FTXS Workshop - 31 May 2016

SAND2016- 4995C

In-Situ Mitigation of Silent Data Corruption
in PDE Solvers

Maher Salloum, Jackson R. Mayo, and Robert C. Armstrong
Sandia National Laboratories, Livermore, CA 94551, USA

{mnsallo, jmayo, rob}@sandia.gov

\

Z\
AsC

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

@

In-Situ
Mitigation of
Silent Data
Corruption

Salloum, Mayo,
Armstrong

1/16

Problem: Future platforms will face tradeoffs
imperiling correct hardware function

m Hardware correction already attempts to hide many
“out-of-nominal” behaviors from the application
m Error correction for bit flips in DRAM and caches is important
and largely effective

m Increasing scale and constrained power may push toward
exposing silent hardware errors (of possibly unexpected kinds) —
corrupting an unaware application’s results

m A primary concern is silent data corruption (SDC), where the
computation appears normal except for wrong numerical values

m Undetected DRAM errors at exascale for one type of ECC
memory could be ~1 per day

m Low-voltage processors and accelerators will likely have increased
rates of arithmetic errors; ECC doesn't protect data
transformation

@

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

Salloum, Mayo,
Armstrong

2/16

Objective: Enable practical SDC mitigation @
targeted at physics simulation

In-Situ
m For Advanced Simulation & Computing (ASC) codes, we seek eaton of
better understanding of how to anticipate, mitigate, and/or Carmpie
diagnose the effect of silent errors
m Basic principles aim at building efficient algorithm-based fault e e

tolerance (ABFT) for SDC into physics solvers Slitiezten

m Predictive simulations of physical systems must already be
robust to various numerical and statistical errors/uncertainties

m Hardware errors can be damped in analogous ways

m Ultimate goal is to contribute to practical resilience toolbox for
production codes

m Leveraging existing partial differential equation (PDE) solver
implementations and maintainable as they evolve

m Adaptable to respond to future hardware characteristics
Salloum, Mayo,

Armstrong

3/16

m Flexible to unanticipated sources of silent errors

We are more focused on application-level response
vs. other work on silent errors

m There has been much study of SDC detection techniques,
including for PDEs, but the recovery mechanism is crucial

m Generic brute-force approach: triple modular redundancy with
periodic voting to detect and extinguish any error

m Absent such replication, can detected SDC simply be treated like
any other fault?

m Recovery by rollback to a checkpoint — but:
m Any false-positive detections will hinder forward progress

m Doesn't take advantage of bulk of computation done correctly

m Our thesis: The dynamics of physical PDEs can support efficient
ultralocal (within cache) detection and recovery, achieving
stability to isolated occurrences of SDC

m Handling silent errors quickly and transparently (like standard
numerical errors) reduces the cost of a false positive

@

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

Salloum, Mayo,
Armstrong

4/16

Initial error model describes memory bit flips, but @
can be generalized

In-Situ
m In extreme-scale scientific computing, floating-point (FP) data e o
are an obvious concern for SDC Corruption
m FP data often constitute the bulk of memory usage
i . Silent Errors
m Data corruption can also be a proxy for processor FP glitches IE:/rlw_d_Th_eir
itigation
m Corruption in other places (control logic, pointers) is more likely
to cause outright crashes, which will be mitigated by other
means
m Relaxing FP correctness can benefit accelerators such as GPUs
m Our error-injection framework
for solvers: Asynchronously Solver M Corrupter
o lemory
perform raw memory bit flips thread thread
in the FP solution array
m Other injection and mitigation techniques will be pursued for Salloum, Mayo,
Armstrong

related sources of SDC such as processor arithmetic errors
5/16

Qutlier detection and interpolation can leverage
smoothness properties of physics

m Aim is to correct accumulated bit flips in data values when they
are loaded from memory, just before they are used — so that
large corruptions will not propagate

m Corrupted values are detected via relative deviation from
neighbors and replaced with an interpolation, as a
linear-algebra-type computation is sweeping the vector

,47 Detected bit flips

Interpolation/
based on

neighboring
values

i-2 i-1 i i+1 i+2

Y
><V

@

In-Situ
Mitigation of
Silent Data
Corruption

Silent Errors
and Their
Mitigation

Salloum, Mayo,
Armstrong

6/16

A nonlinear advection equation can be solved by a @
variant of sparse matrix-vector

In-Situ

m The 1D linear advection equation I\gl.fleiattgztgf
Corruption
0¢ /0t +v0¢/Ox =0
can be solved by Lax-Wendroff finite-difference stencil based on
CFL number ¢ = v At/Ax
1D Hyperbolic

m The shock-forming Burgers equation (S;Iver :
urgers
/0t +0(3¢%) /ox =0

can be solved by corresponding stencil with local CFL number
V) = ¢] At/Ax (Roe 1980)
¢Jr'7+1 = [%,yjﬁ + %(7}1)2] Pf1+ [1 - (71{1)2] ¢j + [_%Vf + %(71{1)2} Pir1
m Interpolation is performed as the operation sweeps the vector ¢" Salloum, Mayo,

(robust nonlinear version of sparse matrix-vector) GATEGRE
7/16

Effect of bit-flip injection and mitigation is @
measured via error norm and wall time

In-Situ
.. . . - Mitigati F
m Corrupter thread injects random bit flips based on a probability St e
parametel’ Corruption
m Each solver run tracks the total wall time and number of bit
flips, used to calibrate the emulated memory error rate
m For ease of comparison, the unit of wall time is taken as one
timestep of the standard solver on one core §D| Hyperbolic
olver
m Or, for later conjugate gradient example, one iteration (Burgers)

m Time-based memory error model means that a slower solver
incurs a penalty in resilience because more bit flips accumulate

m Measure wall time to solution, and final-state error norm

m Explicit solver is considered as tolerating the bit flips if this norm
is less than 3 that of the standard solver with no bit flips

m Or, for later conjugate gradient example, iterative solution is
simply required to converge within a predefined residual (may 53'/;0“’"’ Mayo,
diverge instead if bit-flip rate is too high) A

8/16

Interpolation maintains strong SDC-tolerance @
improvement under weak scaling

In-Situ
H 4 Mitigation of
m Robust hyperbolic solver tolerates error rates ~10%x larger than A oo o e
standard solver Corruption

107 - -
-©-Without any correction

-8-With corrections (robust)
i 1D Hyperbolic

> ;
£ 107
aa
ﬁﬂ)
gﬁ Solver
v Burger:
g (Burgers)
SE
sX10°
£2
]
- T©
c
£s
ca
L -7
%
s glo
[
32
Eg
x Q
] -
S 108

Salloum, Mayo,
Armstrong

10° 10! 10? 10°

Number of cores 9/]_6

Robustness overhead for hyperbolic solver

decreases with chemistry-like forcing terms @
In-Situ
m Overhead of error detection/interpolation is masked to ~2% by e o
adding local computations to both original and robust schemes Corruption
10°
1D Hyperbolic
Solver
102 3] (Burgers)
g |
8
101}
Salloum, Mayo,
10°

. L Armstrong
0 1 2
Number of exponentials 10/16

Example elliptic solver is an instance of conjugate
gradient, built from linear algebra

m HPCCG mini-app uses unpreconditioned conjugate gradient
(CG) method as solver for a linear elliptic PDE in a 3D domain

m Vary problem scale by stacking “wafer” domains in one direction

m Each iteration of CG involves one smpv call, three daxpy calls,
and two ddot calls

m More communication-intensive than explicit solvers, especially at
large scale

m We demonstrate concept of robust linear algebra “building
blocks” that can be reused in other PDE solvers

m Step toward larger goal of easing resilience programmability for
other custom PDE solver needs, such as nonlinear and
stencil-like operations

@

In-Situ
Mitigation of
Silent Data
Corruption

3D Elliptic
Solver (CG)

Salloum, Mayo,
Armstrong

11/16

CG modification helps promote convergence in the

presence of SDC

m Key CG iterations: ugi11 = ux + apx and pri1 = ket + Bpk

m Less aggressive steps are obtained by o + 0« and

B+ 1—0(1—p), where § <1 is a function of the residual

m This “tuning” enables convergence with interpolation — can even
accelerate convergence of early iterations (behavior might differ

with preconditioner)

Residual

10*

10%

102} !

10'p

—CG - no corrections
CG - with corrections

tuned CG - #=0.95 - with corrections

---tuned CG - #=0.9 - with corrections
——auto-tuned CG - with corrections

iteration

2
x10*

@

In-Situ
Mitigation of
Silent Data
Corruption

3D Elliptic
Solver (CG)

Salloum, Mayo,
Armstrong

12/16

We consider checkpoint-based mitigation as a
comparison

m Checkpointing is a standard practice for resilience — can we take
advantage of it?

m For recovery from SDC by rollback to a checkpoint, would like:
m SDC detected as soon as possible (while it's still a clear outlier)

m Checkpoint as recent as possible (to minimize lost progress)

m Key problem: For PDE solvers, there is no simple definitive test
for SDC — hardware errors are on a spectrum with the normal
discretized solver behavior

m The only “acid test” is recomputation (> 100% overhead)

m While many strategies are possible, we implemented simple
global checkpoint/restart for HPCCG

m Checkpoint very frequently (every iteration) and assume zero
checkpoint cost (exclude /O time)

m Use same SDC detection as in our other implementations

@

In-Situ
Mitigation of
Silent Data
Corruption

3D Elliptic
Solver (CG)

Salloum, Mayo,
Armstrong

13/16

Roll-forward interpolation appears more scalable:
Reduces false-positive cost

Computational overhead = N, /N; (%)

m Checkpoint-based (rollback):
Even with checkpointing
assumed free, false positives
lead to frequent costly
restarts

10°
! With bit-flips
," _—a
K /EI’
= /E/E/
//% No bit-flips
&
102
10° 10° 10?
Number of cores

m Interpolation-based
(roll-forward): At larger scale,
interpolation overhead
declines due to
communication dominance

10°

Overhead (%)
g

101}

100 . :
10° 10! 10? 10°
Number of cores

@

In-Situ
Mitigation of
Silent Data
Corruption

3D Elliptic
Solver (CG)

Salloum, Mayo,
Armstrong

14/16

Interpolation is effective in tolerating bit flips at @
larger scale

In-Situ
m Robust CG method can tolerate higher SDC rates that prevent e o
standard method from converging at all Corruption

10°°

|

—
o
N

3D Elliptic
Solver (CG)

,_\
1S}
©

Maximum tolerated error probability
per bit per standard iteration
-
o
%
T

-©-Without any correction
~5-With corrections (robust) tol=5 x 10

Salloum, Mayo,
10710 L Armstrong
10° 10t 102 10°

Number of cores 15/16

This work helps confront likely errors to make
extreme-scale HPC workable

Scale will eventually cause previously negligible hardware errors
to dominate, likely from unanticipated sources and modes

Two fundamental ways to mitigate these errors
Traditional: enhanced hardware correction — may be slow, costly

As part of the algorithm for computation — leveraging
characteristics of the simulation problem (e.g., smoothness)

Goal: Mitigate errors in-situ as an add-on to the computation

Benefits reliability, speed, and cost of next-gen computation
m Mitigates errors that might be unpredictable at extreme scale
m Provides a diagnostic capability to detect silent errors

m Guides choices of both hardware & solver algorithms (co-design)

Future work will improve maintainability of resilient solvers, and
demonstrate them at larger scale and with broader error models

@

In-Situ
Mitigation of
Silent Data
Corruption

Conclusion

Salloum, Mayo,
Armstrong

16/16

	Silent Errors and Their Mitigation
	1D Hyperbolic Solver (Burgers)
	3D Elliptic Solver (CG)
	Conclusion

