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Need for large-scale simulations 
•  Goal: high-fidelity solutions of transport phenomena for 

large-scale problems with complex physics and geometry 
–  CFD, magnetohydrodynamic (MHD) simulations 
–  US DOE interest: pulsed fusion reactors (e.g. z-pinch), 

magnetically confined fusion (e.g. ITER tokamak) 
•  One approach: FEM on unstructured meshes 
•  Fully-implicit Newton-Krylov solution approach 

–  robust (promising for complex physics and chemistry) 
–  preconditioner critical: robustness, efficiency, scalability 
–  large-scale problems: multilevel/multigrid  

•  Talk focus: our fully-coupled Newton-Krylov multigrid 
preconditioned approach for large-scale FEM simulations 
–  Drekar CFD/MHD application code  (resistive MHD) 
–  Trilinos linear solvers 
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Resistive MHD model 

Steady-state MHD generator 
•  Flow with external cross-stream B field 
•  8 DOFs/mesh node 

Navier-Stokes + Magnetic Induction	
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(J. Shadid, R. Pawlowski, E. Cyr, L. Chacon) 

Drekar implicit/IMEX FE application 
(J. Shadid, R. Pawlowski, E. Cyr, T. Smith, T. Wildey, E. Phillips, etc.) 
•  Navier-Stokes, MHD, LES, RANS 
•  stabilized FEM, unstructured hexahedral meshes 
•  fully-coupled multigrid preconditioned Newton-Krylov solve (Trilinos) 
•  Currently MPI-only; being transitioned to Kokkos for threading+GPUs 



Numerical Solution Approach 

•  Resistive (incompressible) MHD model 
•  Most MHD turbulence simulations employ spectral methods 
•  Stabilized FEM: variational multiscale (VMS) (Hughes 1995) 

–  many authors employ VMS for CFD 
•  MHD turbulence with VMS (Shadid et al, Sondak+Oberai) 
•  Unstructured meshes 
•  Fully-coupled Newton-Krylov (multigrid preconditioned) 

•  Robust (promising for complex physics and chemistry) 
•  but depends on efficiency of sparse linear solver 
•  preconditioner critical: robustness, efficiency, scalability 
•  large-scale problems: multilevel/multigrid 



Smoothers for multigrid preconditioned approach 
•  Effective smoothers critical for multigrid 

–  Need to efficiently damp high frequency errors 
–  Standard relaxation not sufficiently robust for our MHD problems 
–  Our standard smoother ILU(0) overlap=1 is expensive 
–  Interested in other smoothers 

•  Krylov smoothers 
–  Lots of previous work for SPD problems (Notay, Vassilevski, etc.) 
–  Some previous work for Helmholtz (Elman) 
–  Far less previous work for nonsymmetric systems 

•  Birken, Bull, Jameson Thu 17:20 
–  Setup much cheaper than ILU, but solve can be expensive 
–  Issues with GS or ILU for problems with zeroes on diagonal 

•  Krylov smoothers could be advantageous 
•  Evaluate smoothers 

–  Transient (our main interest) 
–  Steady-state (MHD pumps, MHD generator) 
 
 
 



Brief Trilinos overview 
•  Classic Trilinos (Epetra-based) (Heroux et al.): 

•  Limited by 32-bit integer global objects 
•  Most packages employ flat MPI-only; future architectures? 

•  Trilinos solver stack (Tpetra-based): 
•  No 32-bit limitation on globals (employs C++ templated data types) 
•  Path forward for future architectures: Trilinos Kokkos (Edwards, 

Trott, Sunderland; not part of this talk) 
Functionality Classic stack Newer solver stack 

Distributed linear algebra Epetra Tpetra (Hoemmen,Trott, etc.) 

Iterative linear solve Aztec Belos (Thornquist,Hoemmen,etc.) 

Incomplete factor Aztec, Ifpack Ifpack2 (Hoemmen,Hu,Siefert, etc.) 

Algebraic multigrid ML MueLu (Hu,Prokopenko,Wiesner,Siefert,Tuminaro,etc.) 

Partition & load balance Zoltan Zoltan2 (Devine,Boman,Rajamanickam,Wolf,etc.) 

Direct solve interface Amesos Amesos2 (Rajamanickam,etc.) 

•  PETSc is another well-known solvers library (ANL; Smith, Gropp, Knepley, 
Brown, McInnes, Balay, Zhang, et al.); 2015 SIAM/ACM CSE prize winner 



Trilinos MueLu Library: algebraic multigrid preconditioners 

Other approaches: LLNL Hypre (R. Falgout, U. Yang, T. Kolev, A. Baker, E. 
Chow, C. Tong, et al.), MLBDDC (S. Badia, A. Martín, J. Principe, et al.), etc. 

(J. Hu, A. Prokopenko, J. Gaidamour, T. Wiesner, C. Siefert, R. Tuminaro) 

•  Smoothed aggregation; aggregates to produce a coarser operator  
•  Create graph where vertices are block nonzeros in matrix Ak 

•  Edge between vertices i and j added if block Bk(i,j) contains nonzeros 
•  Uncoupled aggregation 

•  Restriction/prolongation operator; Ak-1 = Rk Ak Pk 

•  Repartition coarser level matrices (MueLu+Zoltan2) to reduce communication 
•  Coarsest level: serial direct solve (KLU; T. Davis) on 1 MPI process 

Additive Schwarz domain decomposition does not scale 
Multigrid critical for performance and scaling 

•  Weak scaling: MHD generator 
•  Re = 500, Rem = 1, Ha = 2.5 
•  Cray XK7, IBM Blue Gene/Q 



Strong scaling: Poisson equation 

•  Simple cube geometry, near uniform mesh 
•  Fixed problem size (2.4b DOFs); 1 MPI task/core BG/Q 
•  Optimal iteration count to 1.6 million cores (full-scale Sequoia BG/Q) 

•  3D Poisson (1 DOF/mesh node) 

MPI process CG iterations Solve t (s) MG setup (s) DOFs/MPI 
131,072 6.3 1.17 7.67 ~18,800 
262,144 6.0 1.08 12.35 ~9400 
524,288 6.3 1 25.43 ~4700 

1,048,576 7.3 0.91 53.04 ~2400 
1,572,864 7.0 0.94 128.9 ~1500 
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(with J. Hu, J. Shadid, A. Prokopenko, E. Cyr, R. Pawlowski) 

(Image courtesy of LLNL) 



Weak scaling: fully-coupled multigrid MHD 

•  Drekar 3D MHD generator on BG/Q (simple geometry) 
•  Algorithmic scaling challenging for nonsymmetric matrices 

•  4096x increase in size: 6.0x iterations, 7.3x time 
•  Petrov-Galerkin or energy minimization approaches promising 
•  Need better aggregation, better smoothers, etc. 

•  Another challenge: sparse matrix-matrix multiply (Ac=R*A*P) 
•  Employ reuse of construction of hierarchy and smoothers (Prokopenko) 

•  Application dependent (e.g. cannot reuse for adaptive mesh) 
•  Critical for transient simulations (104 or 105 time steps) 

MPI   DOFs GMRES 
iterations
/Newton 

Time/Newton step (s) 
Multigrid setup Solve 

Hier+smoo Smoother 
128 845,000 14.0 12.4 11.0 4.7 

1024 6,473,096 20.0 14.7 13.0 6.6 
8192 50,658,056 30.8 16.9 14.2 10.1 

65,536 400,799,240 53.4 20.3 16.1 17.9 
524,288 3,188,616,200 98.7 45.3 19.1 40.1 
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(with J. Hu, J. Shadid, A. Prokopenko, E. Cyr, R. Pawlowski) 

•  BG/Q: 1 MPI/core 
•  Multigrid prec setup 

time/Newton step 
•  Smoother: ILU(0) 

overlap=1 



Results (Transient) 

Transient Taylor-green MHD vortex decay (resistive MHD VMS 
turbulence) (8 DOF/mesh node) 
•  Performance comparison of different smoothers (CFL ~0.5) 

•  3 problem sizes: 16.8M, 134M, 1.07b DOFs  
•  GMRESR “outer” Krylov solve 
•  Jacobi, block Jacobi, GS, block GS failed for even small 

problems and were not included in following tables 
•  ILU(0) overlap=0,1 
•  GMRES (no prec, Gauss-Seidel, block Jacobi, block GS) 
•  Schwarz/domain decomposition GMRES smoother 

•  no prec, Gauss-Seidel, block Jacobi, block GS 
•  Overlap=0,1 

•  Robustness for higher CFL study 
•  2 problem sizes: 16.8M,1.07b DOFs  
•  Focus on more promising smoothers 
 



Transient Taylor-Green MHD 
Smoother Comparison (16.8M DOFs)  

•  Transient Taylor-green MHD vortex decay (VMS resistive MHD) 
•  Cube domain, 128^3 elem, 20 time steps, dt=0.025 (CFL ~0.5) 
•  256 MPI; linux cluster dual-socket SNB, IB fat-tree (TLCC2) 
smoother	 iters/dt	 Prec	setup(s)	 Solve(s)	 Prec+solve(s)	Total(s)	 Mem(MB)	
SGS	 87.7	 18	 730	 748	 1108	 1050	

ILU	 overlap=0	 20.9	 127	 110	 237	 606	 1157	
overlap=1	 14.2	 259	 97	 356	 725	 1436	

GMRES	

noprec	 15.4	 23	 260	 283	 696	 917	
ptGS	 13.6	 24	 413	 437	 828	 917	
bkJac	 13.1	 35	 238	 273	 665	 927	
bkGS	 12.0	 34	 539	 573	 950	 930	

DD-GMRES	

noprec	ov0	 21.4	 35	 530	 565	 929	 917	
noprec	ov1	 15.9	 125	 486	 611	 995	 1107	
ptGS	ov0	 20.2	 51	 986	 1037	 1396	 917	
ptGS	ov1	 12.1	 142	 759	 901	 1263	 1102	
bkJac	ov0	 20.2	 45	 535	 581	 942	 925	
bkJac	ov1	 15.5	 151	 512	 663	 1069	 1129	
bkGS	ov0	 20.3	 69	 1170	 1239	 1597	 924	
bkGS	ov1	 11.9	 162	 902	 1063	 1422	 1129	

•  DD-GMRES smoother not competitive (particularly GS and block GS prec) 

Note: have multiple Newton steps per time step 



Transient Taylor-Green MHD 
Smoother Comparison (134M DOFs)  

•  Transient Taylor-green MHD vortex decay (VMS resistive MHD) 
•  Cube domain, 256^3 elem, 20 time steps, dt=0.0125 (CFL ~0.5) 
•  2048 MPI; linux cluster dual-socket SNB, IB fat-tree (TLCC2) 
smoother	 iters/dt	 Prec	setup(s)	 Solve(s)	 Prec+solve(s)	Total(s)	 Mem(MB)	
SGS	 Failed	

ILU	 overlap=0	 28.85	 138.3	 154	 292	 680	 1164	
overlap=1	 20.15	 311.1	 134	 445	 862	 1440	

GMRES	

noprec	 18.65	 23.5	 328	 352	 741	 920	
ptGS	 16.85	 26.84	 516	 542	 921	 920	
bkJac	 15.65	 41.33	 306	 348	 749	 933	
bkGS	 17.05	 40.94	 954	 995	 1376	 936	

DD-GMRES	

noprec	ov0	 31.6	 43.25	 842	 885	 1272	 926	
noprec	ov1	 23.95	 160	 1094	 1254	 1657	 1111	
ptGS	ov0	 27.25	 61.01	 1655	 1716	 2083	 939	
ptGS	ov1	 16.9	 185	 1383	 1568	 1948	 1111	
bkJac	ov0	 28	 51.29	 789	 840	 1218	 931	
bkJac	ov1	 17.8	 178.3	 872	 1050	 1455	 1134	
bkGS	ov0	 27.5	 74.66	 1881	 1956	 2319	 939	
bkGS	ov1	 16.85	 201.9	 1582	 1784	 2166	 1134	

•  DD-GMRES smoother not competitive (particularly GS and block GS prec) 



Transient Taylor-Green MHD 
Smoother Comparison (1.07b DOFs)  

•  Transient Taylor-green MHD vortex decay (VMS resistive MHD) 
•  Cube domain, 512^3 elem, 20 time steps, dt=0.0625 (CFL ~0.5) 
•  16384 MPI; linux cluster dual-socket SNB, IB fat-tree (TLCC2) 

smoother	 iters/dt	 Prec	setup(s)	 Solve(s)	 Prec+solve(s)	 Total(s)	 Mem(MB)	

ILU	 overlap=0	 68.1	 251	 411	 662	 1380	 1287	
overlap=1	 37.3	 407	 280	 687	 1280	 1519	

GMRES	
noprec	 31.0	 92	 610	 702	 1326	 1002	
ptGS	 21.5	 94	 728	 822	 1374	 1002	
bkJac	 21.9	 60	 458	 518	 1028	 1017	

DD-GMRES	noprec	ov0	 69.0	 61	 2040	 2101	 2689	 1031	
bkJac	ov0	 69.7	 135	 2227	 2362	 3088	 1040	

•  DD-GMRES smoother not competitive 
•  GMRES smoother with either no preconditioner or block Jacobi is most 

competitive to ILU 
–  GMRES can significantly lower iterations, but cost/iteration expensive 
–  Trade-off between expensive ILU factorization for setup vs. solve of 

GMRES smoother 
–  ILU smoother requires more memory 



Transient Taylor-Green MHD 
Smoother Comparison: Robustness with CFL (16.8M DOFs)  

•  Transient Taylor-green MHD vortex decay (VMS resistive MHD) 
•  Cube domain, 128^3 elem, 10 time steps 
•  256 MPI; linux cluster dual-socket SNB, IB fat-tree (TLCC2) 

•  ILU(0) overlap=0 and GMRES(bkGS prec) smoothers not sufficiently robust 
•  Need to compare ILU(0) overlap=1 with GMRES smoothers 
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Transient Taylor-Green MHD 
Smoother Comparison: Robustness with CFL (1.07b DOF)  

•  Transient Taylor-green MHD vortex decay (VMS resistive MHD) 
•  Cube domain, 512^3 elem, 10 time steps; 16384 MPI (BG/Q) 

•  Did not even run ILU(0) overlap=0 because fails at low CFL (unfortunate 
because ILU overlap=1 requires ~40% more memory than GMRES smoother) 

•  GMRES(bkGS prec) fails CFL ~2 
•  ILU(0) overlap=1, GMRES(no prec) fail CFL ~8 
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Results (Transient): Island Coalescence 

Transient resistive MHD (8 DOF/mesh node) 



Results (Transient): Island Coalescence 

256^3 elem 
(135M DOF) 
4096 MPI 

smoother	 iters/dt	 Prec	setup(s)	 Solve(s)	 Prec+solve(s)	 Mem(MB)	

ILU	 overlap=0	 12.2	 210.2	 61.9	 272.1	 773	
overlap=1	 7.7	 382.9	 50.8	 433.7	 917	

GMRES	 noprec	 11.1	 27.4	 188.9	 216.3	 632	
bkJac	 7.0	 42.2	 137.1	 179.3	 645	

smoother	 iters/dt	 Prec	setup(s)	 Solve(s)	 Prec+solve(s)	 Mem(MB)	

ILU	 overlap=0	 13.3	 241.2	 73.4	 314.6	 792	
overlap=1	 10.1	 442.6	 70.9	 513.5	 933	

GMRES	 noprec	 15.1	 58.9	 275.3	 334.2	 670	
bkJac	 8.9	 87.5	 194.3	 281.8	 666	

For island coalescence test case, GMRES smoother is faster than our 
standard ILU smoother and requires less memory 

smoother	 iters/dt	 Prec	setup(s)	 Solve(s)	 Prec+solve(s)	 Mem(MB)	

ILU	 overlap=0	 14.1	 200.6	 63.0	 263.6	 773	
overlap=1	 6.8	 351.2	 36.3	 387.5	 914	

GMRES	 noprec	 8.7	 20.7	 122.2	 142.9	 630	
bkJac	 6.3	 33.5	 101.5	 135.0	 642	

128^3 elem 
(16.9M DOF) 
512 MPI 

64^3 elem 
(2.1M DOF) 
64 MPI 

•  Fixed time step of 0.1 (CFL increases as refine mesh) 
•  Smoothers: ILU, GMRES (GS, block GS stalled) 



Concluding remarks and future work 
•   Performed an initial evaluation of GMRES as an alternative 

smoother to our current standard (ILU) 
•  Initial empirical study for two test cases 
•  Shows promise: can solve an initial class of relevant problems 

(appears competitive; expensive, but so is ILU) 
•  Memory usage benefits (ILU requires ~40% more) 
•  Krylov smoother should be advantageous for nonsymmetric 

matrices with zero diagonal entries (but still need to demonstrate) 
•  Need to look at many more test cases 
•  Issues 

•  Need to go back and try to analyze method more carefully 
•  Which Krylov method better at killing off high frequency modes? 

•  AMG notorious for too many adjustable parameters 
•  Krylov smoothers exacerbate this issue (e.g. precondition? 

sweeps? tolerance? Etc.)"



Additional future work 

•  Many challenges for multigrid-preconditioned linear solve 
•  algorithmic scaling for nonsymmetric problems 
•  multigrid preconditioner setup (sparse mat-mat) 

•  Trilinos Kokkos for manycore and accelerators (“X” for MPI+X) 
•  Tpetra with Kokkos implementation is ongoing work 
•  other Trilinos packages in process of being implemented with 

Kokkos: MueLu setup, additional Ifpack2 smoothers, etc. 
•  Drekar progress depends on above Kokkos work 

•  Trilinos components for assembly ported (I. Demeshko) 
•  Related: Bettencourt 6:40pm performance portability for multi-fluid 

plasma assembly 
•  Additional physics and discretization issues include, e.g. 

•  strong convection effects, hyperbolic systems"
•  non-uniform FE aspect ratios"
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