
In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

1/16

FTXS Workshop · 31 May 2016

In-Situ Mitigation of Silent Data Corruption
in PDE Solvers

Maher Salloum, Jackson R. Mayo, and Robert C. Armstrong

Sandia National Laboratories, Livermore, CA 94551, USA

{mnsallo, jmayo, rob}@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2016-4995C



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

2/16

Problem: Future platforms will face tradeoffs
imperiling correct hardware function

Hardware correction already attempts to hide many
“out-of-nominal” behaviors from the application

Error correction for bit flips in DRAM and caches is important
and largely effective

Increasing scale and constrained power may push toward
exposing silent hardware errors (of possibly unexpected kinds) –
corrupting an unaware application’s results

A primary concern is silent data corruption (SDC), where the
computation appears normal except for wrong numerical values

Undetected DRAM errors at exascale for one type of ECC
memory could be ∼1 per day

Low-voltage processors and accelerators will likely have increased
rates of arithmetic errors; ECC doesn’t protect data
transformation



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

3/16

Objective: Enable practical SDC mitigation
targeted at physics simulation

For Advanced Simulation & Computing (ASC) codes, we seek
better understanding of how to anticipate, mitigate, and/or
diagnose the effect of silent errors

Basic principles aim at building efficient algorithm-based fault
tolerance (ABFT) for SDC into physics solvers

Predictive simulations of physical systems must already be
robust to various numerical and statistical errors/uncertainties

Hardware errors can be damped in analogous ways

Ultimate goal is to contribute to practical resilience toolbox for
production codes

Leveraging existing partial differential equation (PDE) solver
implementations and maintainable as they evolve

Adaptable to respond to future hardware characteristics

Flexible to unanticipated sources of silent errors



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

4/16

We are more focused on application-level response
vs. other work on silent errors

There has been much study of SDC detection techniques,
including for PDEs, but the recovery mechanism is crucial

Generic brute-force approach: triple modular redundancy with
periodic voting to detect and extinguish any error

Absent such replication, can detected SDC simply be treated like
any other fault?

Recovery by rollback to a checkpoint – but:

Any false-positive detections will hinder forward progress

Doesn’t take advantage of bulk of computation done correctly

Our thesis: The dynamics of physical PDEs can support efficient
ultralocal (within cache) detection and recovery, achieving
stability to isolated occurrences of SDC

Handling silent errors quickly and transparently (like standard
numerical errors) reduces the cost of a false positive



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

5/16

Initial error model describes memory bit flips, but
can be generalized

In extreme-scale scientific computing, floating-point (FP) data
are an obvious concern for SDC

FP data often constitute the bulk of memory usage

Data corruption can also be a proxy for processor FP glitches

Corruption in other places (control logic, pointers) is more likely
to cause outright crashes, which will be mitigated by other
means

Relaxing FP correctness can benefit accelerators such as GPUs

Our error-injection framework
for solvers: Asynchronously
perform raw memory bit flips
in the FP solution array

Other injection and mitigation techniques will be pursued for
related sources of SDC such as processor arithmetic errors



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

6/16

Outlier detection and interpolation can leverage
smoothness properties of physics

Aim is to correct accumulated bit flips in data values when they
are loaded from memory, just before they are used – so that
large corruptions will not propagate

Corrupted values are detected via relative deviation from
neighbors and replaced with an interpolation, as a
linear-algebra-type computation is sweeping the vector



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

7/16

A nonlinear advection equation can be solved by a
variant of sparse matrix-vector

The 1D linear advection equation

∂φ/∂t + ν ∂φ/∂x = 0

can be solved by Lax-Wendroff finite-difference stencil based on
CFL number c = ν ∆t/∆x

The shock-forming Burgers equation

∂φ/∂t + ∂
(

1
2φ

2
)/
∂x = 0

can be solved by corresponding stencil with local CFL number
γnj = φnj ∆t/∆x (Roe 1980)

φn+1
j =

[
1
2γ

n
j + 1

2 (γnj )2
]
φnj−1 +

[
1−(γnj )2

]
φnj +

[
− 1

2γ
n
j + 1

2 (γnj )2
]
φnj+1

Interpolation is performed as the operation sweeps the vector φn

(robust nonlinear version of sparse matrix-vector)



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

8/16

Effect of bit-flip injection and mitigation is
measured via error norm and wall time

Corrupter thread injects random bit flips based on a probability
parameter

Each solver run tracks the total wall time and number of bit
flips, used to calibrate the emulated memory error rate

For ease of comparison, the unit of wall time is taken as one
timestep of the standard solver on one core

Or, for later conjugate gradient example, one iteration

Time-based memory error model means that a slower solver
incurs a penalty in resilience because more bit flips accumulate

Measure wall time to solution, and final-state error norm

Explicit solver is considered as tolerating the bit flips if this norm
is less than 3× that of the standard solver with no bit flips

Or, for later conjugate gradient example, iterative solution is
simply required to converge within a predefined residual (may
diverge instead if bit-flip rate is too high)



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

9/16

Interpolation maintains strong SDC-tolerance
improvement under weak scaling

Robust hyperbolic solver tolerates error rates ∼104× larger than
standard solver



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

10/16

Robustness overhead for hyperbolic solver
decreases with chemistry-like forcing terms

Overhead of error detection/interpolation is masked to ∼2% by
adding local computations to both original and robust schemes



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

11/16

Example elliptic solver is an instance of conjugate
gradient, built from linear algebra

HPCCG mini-app uses unpreconditioned conjugate gradient
(CG) method as solver for a linear elliptic PDE in a 3D domain

Vary problem scale by stacking “wafer” domains in one direction

Each iteration of CG involves one smpv call, three daxpy calls,
and two ddot calls

More communication-intensive than explicit solvers, especially at
large scale

We demonstrate concept of robust linear algebra “building
blocks” that can be reused in other PDE solvers

Step toward larger goal of easing resilience programmability for
other custom PDE solver needs, such as nonlinear and
stencil-like operations



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

12/16

CG modification helps promote convergence in the
presence of SDC

Key CG iterations: uk+1 = uk + αpk and pk+1 = rk+1 + βpk

Less aggressive steps are obtained by α← θα and
β ← 1− θ(1− β), where θ < 1 is a function of the residual

This “tuning” enables convergence with interpolation – can even
accelerate convergence of early iterations (behavior might differ
with preconditioner)



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

13/16

We consider checkpoint-based mitigation as a
comparison

Checkpointing is a standard practice for resilience – can we take
advantage of it?

For recovery from SDC by rollback to a checkpoint, would like:

SDC detected as soon as possible (while it’s still a clear outlier)

Checkpoint as recent as possible (to minimize lost progress)

Key problem: For PDE solvers, there is no simple definitive test
for SDC – hardware errors are on a spectrum with the normal
discretized solver behavior

The only “acid test” is recomputation (> 100% overhead)

While many strategies are possible, we implemented simple
global checkpoint/restart for HPCCG

Checkpoint very frequently (every iteration) and assume zero
checkpoint cost (exclude I/O time)

Use same SDC detection as in our other implementations



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

14/16

Roll-forward interpolation appears more scalable:
Reduces false-positive cost

Checkpoint-based (rollback):
Even with checkpointing
assumed free, false positives
lead to frequent costly
restarts

Interpolation-based
(roll-forward): At larger scale,
interpolation overhead
declines due to
communication dominance

Number of cores
10

0
10

1
10

2
10

3

C
o
m
p
u
ta
ti
o
n
a
l
ov
er
h
ea
d
=

N
r
/N

i
(%

)

10
2

10
3

No bit-flips

With bit-flips



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

15/16

Interpolation is effective in tolerating bit flips at
larger scale

Robust CG method can tolerate higher SDC rates that prevent
standard method from converging at all



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

16/16

This work helps confront likely errors to make
extreme-scale HPC workable

Scale will eventually cause previously negligible hardware errors
to dominate, likely from unanticipated sources and modes

Two fundamental ways to mitigate these errors

1 Traditional: enhanced hardware correction – may be slow, costly

2 As part of the algorithm for computation – leveraging
characteristics of the simulation problem (e.g., smoothness)

Goal: Mitigate errors in-situ as an add-on to the computation

Benefits reliability, speed, and cost of next-gen computation

Mitigates errors that might be unpredictable at extreme scale

Provides a diagnostic capability to detect silent errors

Guides choices of both hardware & solver algorithms (co-design)

Future work will improve maintainability of resilient solvers, and
demonstrate them at larger scale and with broader error models


	Silent Errors and Their Mitigation
	1D Hyperbolic Solver (Burgers)
	3D Elliptic Solver (CG)
	Conclusion

