

In-Situ Mitigation of Silent Data Corruption in PDE Solvers

Maher Salloum, **Jackson R. Mayo**, and Robert C. Armstrong

Sandia National Laboratories, Livermore, CA 94551, USA

{mnsallo, jmayo, rob}@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Salloum, Mayo,
Armstrong

1/16

Problem: Future platforms will face tradeoffs imperiling correct hardware function

- Hardware correction already attempts to hide many “out-of-nominal” behaviors from the application
 - Error correction for bit flips in DRAM and caches is important and largely effective
- Increasing scale and constrained power may push toward exposing **silent** hardware errors (of possibly unexpected kinds) – **corrupting** an unaware application’s results
- A primary concern is silent data corruption (SDC), where the computation appears normal except for wrong numerical values
 - Undetected DRAM errors at exascale for one type of ECC memory could be ~ 1 per day
 - Low-voltage processors and accelerators will likely have increased rates of arithmetic errors; **ECC doesn't protect data transformation**

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

Objective: Enable practical SDC mitigation targeted at physics simulation

- For Advanced Simulation & Computing (ASC) codes, we seek better understanding of how to anticipate, mitigate, and/or diagnose the effect of silent errors
- Basic principles aim at building efficient algorithm-based fault tolerance (ABFT) for SDC into physics solvers
 - Predictive simulations of physical systems must already be robust to various numerical and statistical errors/uncertainties
 - Hardware errors can be damped in analogous ways
- Ultimate goal is to contribute to practical resilience toolbox for production codes
 - Leveraging existing partial differential equation (PDE) solver implementations and maintainable as they evolve
 - Adaptable to respond to future hardware characteristics
 - Flexible to unanticipated sources of silent errors

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

We are more focused on *application-level response* vs. other work on silent errors

- There has been much study of SDC **detection** techniques, including for PDEs, but the recovery mechanism is crucial
- Generic brute-force approach: triple modular redundancy with periodic voting to detect and extinguish any error
- Absent such replication, can detected SDC simply be treated like any other fault?
 - Recovery by rollback to a checkpoint – but:
 - Any false-positive detections will hinder forward progress
 - Doesn't take advantage of bulk of computation done correctly
- Our thesis: The dynamics of physical PDEs can support efficient **ultralocal** (within cache) detection and recovery, achieving **stability** to isolated occurrences of SDC
 - Handling silent errors quickly and transparently (like standard numerical errors) reduces the cost of a false positive

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

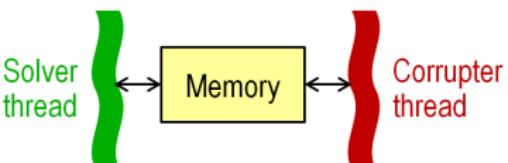
3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

Initial error model describes memory bit flips, but can be generalized

- In extreme-scale scientific computing, floating-point (FP) data are an obvious concern for SDC
 - FP data often constitute the bulk of memory usage
 - Data corruption can also be a proxy for *processor* FP glitches
 - Corruption in other places (control logic, pointers) is more likely to cause outright crashes, which will be mitigated by other means
 - Relaxing FP correctness can benefit accelerators such as GPUs
- Our error-injection framework for solvers: Asynchronously perform raw memory bit flips in the FP solution array
- Other injection and mitigation techniques will be pursued for related sources of SDC such as processor arithmetic errors



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

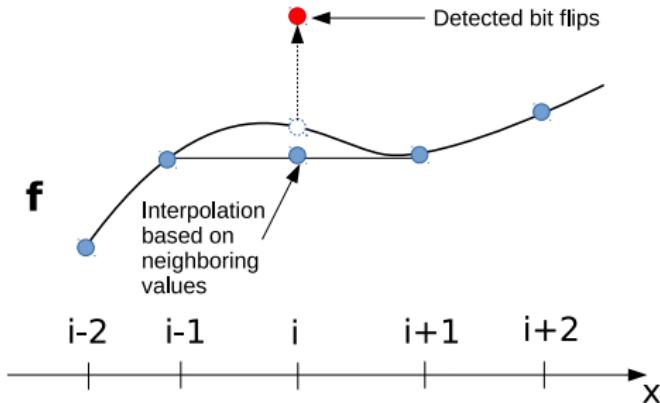
3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

Outlier detection and interpolation can leverage smoothness properties of physics

- Aim is to correct accumulated bit flips in data values when they are loaded from memory, just before they are used – so that large corruptions will not propagate
- Corrupted values are detected via relative deviation from neighbors and replaced with an interpolation, as a linear-algebra-type computation is sweeping the vector



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

A nonlinear advection equation can be solved by a variant of sparse matrix-vector

- The 1D *linear* advection equation

$$\partial\phi/\partial t + \nu \partial\phi/\partial x = 0$$

can be solved by Lax-Wendroff finite-difference stencil based on CFL number $c = \nu \Delta t / \Delta x$

- The shock-forming **Burgers equation**

$$\partial\phi/\partial t + \partial(\frac{1}{2}\phi^2)/\partial x = 0$$

can be solved by corresponding stencil with local CFL number
 $\gamma_j^n = \phi_j^n \Delta t / \Delta x$ (Roe 1980)

$$\phi_j^{n+1} = [\frac{1}{2}\gamma_j^n + \frac{1}{2}(\gamma_j^n)^2] \phi_{j-1}^n + [1 - (\gamma_j^n)^2] \phi_j^n + [-\frac{1}{2}\gamma_j^n + \frac{1}{2}(\gamma_j^n)^2] \phi_{j+1}^n$$

- Interpolation is performed as the operation sweeps the vector ϕ^n (robust nonlinear version of sparse matrix-vector)

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

Effect of bit-flip injection and mitigation is measured via error norm and wall time

- Corrupter thread injects random bit flips based on a probability parameter
- Each solver run tracks the total wall time and number of bit flips, used to calibrate the emulated memory error rate
 - For ease of comparison, the unit of wall time is taken as *one timestep* of the standard solver on one core
 - Or, for later conjugate gradient example, *one iteration*
- Time-based memory error model means that a slower solver incurs a penalty in resilience because more bit flips accumulate
- Measure wall time to solution, and final-state error norm
 - Explicit solver is considered as tolerating the bit flips if this norm is less than $3\times$ that of the standard solver with no bit flips
 - Or, for later conjugate gradient example, iterative solution is simply required to converge within a predefined residual (may diverge instead if bit-flip rate is too high)

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

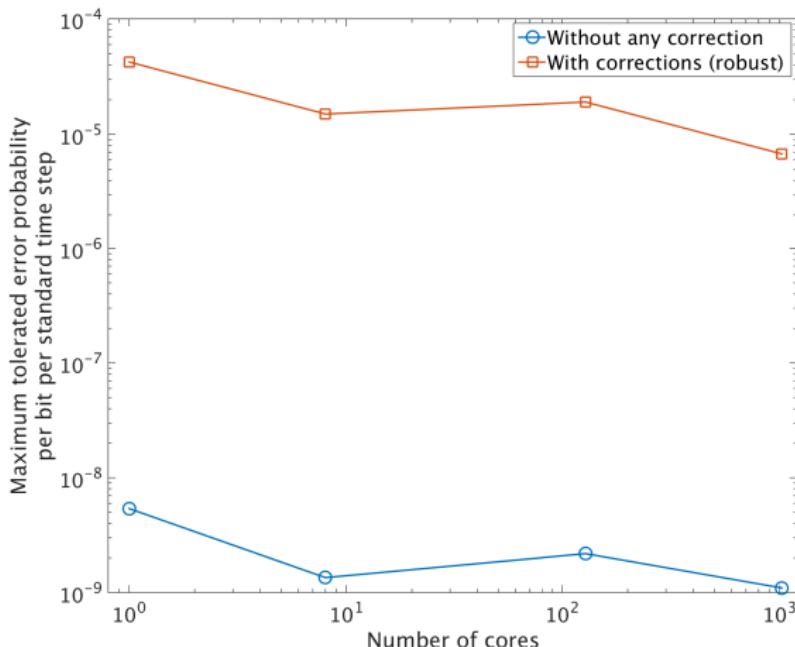
3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

Interpolation maintains strong SDC-tolerance improvement under weak scaling

- Robust hyperbolic solver tolerates error rates $\sim 10^4 \times$ larger than standard solver



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

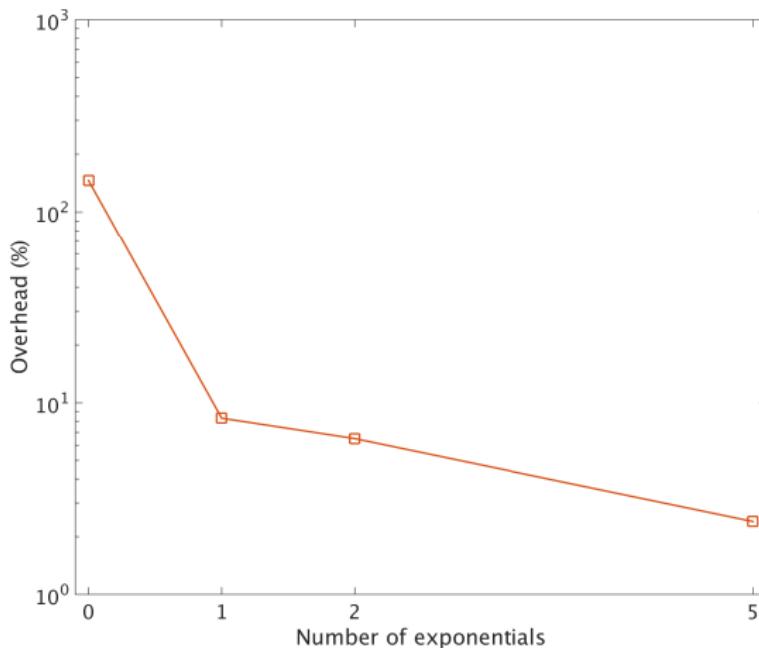
3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

Robustness overhead for hyperbolic solver decreases with chemistry-like forcing terms

- Overhead of error detection/interpolation is masked to ~2% by adding local computations to both original and robust schemes



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

10/16

Example elliptic solver is an instance of conjugate gradient, built from linear algebra

- HPCCG mini-app uses unpreconditioned conjugate gradient (CG) method as solver for a linear elliptic PDE in a 3D domain
 - Vary problem scale by stacking “wafer” domains in one direction
- Each iteration of CG involves one *smpv* call, three *daxpy* calls, and two *ddot* calls
- More communication-intensive than explicit solvers, especially at large scale
- We demonstrate concept of robust linear algebra “building blocks” that can be reused in other PDE solvers
 - Step toward larger goal of easing resilience programmability for other custom PDE solver needs, such as nonlinear and stencil-like operations

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

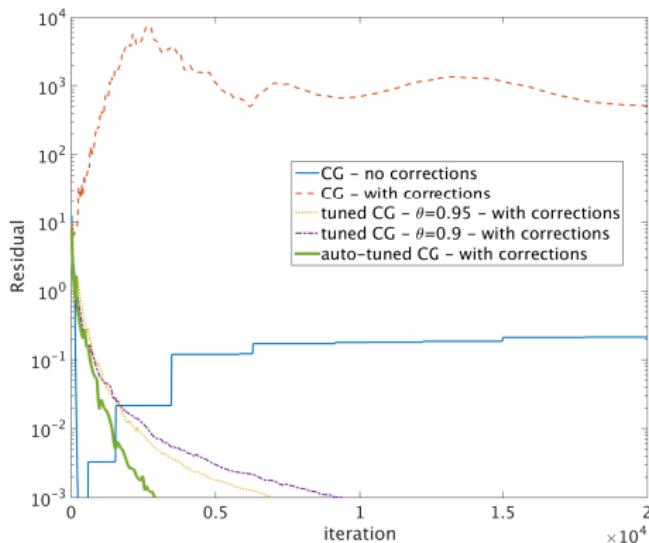
3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

CG modification helps promote convergence in the presence of SDC

- Key CG iterations: $u_{k+1} = u_k + \alpha p_k$ and $p_{k+1} = r_{k+1} + \beta p_k$
 - Less aggressive steps are obtained by $\alpha \leftarrow \theta\alpha$ and $\beta \leftarrow 1 - \theta(1 - \beta)$, where $\theta < 1$ is a function of the residual
 - This “tuning” enables convergence with interpolation – can even accelerate convergence of early iterations (behavior might differ with preconditioner)



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

12/16

We consider checkpoint-based mitigation as a comparison

- Checkpointing is a standard practice for resilience – can we take advantage of it?
- For recovery from SDC by rollback to a checkpoint, would like:
 - SDC detected as soon as possible (while it's still a clear outlier)
 - Checkpoint as recent as possible (to minimize lost progress)
- Key problem: For PDE solvers, there is no simple definitive test for SDC – hardware errors are on a spectrum with the normal discretized solver behavior
 - The only “acid test” is **recomputation** (> 100% overhead)
- While many strategies are possible, we implemented simple global checkpoint/restart for HPCCG
 - Checkpoint very frequently (every iteration) and assume **zero checkpoint cost** (exclude I/O time)
 - Use same SDC *detection* as in our other implementations

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

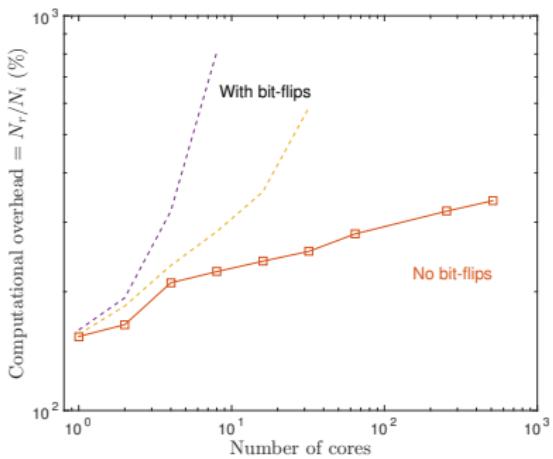
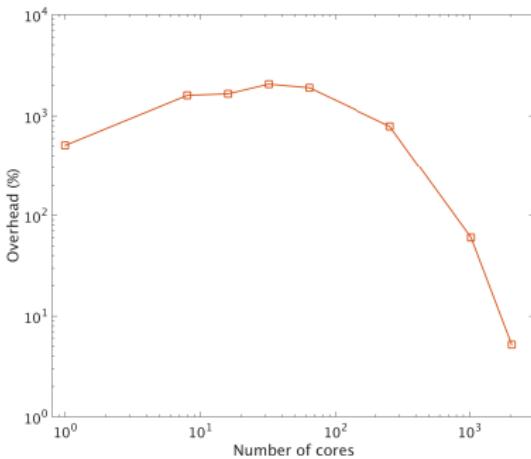
Conclusion

Salloum, Mayo,
Armstrong

13/16

Roll-forward interpolation appears more scalable: Reduces false-positive cost

- Checkpoint-based (rollback):
Even with checkpointing assumed free, false positives lead to frequent costly restarts
- Interpolation-based (roll-forward): At larger scale, interpolation overhead declines due to communication dominance



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

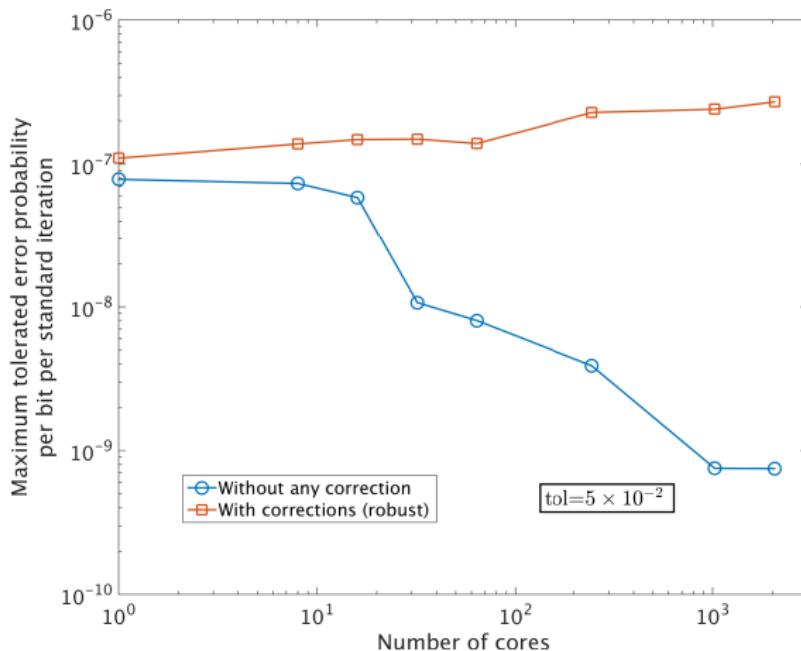
3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

Interpolation is effective in tolerating bit flips at larger scale

- Robust CG method can tolerate higher SDC rates that prevent standard method from converging at all



In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong

This work helps confront likely errors to make extreme-scale HPC workable

- Scale will eventually cause previously negligible hardware errors to dominate, likely from unanticipated sources and modes
- Two fundamental ways to mitigate these errors
 - 1 Traditional: enhanced hardware correction – may be slow, costly
 - 2 As part of the algorithm for computation – leveraging characteristics of the simulation problem (e.g., smoothness)
- Goal: Mitigate errors in-situ as an add-on to the computation
- Benefits reliability, speed, and cost of next-gen computation
 - Mitigates errors that might be unpredictable at extreme scale
 - Provides a diagnostic capability to detect silent errors
 - Guides choices of both hardware & solver algorithms (co-design)
- Future work will improve maintainability of resilient solvers, and demonstrate them at larger scale and with broader error models

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

1D Hyperbolic
Solver
(Burgers)

3D Elliptic
Solver (CG)

Conclusion

Salloum, Mayo,
Armstrong