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Background

• US DoE Advanced Scientific Computing (ASC) is 
refreshing their major computing resources

– FY16 Trinity – Self booted Xeon Phi cluster

– FY18 Sierra – IBM Power with Nvidia chips -150 PF

– FY21 ATS-3 – In bidding process

• Current software stack cannot take advantage of these 
platforms

• New program element to develop new applications 

– Advanced Technology Demonstration and Mitigation

• Sandia National Laboratories is developing a new 
code for plasma simulation EMPIRE

– ElectroMagnetic Plasma In Radiation Environments
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EMPIRE

• EMPIRE is a new open source application being developed 
for next generation platforms

• Physics and simulation goals –

– Electromagnetic and electrostatic

– Kinetic and fluid based plasma descriptions

– Radiation transport and gas chemistry - DSMC

– Beyond forward simulation – Sensitivities, UQ, 
optimization, …

• Computation capabilities –

– Hybrid structured/unstructured mesh

– Hybrid PIC-fluid description

– In-situ meshing, mesh refinement

– In-situ analysis, visualization and adjoint methods

– Asynchronous Multi-Tasking (AMT), dynamic balancing
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Mini-DSMC

• Goal – Develop a reduced physics application to act as 
a testbed for development of next generation DSMC 
models

– Going beyond a single thread per element scaling

– Efficient use of the hardware architecture 

– Repeatable results

– Representative of the real application

– Portable across architectures 

• Solution

– Develop threaded version using the Kokkos libraries

– Test only the collision part of the code using 
• No time counter

• Ionization, recombination and elastic scatter

• Analytic and tabular cross sections
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Kokkos: C++ Library / Programming Model
for Manycore Performance Portability

• Portable to Advanced Manycore Architectures

– Multicore CPU, NVidia GPU, Intel Xeon Phi
• Backends – Cuda, OpenMP, pthreads and serial

– Maximize amount of user (application/library) code that can be 
compiled without modification and run on these architectures

– Minimize amount of architecture-specific knowledge that a user 
is required to have

– Allow architecture-specific tuning to easily co-exist

– Requires a C++11 compiler
• Performant

– Portable user code performs as well as architecture-specific 
code

– Thread scalable – not just thread safety (no locking!)

• Usable

– Small, straight-forward application programmer interface (API)

– Constraint: don’t compromise portability and performance



Kokkos: Collection of Libraries
• Core – lowest level portability layer

– Portable data-parallel dispatch: parallel_for, parallel_reduce, 
parallel_scan

– Multidimensional arrays with device-polymorphic layout for 
transparent and device-optimal memory access patterns

– Access to hardware atomic operations

• Containers – built on core arrays
– UnorderedMap – fast find and thread scalable insertion

– Vector – subset of std::vector functionality to ease porting

– Compress Row Storage (CRS) graph
• Linear Algebra

– Sparse matrices and linear algebra operations

– Wrappers to vendors’ libraries 

– Portability layer for Trilinos manycore solvers

– Trilinos/Tpetra built on top of Kokkos for MPI+X linear algebra



A Bit About Modern Architectures

• Available FLOPS are going up, memory 
bandwidth is staying low

– Both data and instructions take up memory 
bandwidth, hardware solution SIMD/SIMT

• Every thread does the same execution or 
pauses

• NVIDIA systems use Streaming 
Multiprocessors (SM) and your code is broken 
down on “warps”

– Minimum 32 threads performing the same 
instructions

• If statements can cause threads to stall

– Limited SFUs (sin, erf, …)

– Doubles take 2 threads

• Intel vector instructions similar 
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So, What Does This Mean?

• Take the following code snippet for a stacked cross 
section

• 16 threads enter this loop with 16 pairs of particles

– Suppose 4 different types of collisions 

• A subset pass the conditional

– Rest of the threads stop

– Assuming this is the same collision operator all the 
threads handle the collision, else they go in one by one

• Once all the first set of collisions are handled, the group 
goes on to the next set in the stack
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for (ith_collision = 0; ith_collision < num_collisions; ith_collision++) {
cumulative_sigma += get_sigma(energy);
if (cumulative_sigma > random_fraction)
collisions[ith_collision]->handle_collision(particle_1, particle_2,...)

}



Algorithmic Detail

• Three steps to perform collisions

– Sort particles by element, then type, then location 
• Sort uses count sort algorithm, parallel_scan for counting 

and positioning by element

• Small thread team does count sort by type

• Location uses only 1 thread, n2 sort

– Estimate collision count
• Grab list of random pairs, compute local v_sigma

• parallel_reduce to determine v_sigma_max

• Could track it inline with collision operator

– Perform pair-wise collision detection
• Pick pairs of particles, determine collision

• If collision to occur, cache results

• Collide collected particles.
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Collision Algorithm Details

• Given a warp of threads (32->256), and some elements (1-
>256) do the following:
– Every thread draw a unique pair of particles with the same 

potential collisions (N2+e-->…)
• Use “atomic compare swap” and exclusion lists

– Compute stacked cross-section
– Determine collision type (none, elastic, ionization,..) and add 

too shared memory list
• indx=atomic_increment(&count_of_collisions[collision_type]);
• Collision[collision_type][indx].add(particle1, particle2);

– If no collision return particles to selection lists
– Team thread barrier (not global barrier, trivial operation)
– If size of collision list >= number of threads

• Process collisions as a team of threads
• Return particles to selection lists

– Return to top
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Pros/Cons

• Pros:

– Good thread uniformity, SIMT execution

– Single code base should perform well on multiple 
platforms

– If limited to one thread/element, parallel repeatability

• Cons:

– Added complexity

– Heavy on register and shared memory usage
• Lists and code for all collision types need to be in limited 

shared memory pool

– Scattering and VHS cross sections uses 
transcendentals – contention for SMU
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Is It All Worth It?

• Short answer, it depends

– For cases with small collision groups, and a high 
acceptance rates – No

• For a two species problem with Maxwell cross section, 
elastic scattering and 100% acceptance, simple code is 
roughly 17% faster on GPU, 21% faster on CPU

– For cases with large collisions groups – Yes
• For a two species problem with three different cross section 

models and 6 different collision operators, simple code is 
4.2x slower on GPU, 25% slower on GPU

– So, there is a small penalty for running the more 
complicated algorithm on simple problems

• But a large benefit for running the complicated algorithm on 
complicated collision stacks
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Results

• Two simple test problems.

– Thermal equilibrium - left

– Relaxation of bimodal distribution - right
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Scaling Results
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Uses 
Hyperthread

Two cores

Single GPU

Simple elastic collisions using VHS



Scaling Results
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Uses 
Hyperthread

Two cores

Single GPU

Three species (Ar, Ar+, e-) reaction and elastic



Summary

• An algorithmic approach to DSMC on GPUs has been 
presented

– Collisions need to be grouped and handled as a 
team 

– Scales beyond one thread per collision cell
• Repeatable results require only one thread per cell

– Shows up to 4x performance improvement over 
naive approach with large collision group

• Incorporation into EMPIRE code base to follow
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