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# Background

« US DoE Advanced Scientific Computing (ASC) is
refreshing their major computing resources

—FY16 Trinity — Self booted Xeon Phi cluster
—FY18 Sierra — IBM Power with Nvidia chips -150 PF
—FY21 ATS-3 — In bidding process

 Current software stack cannot take advantage of these
platforms

* New program element to develop new applications
— Advanced Technology Demonstration and Mitigation

« Sandia National Laboratories is developing a new
code for plasma simulation EMPIRE

— ElectroMagnetic Plasma In Radiation Environments
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# EMPIRE

 EMPIRE is a new open source application being developed
for next generation platforms

* Physics and simulation goals —
— Electromagnetic and electrostatic
— Kinetic and fluid based plasma descriptions
— Radiation transport and gas chemistry - DSMC

— Beyond forward simulation — Sensitivities, UQ,
optimization, ...

« Computation capabilities —
— Hybrid structured/unstructured mesh
— Hybrid PIC-fluid description
— In-situ meshing, mesh refinement
— In-situ analysis, visualization and adjoint methods
— Asynchronous Multi-Tasking (AMT), dynamic balancing
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# Mini-DSMC

» Goal — Develop a reduced physics application to act as
a testbed for development of next generation DSMC
models

— Going beyond a single thread per element scaling
— Efficient use of the hardware architecture
— Repeatable results
— Representative of the real application
— Portable across architectures
 Solution
— Develop threaded version using the Kokkos libraries

— Test only the collision part of the code using
* No time counter
* lonization, recombination and elastic scatter
 Analytic and tabular cross sections
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4' I’CH Library / Programming Model
r Manycore Performance P ili

 Portable to Advanced Manycore Architectures

— Multicore CPU, NVidia GPU, Intel Xeon Phi
» Backends — Cuda, OpenMP, pthreads and serial

— Maximize amount of user (application/library) code that can be
compiled without modification and run on these architectures

— Minimize amount of architecture-specific knowledge that a user
Is required to have

— Allow architecture-specific tuning to easily co-exist
— Requires a C++11 compiler
* Performant

— Portable user code performs as well as architecture-specific
code

— Thread scalable — not just thread safety (no locking!)
» Usable
— Small, straight-forward application programmer interface (API)
— Constraint: don’'t compromise portability and performance |
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M)kkos: Collection of Libraries
Core — '

owest level portablility layer

— Portable data-parallel dispatch: parallel_for, parallel_reduce,
parallel_scan

— Multidimensional arrays with device-polymorphic layout for
transparent and device-optimal memory access patterns

— Access to hardware atomic operations
« Containers — built on core arrays
— UnorderedMap — fast find and thread scalable insertion
— Vector — subset of std::vector functionality to ease porting
— Compress Row Storage (CRS) graph
* Linear Algebra
— Sparse matrices and linear algebra operations
— Wrappers to vendors’ libraries
— Portability layer for Trilinos manycore solvers
— Trilinos/Tpetra built on top of Kokkos for MPI+X linear algebra
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&‘ A Bit About Modern Architectures

* Available FLOPS are going up, memory

bandwidth is staying low T L
— Both data and instructions take up memory -

bandwidth, hardware solution SIMD/SIMT

» Every thread does the same execution or
pauses

* NVIDIA systems use Streaming
Multiprocessors (SM) and your code is broken
down on “warps’

— Minimum 32 threads performing the same
instructions

* If statements can cause threads to stall
— Limited SFUs (sin, erf, ...)
— Doubles take 2 threads
* Intel vector instructions similar

"Fermi" by NVIDIA
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So, What Does This Mean?

e Take

the following code snippet for a stacked cross

section
for (ith_collision = 0; ith_collision < num_collisions; ith_collision++) {
cumulative _sigma += get_sigma(energy);
if (cumulative_sigma > random_fraction)

}
* 16 th

— SukJ
A subset pass the conditiogal
— Rest of the threads stop

coqisions[ith_collision J->handle collision(particle 1, particle 2,...)

reads enter this l1ogp with 16 pairs of particles

es of collisions

— Assuming this is the same collision operator all the

threads handle the collision, else they go in one by one
* Once all the first set of collisions are handled, the group

goes
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on to the next set in the stack
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# Algorithmic Detail

* Three steps to perform collisions

— Sort particles by element, then type, then location

» Sort uses count sort algorithm, parallel _scan for counting
and positioning by element

« Small thread team does count sort by type
* Location uses only 1 thread, n? sort

— Estimate collision count
» Grab list of random pairs, compute local v_sigma
 parallel_reduce to determine v_sigma_max
» Could track it inline with collision operator

— Perform pair-wise collision detection
* Pick pairs of particles, determine collision
* |f collision to occur, cache results

 Collide collected particles. .
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# Collision Algorithm Details

» Given a warp of threads (32->256), and some elements (1-
>256) do the following:

—> — Every thread draw a unique pair of particles with the same
potential collisions (N?+e->...)
» Use “atomic compare swap” and exclusion lists
— Compute stacked cross-section

— Determine collision type (none, elastic, ionization,..) and add
too shared memory list

* indx=atomic_increment(&count_of collisions[collision_type]));
« Collision[collision_type][indx].add(particle1, particle2);
— If no collision return particles to selection lists
— Team thread barrier (not global barrier, trivial operation)
— If size of collision list >= number of threads

* Process collisions as a team of threads
* Return particles to selection lists

— — Return to top
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# Pros/Cons

* Pros:
— Good thread uniformity, SIMT execution

— Single code base should perform well on multiple
platforms

— If limited to one thread/element, parallel repeatability
« Cons:
— Added complexity

— Heavy on register and shared memory usage

» Lists and code for all collision types need to be in limited
shared memory pool

— Scattering and VHS cross sections uses
transcendentals — contention for SMU
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# Is It All Worth It?

» Short answer, it depends

— For cases with small collision groups, and a high
acceptance rates — No

* For a two species problem with Maxwell cross section,
elastic scattering and 100% acceptance, simple code is
roughly 17% faster on GPU, 21% faster on CPU

— For cases with large collisions groups — Yes

» For a two species problem with three different cross section
models and 6 different collision operators, simple code is
4.2x slower on GPU, 25% slower on GPU

— 30, there is a small penalty for running the more
complicated algorithm on simple problems

 But a large benefit for running the complicated algorithm on
complicated collision stacks
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Results

» Two simple test problems.
— Thermal equilibrium - left
— Relaxation of bimodal distribution - right
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Scaling Results
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Scaling Results
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Three species (Ar, Ar+, e-) reaction and elastic
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# Summary

 An algorithmic approach to DSMC on GPUs has been
presented

— Collisions need to be grouped and handled as a
team

— Scales beyond one thread per collision cell
* Repeatable results require only one thread per cell

— Shows up to 4x performance improvement over
naive approach with large collision group

* Incorporation into EMPIRE code base to follow
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