid based plasma descriptions

– Radiation transport and gas chemistry - DSMC

– Beyond forward simulation – Sensitivities, UQ, 
optimization, …

• Computation capabilities –

– Hybrid structured/unstructured mesh

– Hybrid PIC-fluid description

– In-situ meshing, mesh refinement

– In-situ analysis, visualization and adjoint methods

– Asynchronous Multi-Tasking (AMT), dynamic balancing

UNCLASSIFIED UNLIMITED RELEASE



Mini-DSMC

• Goal – Develop a reduced physics application to act as 
a testbed for development of next generation DSMC 
models

– Going beyond a single thread per element scaling

– Efficient use of the hardware architecture 

– Repeatable results

– Representative of the real application

– Portable across architectures 

• Solution

– Develop threaded version using the Kokkos libraries

– Test only the collision part of the code using 
• No time counter

• Ionization, recombination and elastic scatter

• Analytic and tabular cross sections

UNCLASSIFIED UNLIMITED RELEASE



Kokkos: C++ Library / Programming Model
for Manycore Performance Portability

• Portable to Advanced Manycore Architectures

– Multicore CPU, NVidia GPU, Intel Xeon Phi
• Backends – Cuda, OpenMP, pthreads and serial

– Maximize amount of user (application/library) code that can be 
compiled without modification and run on these architectures

– Minimize amount of architecture-specific knowledge that a user 
is required to have

– Allow architecture-specific tuning to easily co-exist

– Requires a C++11 compiler
• Performant

– Portable user code performs as well as architecture-specific 
code

– Thread scalable – not just thread safety (no locking!)

• Usable

– Small, straight-forward application programmer interface (API)

– Constraint: don’t compromise portability and performance



Kokkos: Collection of Libraries
• Core – lowest level portability layer

– Portable data-parallel dispatch: parallel_for, parallel_reduce, 
parallel_scan

– Multidimensional arrays with device-polymorphic layout for 
transparent and device-optimal memory access patterns

– Access to hardware atomic operations

• Containers – built on core arrays
– UnorderedMap – fast find and thread scalable insertion

– Vector – subset of std::vector functionality to ease porting

– Compress Row Storage (CRS) graph
• Linear Algebra

– Sparse matrices and linear algebra operations

– Wrappers to vendors’ libraries 

– Portability layer for Trilinos manycore solvers

– Trilinos/Tpetra built on top of Kokkos for MPI+X linear algebra



A Bit About Modern Architectures

• Available FLOPS are going up, memory 
bandwidth is staying low

– Both data and instructions take up memory 
bandwidth, hardware solution SIMD/SIMT

• Every thread does the same execution or 
pauses

• NVIDIA systems use Streaming 
Multiprocessors (SM) and your code is broken 
down on “warps”

– Minimum 32 threads performing the same 
instructions

• If statements can cause threads to stall

– Limited SFUs (sin, erf, …)

– Doubles take 2 threads

• Intel vector instructions similar 

UNCLASSIFIED UNLIMITED RELEASE

"Fermi" by NVIDIA



So, What Does This Mean?

• Take the following code snippet for a stacked cross 
section

• 16 threads enter this loop with 16 pairs of particles

– Suppose 4 different types of collisions 

• A subset pass the conditional

– Rest of the threads stop

– Assuming this is the same collision operator all the 
threads handle the collision, else they go in one by one

• Once all the first set of collisions are handled, the group 
goes on to the next set in the stack

UNCLASSIFIED UNLIMITED RELEASE

for (ith_collision = 0; ith_collision < num_collisions; ith_collision++) {
cumulative_sigma += get_sigma(energy);
if (cumulative_sigma > random_fraction)
collisions[ith_collision]->handle_collision(particle_1, particle_2,...)

}



Algorithmic Detail

• Three steps to perform collisions

– Sort particles by element, then type, then location 
• Sort uses count sort algorithm, parallel_scan for counting 

and positioning by element

• Small thread team does count sort by type

• Location uses only 1 thread, n2 sort

– Estimate collision count
• Grab list of random pairs, compute local v_sigma

• parallel_reduce to determine v_sigma_max

• Could track it inline with collision operator

– Perform pair-wise collision detection
• Pick pairs of particles, determine collision

• If collision to occur, cache results

• Collide collected particles.

UNCLASSIFIED UNLIMITED RELEASE



Collision Algorithm Details

• Given a warp of threads (32->256), and some elements (1-
>256) do the following:
– Every thread draw a unique pair of particles with the same 

potential collisions (N2+e-->…)
• Use “atomic compare swap” and exclusion lists

– Compute stacked cross-section
– Determine collision type (none, elastic, ionization,..) and add 

too shared memory list
• indx=atomic_increment(&count_of_collisions[collision_type]);
• Collision[collision_type][indx].add(particle1, particle2);

– If no collision return particles to selection lists
– Team thread barrier (not global barrier, trivial operation)
– If size of collision list >= number of threads

• Process collisions as a team of threads
• Return particles to selection lists

– Return to top

UNCLASSIFIED UNLIMITED RELEASE



Pros/Cons

• Pros:

– Good thread uniformity, SIMT execution

– Single code base should perform well on multiple 
platforms

– If limited to one thread/element, parallel repeatability

• Cons:

– Added complexity

– Heavy on register and shared memory usage
• Lists and code for all collision types need to be in limited 

shared memory pool

– Scattering and VHS cross sections uses 
transcendentals – contention for SMU

UNCLASSIFIED UNLIMITED RELEASE



Is It All Worth It?

• Short answer, it depends

– For cases with small collision groups, and a high 
acceptance rates – No

• For a two species problem with Maxwell cross section, 
elastic scattering and 100% acceptance, simple code is 
roughly 17% faster on GPU, 21% faster on CPU

– For cases with large collisions groups – Yes
• For a two species problem with three different cross section 

models and 6 different collision operators, simple code is 
4.2x slower on GPU, 25% slower on GPU

– So, there is a small penalty for running the more 
complicated algorithm on simple problems

• But a large benefit for running the complicated algorithm on 
complicated collision stacks

UNCLASSIFIED UNLIMITED RELEASE



Results

• Two simple test problems.

– Thermal equilibrium - left

– Relaxation of bimodal distribution - right

UNCLASSIFIED UNLIMITED RELEASE



Scaling Results

UNCLASSIFIED UNLIMITED RELEASE

Uses 
Hyperthread

Two cores

Single GPU

Simple elastic collisions using VHS



Scaling Results

UNCLASSIFIED UNLIMITED RELEASE

Uses 
Hyperthread

Two cores

Single GPU

Three species (Ar, Ar+, e-) reaction and elastic



Summary

• An algorithmic approach to DSMC on GPUs has been 
presented

– Collisions need to be grouped and handled as a 
team 

– Scales beyond one thread per collision cell
• Repeatable results require only one thread per cell

– Shows up to 4x performance improvement over 
naive approach with large collision group

• Incorporation into EMPIRE code base to follow

UNCLASSIFIED UNLIMITED RELEASE


